
1

Table of Contents

Desktop.com API.. 10
Developers' Guide.. 11
Devtool ... 12
System Requirements.. 13

Developers' Guide.. 14
The DTAPI Class-Based Object Framework ... 15

Packages.. 16
Classes... 17

Object Types... 18
Inheritance .. 19

Methods.. 20
Persistence .. 21

Creating Persistent Objects.. 22
Working with Persistent Objects .. 23
Restoring Persistent Objects.. 24
Root Persistent Objects.. 25
Subclassing PersistentObject and RootPersistentObject .. 26

The FileSystem .. 28
Files and Directories... 29
The DTFileSystem.. 30

GUI Structure ... 31
Components ... 32
Layout Managers.. 33
Common windows and dialogs .. 35
Event Handlers and Action Listeners ... 37

Listening ... 37
Actions .. 37
Events.. 38

Focus.. 39
Panes.. 40
Containers .. 41
Focus Events .. 42
Keyboard Events .. 43
Focus-Advance Events... 44
Refocus Events... 45
Programmatic Focus Changes ... 46

Application Modes.. 47
Launching Applications ... 47
Launching a File.. 47
Single Instance.. 47
Multiple Instances ... 48

2

Application Data Types .. 49
Writing an Application .. 50

Devtool ... 51
Editing Code ... 52

Images and HTML ... 52
Uploading and Downloading Code ... 53
Compiling.. 54
Debugging .. 55
The Console ... 56

API Reference Manual ... 57
Desktop.com Packages ... 58
Class Hierarchy.. 59
DTObjectFramework.. 61

Classes... 61
DTObject... 61

Functions.. 61
DTAlert ... 63

Classes... 63
Functions.. 63

DTApplication... 64
Classes... 64

Application .. 64
Functions.. 67

DTApplicationManager .. 68
Classes... 68
Functions.. 68

DTApplicationPrefsObject.. 70
Classes... 70

ApplicationPrefsObject ... 70
Functions.. 70

DTApplicationStateObject.. 71
Classes... 71

ApplicationStateObject ... 71
Functions.. 71

DTAppWindow ... 72
Classes... 72

AppWindow... 72
Functions.. 74

DTArray.. 75
Classes... 75
Functions.. 75

DTArrayLayoutManager... 77
Classes... 77

ArrayLayoutManager .. 77
Functions.. 79

3

DTAttachmentLayoutManager ... 80
Classes... 80

AttachmentLayoutManager .. 80
Functions.. 83

DTBasicButton ... 84
Classes... 84

BasicButton... 84
Functions.. 85

DTBookmarks .. 86
Classes... 86

BookmarkRecord .. 86
Functions.. 86

DTBorderedRadioButtonGroup.. 87
Classes... 87

BorderedRadioButtonGroup ... 87
Functions.. 88

DTBorderedWindow... 89
Classes... 89

BorderedWindow .. 89
BorderedWindowFrame.. 90

Functions.. 90
DTBrowser ... 91

Classes... 91
Functions.. 91

DTBrowserWindow .. 92
Classes... 92

BrowserWindow.. 92
Functions.. 93

DTButton .. 94
Classes... 94

Button.. 94
Functions.. 95

DTCallback... 96
Classes... 96

Callback .. 96
Functions.. 96

DTCheckBox.. 97
Classes... 97

CheckBox ... 97
Functions.. 97

DTColumnLayoutManager... 98
Classes... 98

ColumnLayoutManager .. 98
Functions.. 98

DTComponent.. 99
Classes... 99

4

Component ... 99
Functions.. 102

DTConfirm.. 103
Classes... 103
Functions.. 103

DTContainer... 104
Classes... 104

Container .. 104
Functions.. 105

DTContent.. 106
Classes... 106

Content ... 106
Functions.. 108

DTDetailsRow .. 109
Classes... 109

DetailsRow.. 109
Functions.. 110

DTDialogWindow ... 111
Classes... 111

DialogWindow... 111
Functions.. 111

DTDragManager .. 112
Classes... 112
Functions.. 112

DTDropDownComboBox ... 114
Classes... 114

DropDownComboBox ... 114
Functions.. 115

DTEventGrabber .. 116
Classes... 116

EventGrabber ... 116
Functions.. 116

DTEventObject... 117
Classes... 117

EventObject .. 117
Functions.. 118

DTFileDownload... 119
Classes... 119
Functions.. 119

DTFileSharing .. 120
Classes... 120

AccessControlList ... 120
Functions.. 121

DTFileSystem .. 124
Classes... 124
Functions.. 124

5

DTFileUpload ... 132
Classes... 132
Functions.. 132

DTFlowLayoutManager.. 133
Classes... 133

FlowLayoutManager ... 133
Functions.. 133

DTFontProber .. 134
Classes... 134

FontMetrics ... 134
Functions.. 135

DTGridLayoutConstraints .. 137
Classes... 137

GridLayoutConstraints .. 137
Functions.. 138

DTGridLayoutManager .. 139
Classes... 139

GridLayoutManager .. 139
Functions.. 139

DTHelpWindow .. 140
Classes... 140
Functions.. 140

DTHTMLBox .. 141
Classes... 141

HTMLBox.. 141
Functions.. 141

DTHTMLBrowser ... 142
Classes... 142

HTMLBrowser... 142
Functions.. 142

DTIconsView.. 143
Classes... 143

IconsView ... 143
Functions.. 144

DTImageArea... 145
Classes... 145

ImageArea .. 145
Functions.. 146

DTImageButton.. 147
Classes... 147

ImageButton ... 147
Functions.. 147

DTImageResize ... 148
Classes... 148
Functions.. 148

DTIncrSlider ... 149

6

Classes... 149
IncrSlider... 149

Functions.. 150
DTKeyEvent ... 151

Classes... 151
KeyEvent .. 151

Functions.. 151
DTLabelledTextBox ... 152

Classes... 152
LabelledTextBox ... 152

Functions.. 153
DTLayoutManager ... 154

Classes... 154
LayoutManager... 154

Functions.. 155
DTLinkArea .. 156

Classes... 156
LinkArea.. 156

Functions.. 156
DTListBox... 157

Classes... 157
ListBox .. 157

Functions.. 158
DTMenu ... 159

Classes... 159
Menu... 159

Functions.. 163
DTMenuBar.. 164

Classes... 164
MenuBar ... 164

Functions.. 166
DTNamedCallback... 167

Classes... 167
NamedCallback .. 167

Functions.. 167
DTNativeComponent ... 168

Classes... 168
NativeComponent ... 168

Functions.. 168
DTNativeTextInputBox... 169

Classes... 169
NativeTextInputBox .. 169

Functions.. 169
DTObjectStore ... 170

Classes... 170
PersistentObject ... 170

7

RootPersistentObject.. 172
Functions.. 173

DTPane .. 174
Classes... 174

Pane.. 174
Functions.. 175

DTPersistentArray.. 176
Classes... 176

PersistentArray ... 176
Functions.. 177

DTProgressBar .. 178
Classes... 178

ProgressBar.. 178
Functions.. 178

DTPrompt... 179
Classes... 179
Functions.. 179

DTQuestion .. 180
Classes... 180
Functions.. 180

DTQueue.. 181
Classes... 181

Queue ... 181
Functions.. 181

DTRadioButtonGroup .. 182
Classes... 182

RadioButtonGroup .. 182
Functions... 183

DTRectangle .. 184
Classes... 184

Rectangle.. 184
Functions.. 184

DTRendezvous .. 185
Classes... 185

Rendezvous.. 185
Functions.. 186

DTScrollBar.. 187
Classes... 187

ScrollBar ... 187
Functions.. 188

DTScrollingTextBox ... 189
Classes... 189

ScrollingTextBox... 189
Functions.. 190

DTScrollPane... 191
Classes... 191

8

ScrollPane .. 191
Functions.. 192

DTSlideDialog .. 193
Classes... 193

SlideDialog.. 193
Functions.. 193

DTSlider ... 194
Classes... 194

Slider... 194
Functions.. 195

DTStack ... 196
Classes... 196

Stack... 196
Functions.. 196

DTStyle .. 197
Classes... 197

Style .. 197
Functions.. 197

DTTableLayoutConstraints .. 198
Classes... 198

TableLayoutConstraints.. 198
Functions.. 198

DTTableLayoutManager .. 199
Classes... 199

TableLayoutManager.. 199
Functions.. 200

DTTabView .. 201
Classes... 201

TabView.. 201
Functions.. 202

DTTextBox ... 203
Classes... 203

TextBox... 203
Functions.. 203

DTTextImageLabel .. 204
Classes... 204

TextImageLabel .. 204
Functions.. 204

DTTextInputBox ... 205
Classes... 205

TextInputBox... 205
Functions.. 205

DTTextInputBox2 ... 206
Classes... 206

TextInputBox2... 206
Functions.. 206

9

DTTextInputField.. 207
Classes... 207

TextInputField ... 207
Functions.. 208

DTTextLabel... 209
Classes... 209

TextLabel .. 209
Functions.. 209

DTTextTreeView .. 210
Classes... 210

TextTreeView.. 210
Functions.. 212

DTTimer ... 213
Classes... 213

Timer... 213
Functions.. 213

DTTransientDialogWindow .. 214
Classes... 214

TransientDialogWindow.. 214
Functions.. 214

DTUserData ... 215
Classes... 215
Functions.. 215

DTWindow.. 216
Classes... 216

Window ... 216
Functions.. 217

DTWrappingTextBox.. 218
Classes... 218

WrappingTextBox ... 218
Functions.. 218

Appendix I: The Console commands ... 219

Appendix II: KeyEvent Constants... 223

Appendix III: Color Values... 225

10

Desktop.com API
The Desktop.com API (DTAPI) offers developers a robust programming language, designed to
create compelling web-based applications.

The DTAPI is based on JavaScript, but expands it to include the more robust features of an
object oriented programming language, including a class-based object framework with
inheritance, and an application package management system. These features supply both ease
of use in designing and writing applications as well as faster server access while running the
application.

As a web-based design tool, the DTAPI allows extensive server access, and offers a suite of GUI
elements. Server access allows developers to manipulate server based user files, including
persistent user data, as well as to create extensible applications using programming packages,
stored on the server. The DTAPI suite of GUI elements includes interactive elements and
graphics enablers. The suite provides tools for component-based design, automated user-
interactivity, and widgets for commonly used elements, such as scroll bars and user-input
devices.

DTAPI offers:
• support for familiar JavaScript and DHTML programming languages
• class based object framework with inheritance, functions, and methods
• package management system for efficient downloading of applications
• ability to store persistent data
• ability to browse, create, manipulate, upload, download and share server based user files

and folders
• graphical user interface builder, including:

• windows and focus control
• menus
• layout managers
• interactive elements, including event handlers and a suite of widgets:

• including text input, buttons, check box, list box, slider and scroll bars
• prompts, questions and other common dialog boxes
• pane based help window
• image displays
• text displays and fonts

• ability to launch applications in single or multiple instances
• type registry for file type mapping
• suite of data types
• browser window launch
• application icons

11

Developers' Guide

This manual also includes a Developers' Guide, which describes the principles behind the
Desktop.com API, and offers an overview of the process used in developing and submitting an
application for inclusion on the Desktop.com site.

The Developers' Guide is designed to be used in conjunction with the Desktop API Reference
Manual. While the Developers' Guide covers overriding principles and procedures used in
implementing the DTAPI, the API Reference Manual defines all packages, classes, methods, and
functions used in designing for the Desktop.com platform. Both manuals often make reference to
related information in the other.

12

Devtool

Devtool, Desktop.com's developer tool, provides a unified interface for functions needed to edit
and test an application online. Devtool also offers tools specific to the Devtop environment, such
as the ability to upload and download files to and from our servers. Developers may write
applications off-line, then log into Devtop to upload, compile, run, debug, and touch up their
programs. Devtop allows you to create and share applications from one location.

Devtool provides the ability to:

• upload and download code to your account
• compile JavaScript for execution under the Desktop environment
• execute application code
• assemble application projects consisting of multiple files
• edit code on-line
• view debugging output from apps
• access the console, Desktop's command-line interface

Uploading and Downloading Code

Devtool includes its own file storage and management system. Uploading and
Downloading code is as easy as clicking on a button, allowing you to store work in
progress, as well as completed applications, in one directory, accessible from any
internet-connected computer.

Compiling Code

Devtool takes your application code, parses it for errors, and formats it for the Desktop
environment. It reports syntax errors, undeclared symbols, and unused symbols. The
changes it makes include stripping whitespace and comments, translating blocking
methods, and renaming identifiers.

Editing Code

Devtool includes an editor, Edwin, suitable for making quick fix modifications to code on-
line. The ability to edit on-line allows developers to debug without uploading and
downloading each time a fix is necessary.

The Console

The Console is Desktop's command-line interface, similar to a DOS or Unix shell, which
allows you to manipulate files in your filesystem, run applications, execute JavaScript
commands, and more. To access the list of commands available, simply launch the
Console, type "help," and press the Enter key.

13

System Requirements

This is a list of the minimum requirements for optimal performance of both the Desktop.com
platform and its development environment.

• Pentium II 300mhz or higher
• Windows 98 or NT
• 64 MB RAM or higher
• Microsoft Internet Explorer 5 or later
• 56Kbps modem

(Support for Netscape Navigator is planned for the near future.)

14

Developers' Guide
The Desktop.com Developers' Guide describes the principles behind the Desktop.com API, and
offers an overview of the process used in developing and submitting an application for inclusion
on the Desktop.com site.

The Developers' Guide is designed to be used in conjunction with the Desktop API Reference
Manual. While the Developers' Guide covers overriding principles and procedures used in
implementing the DTAPI, the API itself serves as a reference manual in which all packages,
classes, methods, and functions used in designing for the Desktop.com platform are defined.
Both manuals often make reference to related information in the other.

15

The DTAPI Class-Based Object Framework

Most popular object-oriented languages, like C++ and Java, are class-based. In class-based
languages, the programmer declares classes which encapsulate data, and methods which act
upon or work with that data. Many class-based languages also have the concept of inheritance,
which allows the programmer to declare a new class that specializes or modifies the behavior of
another class.

The DTAPI uses JavaScript's ability to access underlying language components to implement
these features natively.

16

Packages

Desktop.com client code is downloaded to the browser only as it is needed. To make this
possible, the client code is broken into packages.

Packages are the way the DTAPI encapsulates specific bits of functionality. Each package
exports particular classes and/or functions, which makes them visible from outside the package.
The package may define other classes or functions that are not exported.

A package is a function in which classes, methods, and other functions are declared. Each
package has a Requires variable, which is named after the function itself. This variable must
be an array that lists the names of all packages required for the given package to work. The
DTAPI PackageManager will ensure that the required packages are present before it loads the
package.

For example, to create a package called PkgRectangle which requires a package called
PkgShape:

function PkgRectangle()
{

...functions and classes...
}

PkgRectangle_Requires = ["PkgShape"];

Functions, classes and objects may be exported from the package using the DTAPI Export
method on the package. Other packages will only have access to the classes and methods that
are exported. Note that all of a class' methods may be accessed through the class, so it is not
necessary to export them.

For example, to export the function ILikeRectangles from the PkgRectangle
package:

function ILikeRectangles()
{

...
}

PkgRectangle.Export(ILikeRectangles);

17

Classes

Classes define an object with set properties and actions, and may be acted upon by methods
defined within the class.

Classes in JavaScript are defined by their constructor functions. (JavaScript, unlike C++ and
Java, allows only one constructor for each class.) After declaring the constructor function, use the
DTAPI MakeClass function to turn the constructor into a class.

For example, to create a Rectangle class:

function Rectangle(x, y, height, width)
{

this.x = x;
this.y = y;
this.height = height;
this.width = width;

}
MakeClass(Rectangle, PkgRectangle);
Rectangle.InheritFrom(DTObject);

The two arguments to MakeClass are the constructor function and the package in which the class
is declared. (The InheritFrom call is described below under Inheritance.)

After calling MakeClass(Rectangle, PkgRectangle), refer to the class using
simply "Rectangle." (This is a regular JavaScript function object that has some extra
properties and methods, which we refer to as a class.)

Note that in the constructor, you must use the this keyword to refer to the object being created.

To create a Rectangle object (an instance of the Rectangle class):

var r = new Rectangle(2,-2, 10, 50);

18

Object Types

The DTAPI categorizes object classes as object types. In JavaScript, typeof will always return
"object," as JavaScript does not recognize different types of objects created using classes.
It is useful to know an object's class in order to determine which methods may be used in relation
to it. The DTAPI object framework supplies two functions that will return an object's type (or
class): TypeOf, and IsA.

TypeOf takes an object and returns a string containing the name of its class. For example:

var s = new Square(10);
alert(TypeOf(s));

would display an alert dialog box with Square in it. Note that the class name does not include
the package name.

IsA takes an object and a string and returns true or false depending on whether the string
is the name of the class of the object, or the name of one of its superclasses. For example:

var s = new Square(10);
alert(IsA(s, "Square"));

would display an alert dialog box with true in it.

19

Inheritance

Inheritance allows programmers to declare a new class which specializes or modifies the
behavior of a more generalized "superclass," and is a means by which related, subordinate
classes "inherit" methods from their parent class.

In the DTAPI, inheritance is accomplished using the InheritFrom method.

For example, to create a Square class that inherits from Rectangle:

function Square(x, y, size)
{

this.Rectangle(x, y, size, size);
}

MakeClass(Square, PkgRectangle);
Square.InheritFrom(Rectangle);

Note how the Rectangle constructor is called within the Square constructor. A subclass
should always call its superclass' constructor, usually at the beginning.

Note, if a class does not inherit from anything, some things may not work. You should always
define a class as inheriting from DTObject, the base class, if nothing else.

20

Methods

Methods define and act upon properties of a class object. In JavaScript, methods are also
functions.

To define a method, after declaring the method function, use the MakeMethod method of the
class.

For example, to create an area method of the Rectangle class:

function Rectangle_area()
{

return this.height * this.width;
}

Rectangle.MakeMethod(Rectangle_area);

To invoke this method, call:

var r = new Rectangle();
alert(r.area());

Note that the method function is declared with the name "Rectangle_area," but that the
method name itself is "area." This marks the function as meant to be called as a method on the
Rectangle class. MakeMethod knows that the class name is Rectangle, so it strips
that part off and leaves only "area" as the method name.

Note that in methods you must use the this keyword to refer to the object on which the method
is called.

It is sometimes desirable to change the way a method supplied by the superclass works. For
example, the setSize() method for the Rectangle class requires both a height and a width
parameter. To replace it in the Square class with a method which takes only one size
parameter, use the this.Call method, as shown:

function Square_setSize(size)
{

this.Call(Rectangle, "setSize", size, size);
}

Square.MakeMethod(Square_setSize);

Note that the Call method invokes the method of a superclass on an object, bypassing normal
method invocation. Calling this.setSize(size) would call the setSize method of the
Square class, rather than that of its superclass, Rectangle.

21

Persistence

One of the key features of the DTAPI is persistence. Persistence allows users to log out of their
Desktop, go to a different site or browser, log back in, and still have all of their files, and the
appearance of their Desktop exactly as they left them.

To allow users to save information for later retrieval, the DTAPI implements a concept called
Persistent Data. Persistent data is that which persists from user session to user session, and
includes such information as the user's ID and information, and the active or inactive state of the
application at the end of the last user session.

The basic unit of persistent data is the Persistent Object, or PO, which is an object that is
duplicated on the Desktop.com servers. All persistent data is stored in instances of
DTObjectStore.PersistentObject or one of its subclasses. The properties of POs
may be numbers, strings, Booleans, or references to other POs. A group of POs, the next level of
abstraction, is called an Object Group. An Object Group is a collection of POs arranged in a tree,
with a special type of PO at the root of the tree. This special type of PO is the Root Persistent
Object, or RPO, which is like other Persistent Objects in that it can have properties, but is special
because it is the only type of PO that can be the root of an Object Group.

All Persistent Objects are identified by a three-number tuple. The first number is the user ID, the
second is the RPO ID, and the third is the child ID. Each user has their own user ID, and all of
that person's POs start with their user ID as the first number in the tuple. The second number
identifies an Object Group. Every PO within that group has the same first and second number in
the tuple. The third number identifies the particular PO within the group, with the RPO always
having a child ID of 0.

Persistent Objects are grouped into bundles under the RootPersistentObject class.
Root Persistent Objects are like files in that they bundle data together. Each
PersistentObject must belong to a RootPersistentObject. (When creating a
PersistentObject, it must be associated with a RootPersistentObject.) When
a RootPersistentObject is deleted, all of the data associated with it (stored in
PersistentObjects) is also deleted.

22

Creating Persistent Objects

Persistent Objects (POs) must be associated with a Root Persistent Object (RPO) when they are
created. To associate a PO with an RPO, pass either a RootPersistentObject or a
PersistentObject to the PersistentObject constructor. If an RPO is passed, the
new PO is associated directly with the given RPO. If a PO is passed, the new PO is associated
with the same RPO as the PO that was passed in.

For example, with rpo a RootPersistentObject:

var po_a = new PersistentObject(rpo);
var po_b = new PersistentObject(po_a);

creates two PersistentObjects that are both associated with the given
RootPersistentObject.

23

Working with Persistent Objects

PersistentObject properties may contain five types of data:

• strings,
• integers,
• Booleans,
• references to other Persistent Objects, and
• null.

The set method must be used to set properties on a persistent object. For example:

po_a.set("myProperty","myValue");

would set the myProperty property of po to "myValue," a string. The set method must
be used to indicate to the object that the value must be sent to the server, and thus made
persistent. If set is not used, the value will not be saved, and the property may disappear at any
time.

The calls to set other data types are similar. For example:

po_a.set("myInteger", 10);
po_a.set("myBoolean", true);
po_a.set("myNull", null);
po_a.set("myObject", po_b);

To read property values from a PersistentObject:

var s = po_a.myProperty;
var i = po_a.myInteger;
var b = po_a.myBoolean;
var n = po_a.myNull;
var o = po_a.myObject;

24

Restoring Persistent Objects

To restore a Persistent Object, use the fetchChild$ method. For example, if the po_a in
the previous example has just been restored:

alert(po_a.myObject); // shows "null"
po_a.fetchChild$("myObject");
var po_b = po_a.myObject;

Note that when PersistentObjects are restored, references to other Persistent Objects
are also restored, but the objects themselves are not.

For more information, and a list of available methods, see DTObjectStore.PersistentObject.

25

Root Persistent Objects

The RootPersistentObject class is a subclass of the PersistentObject class.
Instances behave exactly like regular PersistentObject instances. The only difference is
that a RootPersistentObject defines a group of Persistent Objects; therefore the RPO
constructor takes no arguments:

var rpo = new RootPersistentObject();

As mentioned earlier, a RootPersistentObject is like a file: when it is deleted, all data
associated with it are also deleted. Also like a file, an RPO is not considered saved unless it is in
the FileSystem. (For more information, see DTFileSystem.) The
RootPersistentObject type determines what kind of file it is, and what application is
associated with it.

The relationship of Persistent Objects and Root Persistent Objects is designed to enhance file
management, and limit file proliferation.

26

Subclassing PersistentObject and RootPersistentObject

A subclass of a PersistentObject or RootPersistentObject may be generated
to create a new file type to associate with an application.

Remember that the constructors for both PersistentObject and
RootPersistentObject take two arguments, even though they are normally called with
only one. (The extra argument is used when the object is being restored.) Also remember not to
do anything in the constructor but call the base class constructor:

function MyPersistentObject(arg1, arg2)
{

this.PersistentObject(arg1, arg2);
}

MakeClass(MyPersistentObject, PkgMyApp);
MyPersistentObject.InheritFrom(PersistentObject);

If you need to do anything normally done in a constructor, implement the construct method.
As always, call your base class' method first:

function MyPersistentObject_construct()
{

this.Call(PersistentObject, "construct");
this.set("myProperty", "myValue");
this.set("myObject", new
PersistentObject(this));

}
MyPersistentObject.MakeMethod(MyPersistentObject_const
ruct);

The construct method is not a blocking function: no blocking functions may be called within
it. To bypass this limitation, make an initialize$ method to call after creating a new
instance.

Note that because constructors are always non-blocking, you may create Persistent Objects in
the construct method. If you implement a construct method, you will probably also
have to implement a restore$ and an update$ method.

The restore$ method is called when an instance is being retrieved from the server and
restored, which presents an opportunity to fetch other objects from the server. For example:

27

function MyPersistentObject_restore$()
{

this.Call$(PersistentObject, "restore");
this.fetchChild$("myObject");

}
MyPersistentObject.MakeMethod(MyPersistentObject_resto
re$);

Calling fetchChild$ gets the associated object from the server. Note that this will delay the
calling routine, as it has to wait not only for the current object to be fetched and restored, but also
for all of the objects that its restore$ method fetches.

The update$ method is similar to the restore$ method in that it is called when an object is
being updated with the latest data from the server. If necessary, you can make update$
ensure that associated objects are also updated:

function MyPersistentObject_update$()
{

this.Call$(PersistentObject, "update");
DTObjectStore.update$(this.myObject);

}
MyPersistentObject.MakeMethod(MyPersistentObject_updat
e$);

Note that each fetchChild$ and fetchChildren$ call will make trips to the server if
the object is not already located on the client. Using fetchChildren$ is better than using
multiple fetchChild$ calls, because it groups all of the requests into one server trip.
DTObjectStore.update$ also always causes a server trip. (Rendezvous objects
may also be used to limit trips to the server.)

28

The FileSystem

The DTAPI provides a filesystem in which users, applications, and the system itself may store
information. The DTAPI filesystem is similar to UNIX or Windows filesystems, but has some
important differences.

The primary difference is that the DTAPI filesystem does not store files, it stores objects.
Specifically, it stores Persistent Objects and Root Persistent Objects (and their subclasses).
When this manual mentions a file in relation to the DTAPI filesystem, it refers to a
RootPersistentObject and its associated object group.

The second difference is that you do not have to "save" your data. Most traditional programs work
on a file that they load into memory. After modifying the data in memory, the program then writes
the file back to the filesystem, possibly overwriting the old file. Using the DTAPI, programs work
directly with the data in the filesystem; when they make a change, it is immediately saved.

The structure for the DTFileSystem is made up of nodes, which are either directories or files. The
relationships among nodes are defined by links: hard links, smart links, and symlinks.

A hard link points from a directory node to a node (file or directory) that it contains, and serves as
the primary containment relationship between a directory and another node. A node can only
have one hard link pointing to it; in this way, every node can be said to exist at a single location in
the filesystem.

A smart link differs from a hard link in that it is viewed as a secondary link to a node, rather than a
link that defines a node’s location. Smart links may define secondary routes between directories
and/or files in a user's filesystem. Hard links and smart links only reference nodes within a single
user’s filesystem. Both hard links and smart links are backreferenced: calling
DTFileSystem.getLinks$() will reveal both the hard links and the smart links that
point to a particular node.

A symbolic link, or symlink, is a path reference to another node in which only the target node’s
path is encoded. Symlinks are not backreferenced from their targets, and no validation is done on
their target paths until an attempt is made to access those paths. By convention, symlinks are
used only to create links to other users’ filesystems.

Locations within the filesystem are described as paths, which are strings of link names separated
by slash characters. Paths may traverse any kind of link: hard links, smart links, or symlinks.

The root directory is the top-level directory for a user’s filesystem. By convention, the
Desktop.com user interface does not expose the root directory to users; instead, the “My Files
subdirectory of the root directory is the root of what users may see. Files in other parts of the
filesystem are effectively hidden.

29

Files and Directories

As mentioned above, files in a regular filesystem are PersistentObjects in the DTAPI. It
is important to keep this in mind because it is often more convenient to talk about "files" than
"RootPersistentObjects." For the end-user, there is no perceived difference between a normal file
and a DTAPI "file:" users experience PersistentObjects as files, manipulate them as
files, and call them "files." The distinction between the two is made only for developers.

Like a regular filesystem, the DTAPI filesystem provides a tree-like directory structure in which
each directory may contain other directories and files (PersistentObjects). Each user
has a private directory structure of their own, and it is not possible for one user to access another
user's files through the filesystem. (Use the DTFileSharing package to share files or access
shared files.)

In a user's directory structure, certain directories contain certain kinds of data. The "My Files"
directory contains all of the files that the user sees through the file manager. The "My
Desktop" directory contains everything on the user's Desktop. There are some directories that
the system uses. There are some Desktop.com applications that create their own directories
under the root (this should generally be avoided). To create a directory for an application, call the
getAppDirectory$ method of the Application class.

To get at a file you must know its path. The path is the list of directories, starting at the root, that
need to be traversed to find the file, plus the name of the file, all separated by forward slashes
("/"). To get to the "Me.gif" file in the "Pictures" directory in the user's "My Files"
directory, use:

/My Files/Pictures/Me.gif

30

The DTFileSystem

The DTAPI package that implements the filesystem is called DTFileSystem. The
DTFileSystem package exports many functions, but the two most basic are
DTFileSystem.get$ and DTFileSystem.put$.

DTFileSystem.get$ retrieves a RootPersistentObject from the filesystem
using its path. From the RootPersistentObject, you may access all
PersistentObjects in its object group.

For example:

var result = DTFileSystem.get$("/My Files/foo");
if (!result.success)

{
...error handling code...

}

var rpo = result.object;

DTFileSystem.put$ inserts a RootPersistentObject into the filesystem at a
particular path. DTFileSystem.put$ is often used after a new
RootPersistentObject is constructed. If DTFileSystem.put$ is not used, you
will not be able to retrieve your objects.

For example:

var rpo = new RootPersistentObject();
var result = DTFileSystem.put$("/My Files/bar", rpo);
if (!result.success)

{
...error handling code...

}

For more information, and a complete list of functions and methods, see DTFileSystem.

31

GUI Structure

As this API is designed to create end-user applications, the DTAPI offers a broad set of pre-
defined GUI enabling packages and concepts. These GUI components are arranged to provide
both ease-of-use and expandable functionality to the developer.

32

Components

A component is an object which defines an element of the graphic user interface for an
application. Components may define windows, images, text displays, menus, or any combination
of these elements, and may include both interactive elements and layout constraints. Some of the
more common components are described here, to serve as examples of those available.

Container components are used to combine other components into a single entity, as
experienced by the end-user. The Pane component defines a window in which other components
may be placed. A layout manager may be attached to the Pane, which will arrange the elements
within it relative to the Pane itself. The Pane and all its contained elements are treated as a single
unit by the end-user, and may be moved and resized by simply moving the Pane container. This
and its parent class, Container, are both components which may contain other components,
including different instances of the same class. This feature introduces hierarchy into the
application structure, and is intended to help simply application design.

Text components are used to display and arrange text, and may be interactive. One of the most
common of these is TextLabel, which may be used to place text, and set its location and
alignment. For example:

var textlabel = new DTTextLabel.TextLabel();
textlabel.setLocation(10, 10);
textlabel.setText("Hello World");
textlabel.setAlignment(DTTextLabel.TextLabel.LEFT);
addComponent()

This will create a text label of width 50, height 25, font color red, text "Hello World" and text
aligned to the left inside the area. The location of this component is set to (10, 10) within the
containing container. TextLabel variations include TextImageLabel, which includes an image with
the text, and TextBox, which allows multiple lines of text.

Image components display an image. To simply display an image, call an instance of ImageArea,
which supports three different modes. The first mode lets you display the image in its natural size,
the second lets you stretch or compress the image to fill the area specified by the size of the
ImageArea. The third allows you to clip a larger image to the size specified.

Components are meant to be used as building blocks in the creation of an application. As such,
they may be combined and re-combined to suit the developers' needs. For example, he Button
component combines image and text in a pre-defined format, which includes an action listener.
The component will automatically change appearance when clicked, mimicking standard button
features. The associated actionListener will emit the appropriate actions when called. This
component may be placed in either a window or a pane component.

33

Layout Managers

Layout Managers are classes whose function is to position the various components in a
container. Layout managers are associated with containers, and each has a defined pattern to lay
out components added to the corresponding pane. Each time a pane is painted or resized, the
doLayout() method of the layout manager is called and the components are laid out. Some
layout managers also control the size of components contained in the associated panes.

A description of each layout manager is given with its class description. Examples for two
common layout managers are given here.

The ArrayLayoutManager stacks all components in an array one after the other in a single row or
column. In the example below, the manager is created with the VERTICAL parameter, which will
cause it to stack the components along the vertical axis. Different layout managers have different
parameters, and are designed for different uses and effects.

To create an ArrayLayoutManager and add it to a container, call:

var alm = DTArrayLayoutManager.ArrayLayoutManager;
var lm = new alm(alm.VERTICAL);
pane.setLayoutManager(lm);
pane.addComponent(c1);
pane.addComponent(c2);

......
pane.addComponent(cn);

Some layout managers take a constraint object, which is a means to define all properties needed
to arrange the component. The constraint object is a separate class, an instance of which should
be passed as an argument to the addComponent method of the container. For example, the
TableLayoutManager arranges components in the form of a table, where each
component has a cell position associated with it. The cell position, along with the component
padding, weight, and spans (number of rows or columns that the component spans) are then
specified for each component by setting the properties on an instance of
TableLayoutConstraint, and passing that as the second argument of
addComponent().

To create a Table Layout Manager with component positioning constraints:

34

var lm = new
DTTableLayoutManager.TableLayoutManager();
pane.setLayoutManager(lm);
lm.setRows(2);
lm.setColumns(2);
var constraint =

new
DTTableLayoutConstraints.TableLayoutConstraints()
;

constraint.setRowNumber(0);
constraint.setColumnNumber(0);
constraint.setColumnSpan(2);
constraint.setRowSpan(1);
pane.addComponent(c1, constraints);
constraint.setDefaults();
constraint.setColumnNumber(0);
constraint.setRowNumber(1);
pane.addComponent(c2, constraints);
constraint.setDefaults();
constraint.setColumnNumber(1);
constraint.setRowNumber(1);
pane.addComponent(c3, constraints);

This will layout the components as shown below.

c1
c2 c3

35

Common windows and dialogs

Window components define the area in which objects appear, and may include Application
Windows, Dialog Windows, Alerts, and input boxes. Window components may be associated with
layout managers and action listeners to define desired GUI elements.

Two of the most commonly used windows are instances of AppWindow and
DialogWindow. AppWindows are persistent: unless the window is closed, it persists from
one Desktop session to the next. They have a title bar and may be resized.

DialogWindows are similar to AppWindows in that they are always associated with an application,
but differ in dialog windows' specificity. DialogWindows are normally associated with a window
belonging to an application. DialogWindows are not persistent: they do not persist from one
session to another. They are not resizable by the user. (The application and other widgets may
manipulate a dialog's size by calling the relevant methods.) DialogWindows maintain focus. When
a DialogWindow is launched, it stays in front of the other window and retains the focus until it is
closed. The other window cannot be raised to the forefront as long as the DialogWindow is open.

AppWindows and DialogWindows are created and used similarly. To create a dialog window:

var dialog = new DTDialogWindow.DialogWindow();
dialog.setLocation(100, 100);
dialog.setSize(200, 250);
dialog.setTitle("This is a dialog");
app.addDialog(dialog, "dialog_reference");
dialog.setLayoutManager(layout_manager);

.....
dialog.addComponent(comp);

.....

To make commonly used dialogs, such as Alert and Question, easier to use, the DTAPI provides
a wrapper function, which allows these dialogs to be called directly. For instance:

DTAlert.DoAlert$("this is the alert text", app, win);
or

DTAlert.DoAlert("this is the alert text", app, win,
cb)

The first argument is a string representing the text to be displayed in the alert box. The second
argument (optional) is a reference to the Application associated with the alert. The third argument
(optional) is a reference to the window in which the Alert should be centered. If the first (blocking
call) syntax is used, then this call blocks until the user hits the "OK" button on the alert box. If the
second syntax is used and the cb is an instance of Callback, then the Callback gets called
whenever the user hits "OK." If cb is null, this is a non-blocking call, and the program
continues without waiting for user input.

36

To create a Question dialog, call:

DTQuestion.AskQuestion$
("this is the question", app, win);

or
DTQuestion.AskQuestion

("this is the question", app, win, cb);

Note that the syntax to create both these dialogs is the same; only the return values will differ.
Alert will return only OK, while Question will return Yes, No, or Cancel.

37

Event Handlers and Action Listeners

Listening

Some Components must be able to react to events received in others. For example, a menu bar,
which is a composite Component, must respond to mouse clicks in the text labels that anchor its
pull-down menus. This kind of event distribution can be achieved with event listening. Any
Component can register as an event listener with any other Component. When a Component
receives an event, it passes the event on to all of its event listeners, even when the event has
local significance for the Component receiving it.

It is sometimes more convenient to listen for actions rather than for events. Actions are higher-
level occurrences than events, and are generated by Components rather than by input devices.
Examples of actions include button presses, text value changes, and moves and resizes.

Actions

Actions are generated when a user clicks (click) or double-clicks (dblclick) on a
component, or can be created by a component in response to defined keyboard or timed actions.
Any object (any component, application, window, or other object) may listen for actions on any
component. (To identify the component, the developer may also set a string as a label for a
component using the setActionLabel method.) Each component can have only one label,
and this label may be overwritten at any time.

A developer can attach any object as an action-listener to a component by calling
addActionListener on the component. The first argument to addActionListener
is a reference to the object that will act as a listener. The second argument (optional) is the name
of a method (as a string) defined in the listener that is called when a defined action is performed
on the component. (If the method name is not provided, it is set to actionPerformed by
default.) Each time an action is emitted by a component, this method is called with three
arguments:

object: a reference to the component on which the action was performed.
label: the label of the component; null if the label is not set.
action: the name of the action performed on the object (component) generating the
event.

In addition to the actions provided by the system, a component class may define its own actions,
which may be used to communicate information to various listeners. For more information, see
the following methods in DTComponent:

setActionLabel(label)
addActionListener(object, method)

38

Events

Events are lower-level occurrences than actions, in that they are generated by a simple mouse or
keyboard event, rather than by a component.

To listen for keyboard events from a component, and respond to them, implement
handleKeyboardEvent(). This method is called each time a user types a key on the
keyboard when the focus is on the component. (The concept of focus is explained later in this
chapter.) For more information, see handleKeyboardEvent() in DTComponent.

One can also listen for mouse actions (like mouseup, mousedown, etc.) by adding a listener to a
component by calling addMouseListener(). This, like addActionListener(),
takes an object (listener) as the first reference, and a name of a method in the listener (as a
string) as an optional second argument. (The default for the second argument is
handleMouseEvent.) Methods of listeners are called each time the mouse interacts with
the component, and take only one argument: event. The event argument contains all the
information and reference to the object. For more information, see the following methods in
DTComponent.

addMouseListener(object, method)
handleMouseEvent(event)

Both handleKeyboardEvent() and handleMouseEvent() are propagated up the
container hierarchy. If a component does not respond to an event, then the container containing
the component will receive the event. This event propagates up until a container responds to it, or
the top-level container is reached.

39

Focus

In the DTAPI’s mouse-and-keyboard interface, the purpose of focus is to direct keyboard input to
the appropriate Component. Focus is a means of defining the primary, active component on the
screen.

In the Desktop environment, any component can get focus, either when the user clicks on the
component, or because a widget or an application sets the focus on the component by calling
setFocus(component) on the containing pane. Once in focus, the component will
respond accordingly: its appearance may change if alternate images have been defined for active
and inactive states, and all keyboard events will be routed to it.

Unless otherwise set, every component is focusable by default. To deny a component focus, call
setFocusable(false).

40

Panes

The Pane class is a subclass of Container that has the ability to manage its children (all
Components) with a concept of focus. At any time, zero or one of a Pane’s focusable children (a
class-level Component property) may have the Pane’s focus. If there is a child in focus, it is only
active if the Pane itself has focus within its parent Pane, and so on all the way up to the Screen,
which is the top-level Pane. In tracing down the Pane/Component containment tree from its root
at the Screen, there is only one path along which Components are active: the active path. The
deepest Component in the active path is called the primary Component, and may be a Pane, or
a non-Pane Component (such as a dialog window). There is always exactly one primary
Component on the Screen. Components (including Panes) always know whether they are active,
and the WindowManager (which manages the Screen) always knows which Component is
primary.

A Pane maintains a stable ordering of its focusable children, called the focus ring. This ordering
is used to define a serial path of user movement among Components. A Pane also maintains a
flag that indicates what to do when the end of the focus ring is reached: cycle around to the
beginning, or ignore the focus advance and allow the parent to handle it. (This is useful for things
such as tab windows and radio button groups.) Focus rings may consist of an arbitrary
interleaving of widgets and nested Panes.

A Pane may have one of its child Components designated as its default focus. The default focus
may be strong or weak. A strong default focus (which may be null) always attempts to take focus
when a Pane becomes active (a previously focused Component may refuse to allow this). A weak
default focus takes focus when a Pane becomes active and has no previously focused
Component.

Inactive Panes remember focus. When a Pane becomes active again, it can reestablish the
active path that existed below it when it was last active. This is useful, for example, in maintaining
independent focus states for separate application windows. The focus remembered by inactive
Panes does not affect event routing.

41

Containers

It is possible to use Containers that are not Panes. Typically, non-Pane Containers are used to
combine multiple Components into a single widget. For example, a scrollbar is a Container
containing three buttons, one of which moves, while the other two are fixed at the ends of the
scrollbar.

In handling focus-related events, containers are treated differently than Panes. Non-Pane
containers and their children act as a single component with regard to refocus events, and
children of non-Pane Containers are never considered active. Components placed in a container
will not receive any actions that deal with focus, and will, instead, pass such actions up the focus
path. If a user clicks on a component inside a container, the keyboard events will go directly to
the container, whereas if the component were contained in a pane, the keyboard events would go
to the individual component.

42

Focus Events

All keyboard events are routed to the primary Component, which may decide either to handle
the event, or pass it up to its parent Pane.

All mouse events are routed to the Component from which they originate. That Component may
decide to treat the event as a refocus event, which causes the Component to become primary if
it is not already active. (While Components may define any mouse event type or types to be
refocus events, the default is to treat only mousedown events as such.) Any mouse event not
treated as a refocus event is a pass-through event, handled normally by the Component.

43

Keyboard Events

When a Component becomes primary, it registers with the WindowManager to receive all
keyboard events. When a keyboard event occurs, it is routed to the primary Component.

When the primary Component receives a keyboard event, it examines the key combination in
order to decide what to do. If the key combination has local significance for the Component, it
handles the event itself; if not, the event is passed up to the Component’s parent Pane, which
then examines the key combination in the same way. The event continues up the active path until
a Pane is reached which ascribes significance to the event, and decides to handle it. If no Pane
along the active path (including the Screen) is interested in the key combination, the event is
discarded.

Note that if multiple Components along the active path attach meaning to the same key
combination, the most deeply nested Component among these, that equal to or closest to the
active component in the chain, will handle events having that key combination. For example, a
dialog box may assign the same meaning to the Enter key as pressing the OK button. If that
dialog box contains a multi-line text input field, the more local meaning, "new line," will be
attached to the Enter key when the focus is in the text input field.

44

Focus-Advance Events

Focus-advance events use the focus ring, allowing users to advance in order through the
Components in a Pane, without using the mouse. For almost all situations, a Pane subclass
should interpret a pair of related key combinations (such as Tab and Shift+Tab) as focus-advance
keys, one for the forward, and one for the reverse direction.

A Pane can operate its focus ring in one of two modes: circular or non-circular. In circular mode,
advancing in either direction beyond the end of the focus ring loops the focus back around to the
Component at the other end. In non-circular mode, attempting to advance beyond the end of the
focus ring causes a Pane to ignore the focus-advance event, and pass it up to its parent Pane to
handle. This has the effect of "jumping" focus out of a Pane to the Pane’s parent. This can be
useful, for example, in implementing a control-group container (such as a radio-button group) as
a Pane. The controls in the group will appear to the user to be part of the parent Pane’s focus
ring.

45

Refocus Events

When an inactive Component receives a mouse event, it examines the event type and decides
whether the event is a refocus event. The decision is made according to a dynamic Component
property that indicates what event type or types, if any, are to be treated as refocus events for
that Component. The default for this property defines only the mousedown event as a refocus
event.

If a received event is not a refocus event, the receiving Component ignores the event. If the event
is a refocus event, the Component passes the event to its parent Container. That Container may
or may not be a Pane.

If a Pane receiving a refocus event from a child Component is not active, it routes the event up to
its parent Container, and so on up to the Screen, which is by definition always active. Eventually,
through this process, an active Pane will be found; called the pivot Pane. The pivot Pane is the
deepest common ancestor of both the old and new active Components in the Component
containment tree.

Once the pivot Pane has been found, it asks its focused Component to lose focus. That
Component may perform an internal consistency check to ensure that no user-supplied data is
invalid, refusing to give up the focus if this is the case. If the Component being asked to lose
focus is a Pane, it skips the consistency check and informs its own focused Component that it will
be losing active status (although keeping focus). The no-longer-active message is propagated
down along the active path to the primary Component.

If and when the pivot Pane successfully gets its previously focused Component to lose focus, it
then grants focus to the child Component that routed the refocus event up to it, making that
Component active. If the newly focused Component is a widget, it becomes primary. If it is a
Pane, it repeats the same logic as the pivot Pane with respect to taking focus away from its
currently focused child Component. Again, a focused Component in a newly activated Pane has
the opportunity to refuse to relinquish focus, in which case it remains active, and if it is itself a
Pane, the active status propagates all the way down the focus chain below it. If, on the other
hand, the currently focused child of the newly active Pane agrees to give up focus, then focus is
granted to the child Component that routed the refocus event up to that Pane, making the child
active. The propagation of active status then repeats down the chain until either the Component
where the refocus event originated becomes active (and primary), or the activation chain is
sidetracked somewhere along the way by a refusal to give up focus.

If and when the originating Component becomes primary, it also handles the event that caused
the refocus to occur. For example, if a mousedown event causes a focus change, mousedown is
delivered to the Component where the event occurred once that Component has become
primary. If the Component that becomes primary is a non-Pane Container, and the event
originated in one of its child Components, the Container passes the event back down to the
originating child to handle. If activation is sidetracked somewhere by a refusal to give up focus,
the refocus event is discarded. This ensures that mouse events are only delivered to the
Components where they occur.

In summary, a refocus event causes an up-down-down chain of messages. The event moves up
the containment tree from the originating Component until it reaches the pivot Pane. Deactivation
is then propagated down from the pivot Pane along the active path to the then-primary
Component. Activation and focus granting is then propagated down from the pivot Pane to the
originator.

46

Programmatic Focus Changes

It is possible to set the focus within any Pane programmatically. If the Pane for which the focus is
being set has a focused Component, that Component may refuse to give up focus. This refusal
can be detected by the code attempting to set the focus. If the Pane for which the focus is being
set is active, the previously focused Component, if any, is encouraged to display a warning dialog
if it is refusing to give up focus.

47

Application Modes

Launching Applications

There are several ways to launch an application. Applications may be launched directly by
double-clicking an application icon on the Desktop, or by selecting the application from the "My
Apps" menu. Both of these methods call

DTApplicationManager.OpenApp(appname)

where the appname is the name of the application's Package. Applications may also be
launched indirectly by launching a file which is associated with an application.

Launching a File

Applications can be launched indirectly by double-clicking a file in the File Manager, which
launches the application associated with the file in the system's Type Registry. The Type Registry
maintains a mapping between various file types and the applications that are capable of
launching them. When launching a file the function

DTApplicationManager.OpenFile(filepath)

is called, with filepath the path to the file to open.

Single Instance

By default, all applications enforce a single instance rule. If a user tries to relaunch an open
application, the application window of the first instance will be displayed instead of relaunching
the same application. This default allows the application to determine how to handle multiple
application windows and files.

If the application is directly launched and an instance already exists, then
DTApplicationManager.OpenApp() will call its
callInstanceHandler(signal) method with signal defined as
openapp_single_instance.

If a file is being launched and an instance already exists, then
DTApplicationManager.OpenFile() will call its
callInstanceHandler(signal, rpo), where signal is
openfile_single_instance, and rpo is a reference to the file object.

48

Multiple Instances

Multiple instances of an application may be used to simplify applications. A single instance
typically can display only one file at a time. By enabling multiple instances, the application logic is
simpler than supporting multiple files in a single application instance.

To override the default Single Instance behavior for an application, the application's constructor
needs to define a property named SINGLE_INSTANCE to be false. For example:

function DeskPadBase()
{

this.Application();
this.SINGLE_INSTANCE = false;

}
MakeClass(DeskPadBase, DTDeskPadBase);
DeskPadBase.InheritFrom(DTApplication.Application);

DeskPad inherits from a class called DeskPadBase. Its constructor function sets the
SINGLE_INSTANCE property to false to indicate that more than one instance of the
application should be allowed.

49

Application Data Types
There are five general types of data that exist in an application: application object properties, the
state object, the preference object, files in the filesystem, and the hints object. Data that is put in
an application should go into one of the five general types.

Application data is divided into these types to allow the system to optimize data management in
an application framework. Different types of data have different lifetimes in an application. The
application framework manages when application data is no longer needed, and does garbage
collection. Assigning data to different data types helps structure the design of an application.

The application object stores the most volatile application data properties, and is where transient
data should be stored, such as the current width and height of an application window. Application
properties may be set and changed using the this pointer in the application.

The state object is designed to store persistent data across user sessions. This object stores data
that may be retrieved when an application is reopened after having been closed. For example, a
count may be made each time an application is started and kept in the state object, to determine
the number of times the application has been executed. This object is accessed through the
DTApplication.getStateObject() method.

The preference object stores persistent data that concerns the configuration of an application. For
instance, a telnet client application would store the last host and port number to which the client
connected in the preference object. This object may be accessed through the
DTApplication.getPrefs$() method.

A file in a user’s filesystem may be used to store data required by the user to interact with other
applications or users. This data is application specific, and may be a text file, a GIF picture, or
any other appropriate file type. To access files, use the DTFileSystem API. (See DTFileSystem
for details.)

Hints are the final type of data used in an application. Hints are tied to files, and are meant to tell
how an application should interact with a file. A file's payload type might be stored in a hints file,
indicating whether it is a binary or text file. If binary, it can specify a mime type for the file, which
the application will use to determine what to do with the file. There are no standard formats for a
hints object. To access the hints object, use the DTApplication.getHints$(rpo),
where rpo belongs to the file in question.

Data Name Access Lifetime Scope
App Object this.foo Session Instance
State Object DTApplication.getStateObject() Session Instance
Prefs Object DTApplication.getPrefs$() Account Life User+app
Files DTFileSystem API User Defined User+filesystem
Hints DTApplication.getHints$() User Defined User+app+file

Definitions:
Session: the time that the user is logged on
Account Life: the time that the user account exists in the system
User Defined: determined by the user’s actions
Instance: a running application

50

Writing an Application

This chapter describes Devtool, Desktop.com's developer tool, and outlines the tools available
and steps necessary to develop an application for Desktop.com.

Submitting Apps to Desktop

To submit an application for inclusion on the Desktop.com website, please send an email
describing the application to: devapps@desktop.com.

51

Devtool

Devtool is Desktop.com's developer tool. It provides a unified interface for functions needed to
edit and test an application online. Devtool provides the ability to:

• upload and download code to your account
• compile JavaScript for execution under the Desktop environment
• execute application code
• assemble application projects consisting of multiple files
• "touch-up" edit code on-line
• view debugging output from apps
• access the console, Desktop's command-line interface

Devtool may be accessed from the My Apps | Dev Tools | Devtool pull-down menu item on your
Devtop account.

Devtool's interface consists of an area for application debugging output, an area for output from
the code processor, a menubar, and a toolbar that provides access to its most commonly used
functions.

Devtool also includes a simple text editor, Edwin, that may be launched by creating a new file or
opening an old file. Multiple editors may be open at any time.

All open files that are valid Desktop packages become part of your project. Typically, your
projects will consist of only a few packages at most, one of which will be your application
package. The others are likely to be subclasses built in conjunction with the application. Save
your project from the Project | Save pull-down menu inside Devtool, or by clicking on the save-
project button on the toolbar.

52

Editing Code

While developers need a full-featured text editor to write applications and make major changes,
Devtool provides the means to make quick fix modifications to code on-line. The ability to edit on-
line allows developers to debug without uploading and downloading each time a fix is necessary.
We suggest that you edit code locally, then upload it to your Devtop account when you're ready to
try it out.

Images and HTML

To incorporate images and HTML in your applications, store files in your filesystem, and
reference them using the path prefix, "/cgi-bin/getfile/." For example, for an image called "frog.gif"
in the directory named "/My Files/images," reference the image using

/cgi-bin/getfile/My%20Files/images/frog.gif

(Note that it is necessary to escape any whitespace characters with "%20.")

53

Uploading and Downloading Code

To upload code, login and launch Devtop, then select File | Upload, or click on the file-upload
button in the toolbar. The file-upload browser will appear, prompting you for the path from which
to fetch the code locally, and to which to store the code on your Devtop account. The uploaded
file will automatically open in a new editor window (Edwin) after it has been uploaded and saved.

You may also upload files using the Desktop My Files pull-down menu, or File Manager, without
launching Devtool. These files may be loaded into Devtool by selecting File | Open from the pull-
down menu in Devtool, or by clicking on the open-file button on the toolbar.

(Note that a project may consist of files placed in multiple directories, allowing you to organize
files however you like.)

If you make changes to your application online, you may want to download the modified code to
keep your local copy up-to-date. To download files individually from Edwin, select File |
Download, or click on the file-download button on the toolbar. You may also download files using
the Desktop File pull-down menu or File Manager, without launching Devtool.

54

Compiling

Devtool takes your application code, parses it for errors, and formats it for the Desktop
environment. It reports syntax errors, undeclared symbols, and unused symbols. The changes it
makes include stripping whitespace and comments, translating blocking methods, and renaming
identifiers.

When your application code is loaded in Edwin and ready to be compiled, select Tools | Compile
from Devtool's pull-down menu, or click on the Compile toolbar button. Devtool will begin
processing your code, and the results will appear in the left-hand or upper section of the Devtool
interface. If successful, Devtool will write out a compiled version of your code as a ".ojs" file: the
file that is loaded when you run an application.

(Selecting Tools | Compile and Run will compile the project, then launch the application in the
Devtop window.)

55

Debugging

Devtool provides a simple debugging interface. The secondary window of the application (left-
hand or bottom section of the interface) supports text output from your applications.

To generate output from an application in the Devtool debugger, call your application's built-in
debug() method and pass it the text you would like to see as output. For example,

this.debug("hello world!");

will send the text "hello world!" to Devtool's debug window.

We recommend that you use Microsoft's Visual Studio and Netscape's Debugger in conjunction
with Devtool. These tools provide watch, breakpoint, immediate execution, and other useful
features. For more information, see http://msdn.microsoft.com/vstudio/ and
http://developer.netscape.com:80/docs/manuals/jsdebug/index.htm, respectively.

56

The Console

The Console is Devtop's command-line interface, which allows you to manipulate files in your
filesystem, run applications, execute JavaScript commands, and more. To launch the Console,
select My Apps | Dev Tools | Console from the Devtop menu, or New Console from the View
menu in Devtool. Type "help" at the command line to get started.

57

API Reference Manual
This Desktop API Reference Manual provides descriptions and definitions for all DTAPI
packages, classes, methods and functions available to developers.

The DTAPI is designed to be used in conjunction with the Developers' Guide. While the DTAPI
serves as a reference manual, the Developers' Guide covers overriding principles and
procedures used in implementing the DTAPI. Both manuals often make reference to related
information in the other.

58

Desktop.com Packages

Each core Desktop.com package has a name that begins with the prefix "DT." Each package
defines an interface consisting of classes that may be instantiated, and functions that may be
called, which are accessed as properties of the package. For example:

var button = new DTButton.Button(); (class instantiation)
button.setText(username); (method call)
var username = DTUserData.getLogin(); (function call)

Each class in a package defines a set of methods that may be called on objects of that class. As
in most object-oriented environments, classes inherit the methods defined by their superclasses,
except where they override such methods. Each class has a special method called the
constructor that serves to instantiate the class. The class instantiation line in the example above
shows a call to the Button() constructor, which instantiates and returns a new Button object.

There are a few classes and functions that are global symbols, meaning that they may be
referenced without the package qualifier. For instance, all of the functions in DTObjectFramework
are global symbols, therefore the call

if (IsA(object, "Button"))

is exactly equivalent to

if (DTObjectFramework.IsA(object, "Button"))

In order to write a Desktop.com application, you must implement a package of your own. To
define and implement an application package, see the chapter "Developer Defined Packages."

59

Class Hierarchy

The DTAPI classes are arranged in a hierarchical structure, which is shown in the chart below.
Their descriptions are arranged alphabetically in this manual, for easy reference.

DTObjectFramework.DTObject
 |
 + DTApplication.Application
 |
 + DTCallback.Callback
 | + DTNamedCallback.NamedCallback
 |
 + DTContent.Content
 | + DTComponent.Component
 | + DTContainer.Container
 | | + DTBasicButton.BasicButton
 | | | + DTButton.Button
 | | + DTCheckBox.CheckBox
 | | + DTMenu.Menu
 | | + DTMenuBar.MenuBar
 | | + DTPane.Pane
 | | | + DTBorderedRadioButtonGroup.BorderedRadioButtonGroup
 | | | + DTDropDownComboBox.DropDownComboBox
 | | | + DTHTMLBrowser.HTMLBrowser
 | | | + DTLabelledTextBox.LabelledTextBox
 | | | + DTRadioButtonGroup.RadioButtonGroup
 | | | + DTScrollPane.ScrollPane
 | | | | + DTIconsView.IconsView
 | | | | + DTListBox.ListBox
 | | | | + DTScrollingTextBox.ScrollingTextBox
 | | | | + DTTextTreeView.TextTreeView
 | | | + DTTabView.TabView
 | | | + DTWindow.Window
 | | | + DTBorderedWindow.BorderedWindow
 | | | + DTAppWindow.AppWindow
 | | | + DTDialogWindow.DialogWindow
 | | | + DTReusableDialog.ReusableDialog (private)
 | | | | + DTAlert.Alert
 | | | + DTTransientDialogWindow.TransientDialogWindow
 | | | + DTSlideDialog.SlideDialog
 | | + DTProgressBar.ProgressBar
 | | + DTRectangle.Rectangle
 | | + DTScrollBar.ScrollBar
 | | + DTSlider.Slider
 | | + DTIncrSlider.IncrSlider

60

(continued from
 | + DTContainer.Container)
 |
 | + DTDetailsRow.DetailsRow
 | + DTEventGrabber.EventGrabber
 | + DTHTMLBox.HTMLBox
 | + DTImageArea.ImageArea
 | | + DTImageButton.ImageButton (on Internet Explorer)
 | + DTImageButton.ImageButton (on Netscape Navigator)
 | + DTNativeComponent.NativeComponent
 | | + DTNativeTextInputBox.NativeTextInputBox
 | + DTTextBox.TextBox
 | | + DTLinkArea.LinkArea
 | | + DTTextImageLabel.TextImageLabel
 | | + DTTextLabel.TextLabel
 | + DTTextInputBox.TextInputBox
 | + DTTextInputBox2.TextInputBox2
 | + DTWrappingTextBox.WrappingTextBox
 |
 + DTFileUpload.FileUpload
 |
 + DTFontProber.FontMetrics
 |
 + DTLayoutManager.LayoutManager
 | + DTArrayLayoutManager.ArrayLayoutManager
 | + DTAttachmentLayoutManager.AttachmentLayoutManager
 | + DTColumnLayoutManager.ColumnLayoutManager
 | + DTFlowLayoutManager.FlowLayoutManager
 | + DTGridLayoutManager.GridLayoutManager
 | + DTTableLayoutManager.TableLayoutManager
 |
 + DTObjectStore.PersistentObject
 | + DTApplicationStateObject.ApplicationStateObject
 | + DTFileSharing.AccessControlList
 | + DTObjectStore.RootPersistentObject
 | | + DTApplicationPrefsObject.ApplicationPrefsObject
 | | + DTBookmarks.BookmarkRecord
 | + DTPersistentArray.PersistentArray
 |
 + DTQueue.Queue
 + DTRendezvous.Rendezvous
 + DTStyle.Style
 + DTTimer.Timer

61

DTObjectFramework

The DTObjectFramework package defines the Desktop.com object framework, an extension of
the object-oriented capabilities of JavaScript.

Classes
DTObject

DTObject is the root base class for all DTAPI classes. It has no special properties or methods.

All developer-defined classes should be defined as inheriting from (at least) DTObject.

Functions

The DTObjectFramework package defines three kinds of functions. The first kind are ordinary
functions, and are all global symbols. These include MakeClass(), TypeOf(), and
IsA().

The second kind are invoked as methods of classes (technically, as methods of class constructor
functions). This is in contrast to ordinary methods, which are invoked on objects rather than on
classes. These include MakeMethod(), SetDefault(), MakeConstant(), and
InheritFrom().

The third kind are invoked as methods of packages (technically, as methods of package
functions). Export() is the only function of this kind.

Export(f, function_name)
Makes the function f visible as a property of the package on which Export() is being
invoked. f is specified by reference, and may be either an ordinary function or a class
constructor function. It is never necessary to export class methods, since they are
invoked through objects rather than packages.

A package should only export those classes and functions that are part of the package's
public API. Any classes and functions used only internally within the package should not
be exported.

If a string is supplied for function_name, it will be used as the name of the package
property that references f. Otherwise, the name of the property will be taken from the
name of f (the usual case).

InheritFrom(superclass)
Establishes the superclass of the class on which InheritFrom() is being invoked.
superclass is a reference to the constructor function of the desired superclass.

62

IsA(o, class_name)
Returns true if o is an instance of the class whose name is class_name; false if
not. class_name may name a DTAPI class or a built-in JavaScript class. Note that
instances of a subclass of class_name are also considered instances of
class_name.

MakeClass(f, pkg)
Makes the constructor function f into a DTAPI class within the package pkg. Both f
and pkg are specified by reference.

MakeConstant(property, value)
Establishes a class property with the name property and the given value for the
class on which MakeConstant() is being invoked. A class property may be
accessed later with the syntax classname.property. Note that a class property differs from
a default property in that it is never visible as a property of instances of the class, only as
a property of the class itself.

MakeMethod(f, method_name)
Makes f, a function specified by reference, into a method of the class on which
MakeMethod() is being invoked.

If a string is supplied for method_name, it will be used as the name of the method. If
not, the name of the method will be taken from the name of f (the usual case). If
method_name is not supplied and f has a name of the form
classname_methodname, where classname matches the name of the class on which
MakeMethod() is being invoked, the method's name will be methodname rather than
the full name of f.

SetDefault(property, value)
Establishes a default property with the name property and the given value for the
class on which SetDefault() is being invoked. This property will become a property
of every instance of the class. The value of property may be overridden in any
instance by assigning a different value to it. Overriding the value of property for an
instance will not affect the default value.

value may be of any type. If value is a reference type (references to objects, arrays,
functions, etc.), the value of property will refer to the same object in all instances of
the class. If the object is modified, it will appear modified for all instances of the class.

TypeOf(o)
Returns a string that indicates the type of o. If o is an instance of any DTAPI class or
built-in JavaScript class, TypeOf() returns its class name. Otherwise, TypeOf()
returns the basic type of o, as per the typeof operator.

63

DTAlert

The DTAlert package defines the DoAlert$() function

Classes
None.

Functions
DoAlert$(text, where)

Displays an alert dialog window with the specified text and an OK button. where
(optional) specifies a reference to an object (either an Application or a Window) relative to
which the dialog is to be centered and made modal. If where is omitted, the dialog will
be centered on the screen and made system-modal. As window centering and modality is
the most common, pass a Window reference for where unless there is some reason not
to.

If DoAlert$() is called as a blocking function, it will not return until the user clicks the
OK button in the dialog that is displayed.

DoAlert$() is preferable to the JavaScript alert() because it is implemented
within the Desktop.com environment, which allows more control over appearance and
provides the user with feedback that clearly comes from within Desktop.com.

Dialog windows are resized to fit the text. text is wrapped where appropriate, may
include HTML tags, and will translate "\n" appearing in text as a line break.

64

DTApplication

The DTApplication package defines the Application class.

Classes
Application

The abstract base class for all applications. To implement a Desktop.com application, create a
subclass of the Application class.

Inherits from DTObjectFramework.DTObject.

Constructor
None. The ApplicationManager automatically instantiates Application objects: they should
never be instantiated directly.

Service methods
(These methods may be called as properties of this by subclasses.)
addDialog(dialog, tag)
addWindow(win, tag)
debug(output)
exit()
getAppDirectory$()
getAppArguments()
getDialog(tag)
getDialogs()

getPrefs$()
getStateObject()
getWindow(tag)
getWindows()
removeDialog(tag)
removeWindow(arg)
setStateObject()

Overridable methods
(These methods may be implemented by subclasses.)
begin$()
getDefaultPrefsObject()
go$()
handleWindowAction(object, label, action)
handleWindowClose$(win)

restoreAfter$()
restoreBefore$()
restoreDuring$()
startup$(rpo)

addDialog(dialog, tag)
Draws a dialog object and adds it to the list of dialogs associated with the application
instance. dialog is a reference to a DialogWindow object that has been appropriately
initialized. tag (optional) is a string, to be used as a key to refer to the dialog being
added. If omitted, a tag unique within the application instance will be automatically
generated and given as the return value from addDialog(). (getTag() may be
called on any DialogWindow object.)

65

All dialogs displayed using addDialog() are application-modal, which means they
must be dismissed before the user may interact with the application displaying them.

addWindow(win, tag)
Draws a Window object and adds it to the list of windows associated with the application
instance. win is a reference to a Window object (usually a DTAppWindow.AppWindow)
that has been appropriately initialized. tag (optional) is a string to be used as a key to
refer to the window being added. If omitted, a tag unique within the application instance
will be automatically generated and given as the return value from addWindow().
(getTag() may be called on any Window object.)

Calling addWindow() causes both steps of window initialization, chrome and interior
drawing, to occur, and may be called at any time. When addWindow() is called from
within the startup$() method, chrome drawing occurs immediately; interior drawing
occurs after startup$() returns. If addWindow() is called from somewhere other
than startup$(), and both window drawing steps should be completed before
continuing, call addWindow$(win, tag) (note the blocking syntax).

begin$()
Called as the first hook method in both the startup and restore initialization sequences.
This method provides an easy way to write code common to both sequences.

debug(output)
Checks for the existence of Devtool, and passes along the application reference.
output is a string which will be displayed in Devtool's debug window.

exit()
Unconditionally destroys the application instance and all its windows.

getAppArguments()
Returns the startup arguments, if any. (See the DTApplicationManager functions:
OpenAppWithArguments, and OpenFileWithArguments, for more information.)

getAppDirectory$()
Finds or creates a directory unique to this application class and returns its path. This
directory is available only to the application class, and provides a location to store
application-specific data that should not be visible to users. The return value from
getAppDirectory$() is an object with properties success, error, and
path. If success is true, then path is the path to the directory. If success is
false, then error is an error code that may be compared against the values in
DTApplication.ERRNO, or turned into an error message using
DTApplication.getErrorString().

getDefaultPrefsObject()
Provides a way to specify default preferences for the application class. If implemented,
this method is called when getPrefs$() is called and cannot find an existing
ApplicationPrefsObject in the filesystem. Should return an instance of an
ApplicationPrefsObject (or a subclass), or null to indicate failure.

66

getDialog(tag)
Returns a reference to the DialogWindow object associated with tag; null if no dialog
with the given tag exists.

getDialogs()
Returns an array of all DialogWindow objects associated with the application instance.

getPrefs$()
Obtains and returns a reference to the ApplicationPrefsObject associated with the
application class. To obtain this object, getPrefs$() first checks the filesystem, and
returns an existing ApplicationPrefsObject, if available. Next, it looks in the application
class, and returns the object returned by the getDefaultPrefsObject()
method, if that method is implemented. If neither search finds an ApplicationPrefsObject,
getPrefs$() returns an empty ApplicationPrefsObject.

If a new ApplicationPrefsObject is created, either by
getDefaultPrefsObject() or by default, it is put into the filesystem and
returned by the next call to getPrefs$().

Returns an object with properties success, error, existing, and object. If
success is true, object is a reference to the ApplicationPrefsObject, and
existing is true if the object was found in the filesystem, and false if the
object was created. If success is false, error is an error code that may be
compared against the values in DTApplication.ERRNO or turned into an error
message using DTApplication.getErrorString().

getStateObject()
Returns a reference to the ApplicationStateObject associated with the application
instance. If called and no ApplicationStateObject exists for the application instance, an
empty ApplicationStateObject is created and returned.

getWindow(tag)
Returns a reference to the Window object associated with tag; null if no window with
the given tag exists.

getWindows()
Returns an array of all Window objects associated with the application instance.

go$()
Called as the last hook method in both the startup and restore initialization sequences.
This method provides an easy way to write code common to both sequences.

handleWindowAction(object, label, action)
If implemented, this method is called when an action is emitted from any Window object
associated with the application instance. This method acts as an action listener for all
Window objects associated with the application, making it unnecessary to add action
listeners to the Window objects manually. object defines the object; label is its

67

label defined with setActionLabel(); and action is the action performed. (See
DTComponent addActionListener() and setActionLabel().)

handleWindowClose$(win)
If implemented, this method is called when a user clicks the "X" button at the window's
top right corner to close it. If true is returned, the window is destroyed; if false, no
change occurs. The return value may be conditionalized as desired, including asking the
user for confirmation using DTQuestion.AskQuestion$(). If
handleWindowClose$() is not overridden, the default implementation returns
true, and calls exit() if the window being closed is the last window associated with
the application instance.

removeDialog(tag)
Destroys the dialog identified by tag.

removeWindow(arg)
Destroys the window identified by arg, which may be either a reference to a Window
object or a window tag string.

restoreAfter$()
A hook method called after all window drawing in the restore sequence.

restoreBefore$()
A hook method called before all window drawing in the restore sequence.

restoreDuring$()
A hook method called between window chrome drawing and window interior drawing in
the restore sequence.

setStateObject(obj)
Sets a reference to the ApplicationStateObject associated with the application instance.

startup$(rpo)
The hook method called during the startup sequence. startup$() is the only hook
method required to be implemented.

If the application is being launched with a file, a reference to the RPO that that file points
to is supplied in the rpo parameter. Otherwise rpo is null. Applications that do not
support file launching may ignore rpo.

Functions

getErrorString(errNum)
Converts an error number returned by an Application method into an error message
string that may be displayed to users.

68

DTApplicationManager

The DTApplicationManager package defines the ApplicationManager class.

Classes
None.

Functions

OpenApp$(appname)
Opens a new instance of an application. appname is a string that specifies the name of
the package containing the Application subclass to be instantiated. The name of the
Application subclass within this package must match the package name, minus the "App"
or "DT" prefix.

Returns an object with properties success, appobj, and errno. If success is
true, appobj is a reference to the AppObject created by the Application's
constructor function. If success is false, errno is an error code that may be
compared against the values in DTApplication.ERRNO or turned into an error
message using DTApplication.getErrorString().

OpenAppWithArguments$(appname, appargs)
Opens a new instance of an application, and supplies startup arguments to the
application instance. appname is a string that specifies the name of the package
containing the Application subclass to be instantiated. appargs is a reference to an
object that contains application-specific information. The application instance may
retrieve this information using DTApplication.Application.getAppArguments().

Returns an object with properties success, appobj, and errno. If success is
true, appobj is a reference to the AppObject created by the Application's
constructor function. If success is false, errno is an error code that may be
compared against the values in DTApplication.ERRNO or turned into an error
message using DTApplication.getErrorString().

OpenFile$(path)
Opens a file by launching an application and supplying the specified file's RPO in the
rpo parameter to DTApplication.Application.startup$(). path
specifies the full path to the file to open. The application to be instantiated is chosen
automatically based on the type of the RPO contained by the specified file.

Returns an object with properties success, appobj, rpo, and errno. If
success is true, appobj is a reference to the AppObject created by the
Application's constructor function, and rpo is the RPO object reference of the given
path. If success is false, errno is an error code that may be compared against

69

the values in DTApplication.ERRNO or turned into an error message using
DTApplication.getErrorString().

OpenFileWithArguments$(path, appname, appargs)
Opens a file by launching the appropriate application with the optional parameters
appname and appargs, either of which may be specified as null. path
(required) specifies the full path to the file to open. appname (optional) is a string that
specifies the name of the package containing the Application subclass to be instantiated.
The name of the Application subclass within this package must match the package name,
minus the "App" or "DT" prefix. If appname is omitted, the application to be instantiated
is chosen automatically based on the type of the RPO contained by the specified file.
appargs (optional) is a reference to an object that contains application-specific
information. The application instance may retrieve this information using
DTApplication.Application.getAppArguments().

Returns an object with properties success, appobj, rpo, and errno. If
success is true, appobj is a reference to the AppObject created by the
Application's constructor function, and rpo is the RPO object reference of the given
path. If success is false, errno is an error code that may be compared against
the values in DTApplication.ERRNO or turned into an error message using
DTApplication.getErrorString().

70

DTApplicationPrefsObject

The DTApplicationPrefsObject package defines the ApplicationPrefsObject class.

Classes
ApplicationPrefsObject

Defines an ApplicationPrefsObject, which is a PersistentObject with an infinite lifetime that is
shared among all instances of the application class for a given user. As such, it is a place to store
data that affects the behavior of the application, but varies from user to user.

An ApplicationPrefsObject should not be instantiated directly. Instead, the application base class
(DTApplication.Application) instantiates an ApplicationPrefsObject when the
getPrefs$() method is called. If an application has its own subclass of
ApplicationPrefsObject to manage preferences, an overridden version of
Application.getDefaultPrefsObject() should instantiate, initialize, and return
it.

Inherits from DTObjectStore.RootPersistentObject.

Constructor
ApplicationPrefsObject(arg1, arg2)

arg1 (optional) defines the user ID, and arg2 (optional) the ID for this
ApplicationPrefsObject.

Methods
None.

Functions
None.

71

DTApplicationStateObject

The DTApplicationStateObject package defines the ApplicationStateObject class.

Classes
ApplicationStateObject

Defines an ApplicationStateObject, which is a PersistentObject whose lifetime and scope are
exactly those of the application instance. It is a place to store any persistent data required to
allow the application to retain state across multiple login sessions.

An ApplicationStateObject should not be instantiated directly. Instead, the application base class
(DTApplication.Application) instantiates an ApplicationStateObject when the
getStateObject() method is called. If an application has its own subclass of
ApplicationStateObject to manage states, it should apply an instance of that subclass using
DTApplication.Application.setStateObject().

Inherits from DTObjectStore.PersistentObject.

Constructor
ApplicationStateObject(arg1, arg2)

arg1 (optional) defines the user ID, and arg2 (optional) the ID for this
ApplicationStateObject.

Methods
None.

Functions
None.

72

DTAppWindow

The DTAppWindow package defines the AppWindow class: the default window class used by
Desktop applications.

Classes
AppWindow

Represents an application window, with title bar, resize handles and an inner pane in which
applications display their interface.

An application window is made up of two elements: the frame around the outside, and the
application area within this frame. Most methods called on an AppWindow object apply to the
inside area. A few methods, however, apply to the entire window. The part to which a given
method applies is generally intuitive.

Inherits from DTBorderedWindow.BorderedWindow.

Constructor
AppWindow()

Actions
None.

Methods
close()
getApp()
getLocation()
getMenuBar()
getTag()
iconize()
maximize()
setBackgroundColor(color)
setDrawMethod(method)
setLocation(x, y)

setMaxHeight(height)
setMaxWidth(width)
setMenuBar(bool)
setMinHeight(height)
setMinWidth(width)
setResizable(resizable)
setRestoreMethod(method)
setSkipTaskBar(bool)
setTitle(title)
setVisible(isVisible)

close()
Closes the window.

getApp()
Returns a reference to the Application object associated with the window.

getLocation()
Returns the window's pixel coordinate position on the screen. Applies to the entire
window, no simply the inside application area.

73

getMenuBar()
Returns a reference to the menu bar placed in the window.

getTag()
Returns the unique tag string for the window, which is used to differentiate between
multiple windows owned by an application.

iconize()
Iconizes the window, hiding it until its taskbar entry is clicked.

maximize()
Maximizes the window size to the size of the desktop.

setBackgroundColor(color)
Sets the background color for the inner portion of the window. color is defined as a 6-
digit hex string which begins with a "#" character, such as "#00CC99."

setDrawMethod(method)
Sets the method used to define the inner contents of the window. method is a string
that specifies the name of a method in the application object associated with the window.
When this method is called, it will receive one argument, which is a reference to the
AppWindow object within which components should be added.

setLocation(x, y)
Sets the window's pixel coordinate position on the screen. Applies to the entire window,
not simply the inside application area.

setMaxHeight(height)
Sets the maximum height for the window in pixels. Users will not be able to size the
window beyond this height. By default, a window has no maximum height.

setMaxWidth(width)
Sets the maximum width for the window in pixels. Users will not be able to size the
window beyond this width. By default, a window has no maximum width.

setMenuBar(bool)
Sets whether the window should provide space for an application menu bar. true if
space should be provided; false if not.

setMinHeight(height)
Sets the minimum height for the window in pixels. Users will not be able to size the
window below this height. Default is 10 pixels.

setMinWidth(width)
Sets the minimum width for the window in pixels. Users will not be able to size the
window below this width. Default is 10 pixels.

74

setResizable(resizable)
Specifies whether the user is able to resize the application window by dragging one of the
sections of the bottom frame. true (default) allows the window to be resized; false
prevents resizing.

setRestoreMethod(method)
Sets the method used to define the window's contents during the restore process. If
setRestoreMethod() is not called, the method set by setDrawMethod() is
used at both startup and restore.

setSkipTaskBar(bool)
Indicates whether an entry should be placed in the Desktop task bar for this window.
Default is false (to include the entry).

setTitle(title)
Sets the title string to be displayed for the window in the title bar.

setVisible(isVisible)
Sets whether the window is visible. Default is true.

Functions
None.

75

DTArray

The DTArray package defines utility functions for JavaScript arrays. Some of the functions in the
DTArray package are redundant with built-in methods of JavaScript arrays, but the versions here
are more portable because IE does not support all of the Array methods natively.

Classes
None.

Functions

All functions in DTArray are global symbols (see Desktop.com Packages). They may be called
without the DTArray qualifier.

contains(a, e)
Returns whether array a contains element e: true if it does; false if not.

copy(a)
Returns a copy of array a.

pop(a)
Removes and returns the last element of array a.

push(a, e)
Adds element e at the end of array a.

splice(theArray, start, deleteCount, values)
Inserts and/or deletes elements in an array. A single call to splice() may insert
items, delete items, or do both simultaneously.

theArray is a reference to the array to work with. start is an integer that specifies
a zero-based index within theArray at which splice() will begin.
deleteCount is an integer that specifies how many elements of theArray to
remove. If deleteCount is zero, no deletion is performed. values (optional) is an
array of elements to insert into theArray. If values is omitted or an empty array, no
insertion is performed. Elements following the location of insertion or deletion are shifted
so that no gaps appear in theArray, and the length property of theArray is
updated to reflect its new size.

Returns a reference to theArray.

For example:

76

var a = ["a", "b", "c"];
// a == ["a", "b", "c"]

splice(a, 0, 0, ["x"]);
// a == ["x", "a", "b", "c"]

splice(a, 1, 2, ["p", "q"]);
// a == ["x", "p", "q", "c"]

splice(a, 2, 1);
// a == ["x", "p", "c"]

Some browsers support a built-in splice() method on JavaScript array objects.
There are several important differences between the syntax of the DTArray splice()
function and built-in splice() methods. First, the DTArray splice() is a function
that accepts its target array as a parameter, whereas the built-in splice() is a
method called directly on array objects. Second, the DTArray splice() takes an
array of values to insert, while the built-in splice() takes an arbitrary number of
arguments following deleteCount. Third, the two functions return different things.

77

DTArrayLayoutManager

The DTArrayLayoutManager package defines the ArrayLayoutManager class.

Classes
ArrayLayoutManager

Arranges components in either a single row or single column within a container.

Components are laid out in the order in which they are added to the associated Container. In a
horizontal orientation, Components are laid out left to right; in a vertical orientation, they are laid
out top to bottom. An ArrayLayoutManager is said to have a main axis and an opposite axis. For
example, in a horizontal orientation, the horizontal (x) axis is the main axis and the vertical (y)
axis is the opposite axis.

An ArrayLayoutManager sets the position, and possibly the size, of all child Components in its
associated Container. It will never resize its associated Container, as the size of the Container
constrains the placement and size of its child Components. The associated Container must
always have a defined size, assigned by calling the Container's setSize() method.

There are three padding values that may be established for an ArrayLayoutManager: the inter-
component padding (setPadding() method), the horizontal edge padding
(setHorizontalPadding() method), and the vertical edge padding
(setVerticalPadding() method). All three padding values default to zero.

Along the main axis, child Components are positioned such that the space between them exactly
equals the inter-component padding specified, and such that the space before the first
Component and (if possible) after the last one are both exactly equal to the main-axis edge
padding specified. The after-last padding condition is not enforced when all child Components
have a fixed main-axis size; see below.

The size of each child Component along the main-axis is determined in one of three ways. If the
ArrayLayoutManager's setSize() method has been called for the given Component, its
main-axis size is set to exactly the size specified in the setSize() call. If the
ArrayLayoutManager's setWeight() method has been called for the given Component, it is
a weighted Component and its main-axis size is determined as described below. If neither
setSize() nor setWeight() has been called for a Component, it is not resized along the
main-axis dimension. Note that either setSize(), or setWeight() or neither may be
called on a component, but not both.

The main-axis size of a weighted Component is set to equal a particular fraction of the available
space. The available space consists of all pixels along the main axis not used by fixed-size
Components and padding. The fraction of this space that a weighted Component receives is
equal to the Component's weight divided by the total of all weights.

Along the opposite axis, all child Components are given the same location and resized to the
same size. This is done in such a way that the distance between the edge of any Component and

78

the edge of the Container exactly equals the opposite-axis edge padding specified. For example,
a horizontal ArrayLayoutManager attached to a Container of height 30, and with vertical edge
padding of 5, will set the height of all child Components to 20 and center them vertically within the
Container, leaving 5 pixels of margin along the top and bottom of the Container.

Inherits from DTLayoutManager.LayoutManager.

Constructor
ArrayLayoutManager(orientation)

orientation defines the main axis of the container, the axis along which the
manager will lay out the components. orientation may be
DTArrayLayoutManager.ArrayLayoutManager.VERTICAL or
DTArrayLayoutManager.ArrayLayoutManager.HORIZONTAL.

Methods
getHorizontalPadding()
getPadding()
getVerticalPadding()
setHorizontalPadding(p)

setPadding(padding)
setSize(pixel_size, item)
setVerticalPadding(p)
setWeight(weight, item)

getHorizontalPadding()
Returns the horizontal edge padding in pixels. Default is 0.

getPadding()
Returns the padding between components in pixels. Default is 0.

getVerticalPadding()
Returns the vertical edge padding in pixels. Default is 0.

setHorizontalPadding(p)
Sets the horizontal edge padding in pixels. Default is 0.

setPadding(padding)
Sets the padding between components in pixels. Default is 0.

setSize(pixel_size, item)
Sets a fixed main-axis size for a child Component. pixel_size is a positive integer
specifying the desired size in pixels. item (optional) is a reference to the relevant child
Component: if omitted, item defaults to the most recently added Component.

setVerticalPadding(p)
Sets the vertical edge padding in pixels. Default is 0.

setWeight(weight, item)
Sets a main-axis weight for a child Component. weight is a positive number specifying
the desired weight. item (optional) is a reference to the relevant child Component: if
omitted, item defaults to the most recently added Component.

79

Functions
None.

80

DTAttachmentLayoutManager

Defines the AttachmentLayoutManager class.

Classes
AttachmentLayoutManager

The AttachmentLayoutManager class allows the developer to attach child components to the
edge of a Container, or to each other, in flexible ways. By positioning and sizing the child
Components within a Container, and possibly resizing the container itself, an
AttachmentLayoutManager will automatically satisfy all of the constraints imposed by the
attachments.

Attachments are specified for six attachment points of child Components. There are three
horizontal attachment points: the LEFT side, the RIGHT side, and the HORIZONTAL center axis;
and three vertical attachment points: the TOP side, the BOTTOM side, and the VERTICAL center
axis. (Note that attachment points (sides and axes) are specified with all-uppercase strings.)

Every child Component must have an attachment on at least one horizontal and one vertical
attachment point. A single attachment in either dimension determines the positioning of the
Component in that dimension. A child Component may also have attachments on two attachment
points in either or both dimensions. When this is the case, the Component is resized in the
relevant dimension so that both attachments are satisfied.

Most attachments are fixed attachments. A side of a Component may be attached to the
corresponding edge of the Container, to the corresponding side of a sibling Component, or to the
opposite side of a sibling. A center axis of a Component may be aligned with the corresponding
center axis of the Container, or the corresponding center axis of a sibling. These fixed
attachments all have associated offsets, which specify a margin in pixels between the attachment
point and the location to which it is attached. Offsets may be positive, zero, or negative. For side
attachments, a positive offset will push a component away from the side to which the attachment
applies. For axis attachments, a positive offset will push a component in the positive direction for
that axis: to the right for a horizontal axis; down for a vertical.

Attachment layout managers also support spring attachments. Spring attachments must always
be paired on opposing sides of a Component: either LEFT and RIGHT; or TOP and BOTTOM.
Each spring attachment has an associated weight rather than a fixed offset. A Component with
spring attachments is positioned such that the ratio of the offsets for the attachments matches the
ratio of their spring weights. Spring attachments never cause Component resizing. Spring weights
must always be positive.

In some cases, it is possible to specify multiple attachments for a single attachment point, which
is called ganging. When ganging is used, the Components will be positioned and sized such that
all attachment offsets are at least satisfied. In other words, any attachment in a gang may be
over-satisfied (offset greater than specified), but none will be under-satisfied. When spring
attachments are ganged, all spring weights in the gang must be equal.

If the Container has natural sizing (see DTComponent), the layout manager (when called) will
resize it to exactly fit around its child Components, leaving right and bottom margins

81

corresponding to the values set with setHSpacing() and setVSpacing(). Some
Components' size or position may depend on the size of the Container, such as those attached to
its right or bottom edges or aligned with its center. When the Container is sized to fit around its
Components, only those Components that do not depend on the Container’s size are considered.
If there are no non-dependent Components in a given dimension, the Container is not resized in
that dimension.

In calling methods that specify attachments, components and siblings are specified by reference.
It is legal to specify a sibling that has not yet been added to the Container, as long as that sibling
is added before layout is initially performed.

There must never be circular attachment dependencies; in other words, if component A is
attached in a given dimension to its sibling B, B must not be attached to A in the same dimension.

Inherits from DTLayoutManager.LayoutManager.

Constructor
AttachmentLayoutManager()

Methods
alignToContainer(component, axis, offset)
alignToSibling(component, axis, sibling, offset)
attachToEdge(component, side, offset)
attachToSiblingOpposite(component, side,
sibling, offset)
attachToSiblingSame(component, side, sibling,
offset)

setHSpacing(spacing)
setVSpacing(spacing)
springToEdge(component, side, weight)
springToSiblingOpposite(component, side,
sibling, weight)
unattach(component, point)

alignToContainer(component, axis, offset)
Establishes a fixed attachment with the specified offset (optional) along the horizontal
or vertical axis between the center of the component and the center of the
Container. If offset is omitted, a default of 0 is used.

Attachments set with this method may not be ganged.

alignToSibling(component, axis, sibling, offset)
Establishes a fixed attachment with the specified pixel offset (optional) along the
horizontal or vertical axis between the center of the component and the center of
the specified sibling. If offset is omitted, a default of 0 is used.

Attachments set with this method may not be ganged.

attachToEdge(component, side, offset)
Establishes a fixed attachment with the specified pixel offset (optional) between the
given side of the component and the corresponding edge of the Container. If
offset is omitted, the default value given in setHSpacing() or
setVSpacing() is used.

82

Attachments set with this method may be ganged with other attachments set with
attachToEdge() or attachToSiblingOpposite().

attachToSiblingOpposite(component, side, sibling, offset)
Establishes a fixed attachment with the specified pixel offset (optional) between the
given side of the component and the side of its sibling that is opposite side
(for example, left side to right side). If offset is omitted, the default value given in
setHSpacing() or setVSpacing() is used.

Attachments set with this method may be ganged with other attachments set with
attachToSiblingOpposite() or attachToEdge().

attachToSiblingSame(component, side, sibling, offset)
Establishes a fixed attachment with the specified pixel offset (optional) between the
given side of the component and the matching side of its sibling (for example,
left side to left side). If offset is omitted, a default of 0 is used.

Attachments set with this method may not be ganged.

setHSpacing(spacing)
Sets the default pixel offset for horizontal attachments set with attachToEdge()
and attachToSiblingOpposite(). Default value is 10 pixels.

setVSpacing(spacing)
Sets the default pixel offset for vertical attachments set with attachToEdge() and
attachToSiblingOpposite(). Default value is 10 pixels.

springToEdge(component, side, weight)
Establishes a spring attachment with the specified weight (optional) between the given
side of the component and the corresponding edge of the Container. If weight is
omitted, a default is used. If this is the first spring attachment for the side, the default
weight is 1. If not, the default weight is the weight specified in the previous spring
attachment for the side.

Attachments set with this method may be ganged with other attachments set with
springToEdge() or springToSiblingOpposite().

springToSiblingOpposite(component, side, sibling, weight)
Establishes a spring attachment with the specified weight (optional) between the given
side of the component and the side of its sibling that is opposite side (for
example, left side to right side). If weight is omitted, a default is used. If this is the first
spring attachment for side, the default weight is 1; if not, the default weight is the
weight specified in the previous spring attachment for the side.

Attachments set with this method may be ganged with other attachments set with
springToSiblingOpposite() or springToEdge().

83

unattach(component, point)
Clears all attachments associated with the specified point (a side or axis) of
component. Note that to change an existing attachment, unattach() must be
called before a new attachment is set. If unattach() is not called, the
AttachmentLayoutManager will attempt to gang the new attachment with the existing
attachment(s).

Functions
None.

84

DTBasicButton

The DTBasicButton package defines the BasicButton class.

Classes
BasicButton

Defines a button object which may include text, an image, and a background color. The image, if
supplied, appears at the left edge of the button. The text, if supplied, is centered in the remaining
space.

The BasicButton class differs from the Button class in that the Basic button lacks the highlighted
border that Button contains. This makes BasicButton appropriate for use in composite widgets
which use Buttons. Most application developers should use Button, instead of BasicButton.

Inherits from DTContainer.Container.

Constructor
BasicButton(text, icon, toolTip)

text, icon, and toolTip define the text, image, and mouse-over text to be
associated with the button, respectively. All three are optional. icon is an URL string,
and takes one of two forms. For an image from the Desktop.com site, icon should
begin with top.DTPATH.IMAGES, and have the specific location appended. For an
image that resides in the current user's filesystem, icon should be built using
DTFileSystem.makePrivateURL(). (See DTFileSystem.) toolTip sets
the ALT text to be displayed during mouse-over events.

Actions
clicked: the button was clicked.

Methods
getImage()
getText()
getToolTip()
handleMouseEvent(e)
makeTable(isDepressed)
prePaint(buffer)
setAlignment(alignment)

setBackgroundColor(color)
setClicked(isClicked, isOver)
setImage(icon)
setSize(w,h)
setText(text)
setToolTip(toolTip)

getImage()
Returns the image used for the button.

getText()
Returns the text used for the button.

85

getToolTip()
Returns the text that appears when the mouse is over the image (the ALT text). (This
method is recognized only by Internet Explorer.)

setAlignment(alignment)
Sets the alignment for the text within the button. Valid input includes CENTER (default),
LEFT, and RIGHT.

setBackgroundColor(color)
Sets the background color for the button. color is defined as a 6-digit hex string which
begins with a "#" character, such as "#00CC99."

setImage(icon)
Sets the image to be used for the button. icon is an URL string, as for the DTButton
constructor.

setSize(w, h)
Sets the width and height of the button in pixels.

setText(text)
Sets the text string to be used for the button.

setToolTip(toolTip)
Sets the text string to appear when the mouse is over the image (the ALT text). (This
method is recognized only by Internet Explorer.)

Note that calling setSize(), setImage() and setText() all require repaints. For best
results, call these methods before calling addComponent().

Functions
None.

86

DTBookmarks

The DTBookmarks package defines the DTBookmarks class.

Classes
BookmarkRecord

Defines a Bookmark, with an associated URL and text description.

Inherits from DTObjectStore.RootPersistentObject.

Constructor
BookmarkRecord(arg1, arg2)
arg1 defines the user ID, and arg2 the Root Persistent Object with which this
Persistent Object will be associated.

For more information, see DTObjectStore.RootPersistentObject.

Methods
None.

Functions

CreateBookmark$(path, url, desc)
Creates a new BookmarkRecord object and associates it with the given file path. The
given URL is parsed to determine whether a matching provider and/or service exists.
path is the path where the object should be placed. url is the URL to associate with
the Bookmark object. desc is the text string to display to the user as the description for
the Bookmark.

Returns the hash: {success:false, error:<DTFileSystem errno>}
if an error occurred, and {success:true, bookmarkrecord:<object>}
if the BookmarkRecord was successfully created and saved.

87

DTBorderedRadioButtonGroup

The DTBorderedRadioButtonGroup package defines the BorderedRadioButtonGroup class.

Classes
BorderedRadioButtonGroup

Defines a group of radio buttons surrounded by a border and a label. The RadioButtonGroup's
defining characteristic is that only one button in the group may be selected at a time. In the
default state, no item is selected.

A ColumnLayoutManager is automatically attached to the group. It may be manipulated using the
getLayoutManager() accessor method. (See DTColumnLayoutManager for details.)
Radio button groups should not be explicitly sized: calling setSize() will cause visual
truncation of the group.

BorderedRadioButtonGroups are non-circular Panes. They understand up- and down-arrow keys,
tab keys, and the spacebar, as well as mouse events.

See also DTRadioButtonGroup.RadioButtonGroup.

Inherits from DTPane.Pane.

Constructor
BorderedRadioButtonGroup(text)

text (optional) is the text string for the group label.

Actions
changed: selection has changed to a different item in the group.

Methods
addItem(text, data)
getCheckedItemData()
setAllowUserUncheck(allow)
setCheckedItem(index)

setCheckedItemByData(data)
setLabel(text)
uncheckAllItems()

addItem(text, data)
Adds an option to the group, with the specified text string and data (optional).
Options in the group appear in the order in which they are added. If data is absent,
text is used for the option's data.

getCheckedItemData()
Returns the data associated with the currently selected option, or null if no option is
selected.

88

setAllowUserUncheck(allow)
Sets whether the radio button group may be manipulated such that nothing is selected.
When allow is true, users may deselect by clicking a selected option. Default is
false.

setCheckedItem(index)
Sets the selection within the group by (zero-based) index position.

setCheckedItemByData(data)
Sets the selection in the group, as defined by the data associated with the desired option.

setLabel(text)
Sets the text string for the group label.

uncheckAllItems()
Resets the group to the state in which no option is selected.

Functions
None.

89

DTBorderedWindow

The DTBorderedWindow package defines the BorderedWindow and BorderedWindowFrame
classes.

Classes
BorderedWindow

Defines the inner (window) area of a bordered window.

Inherits from DTWindow.Window.

Constructor
None. Should not be instantiated directly, but its methods are inherited by several other
object classes.

Actions
None. Actions are delivered from the BorderedWindowFrame associated with the window, and
include closed, resized, moved, and iconized.

Methods
doneLoading()
getMenuBar()
loading()

setBackgroundColor(color)
setMenuBar(bool)
setTitle(title)

doneLoading()
Called when the window is finished loading, just prior to the application calling itself.

getMenuBar()
Returns a reference to the menu bar object, or null if none exists.

loading()
Displays an in-pane method between the painting of the window and the painting of the
initial application components.

setBackgroundColor(color)
Sets the background color for the inner portion of the window. color is defined as a 6-
digit hex string which begins with a "#" character, such as "#00CC99."

setMenuBar(bool)
Sets whether the window should provide space for an application menu bar. true if
space should be provided; false if not.

90

setTitle(title)
Sets the title string to be displayed for the window in the title bar.

BorderedWindowFrame

Defines the frame for the BorderedWindow.

Inherits from DTWindowFrame.WindowFrame.

Actions
closed: the user has clicked on the "x" to close the window.
resized: the user has dragged the frame to resize the window.
iconized: the user has clicked on the iconize button.
moved: the user has dragged the window to move it.

Methods
init()
setSizeFromDrawable(w, h)

setTitle(title)

init()
Initializes the window.

setSizeFromDrawable(w, h)
Sets the pixel width and height of the frame, as extending from the inner region of the
window.

setTitle(title)
Sets the title string to be displayed for the window in the title bar.

Functions
None.

91

DTBrowser

The DTBrowser package provides functions used to determine what browser is in use.

Classes
None.

Functions

IsIE(version)
Returns true if the browser is Internet Explorer of at least the numeric version
specified; false if not. (null or no argument is equivalent to 0.)

IsNetscape(version)
Returns true if the browser is Netscape of at least the numeric version specified;
false if not. (null or no argument is equivalent to 0.)

92

DTBrowserWindow

The DTBrowserWindow package defines the BrowserWindow class.

Classes
BrowserWindow

Opens a new browser window and gives it focus. (This class is primarily a wrapper for the native
JavaScript window.open() method.)

Inherits from DTObjectFramework.DTObject.

Constructor
BrowserWindow(url)

url (optional) specifies the website to display on launch.

Methods
draw$()
setDelay(msecs)
setFeatures(str)
setHTML(html)
setLocation(x, y)

setMode(str)
setName(name)
setSize(w, h)
setURL(url)

draw$()
Creates the new window, using the applied settings. Does not return until the window has
been created. Returns a reference to the new window, just as JavaScript's
window.open() method.

setDelay(msecs)
Sets a delay for the window's appearance in milliseconds. Due to the event model, new
browser windows have a tendency to appear behind the Desktop window. Setting a delay
solves this problem, and displays the window in its proper place on top. (The default
delay of 100ms works well with both IE4 and IE5.)

setFeatures(str)
Sets the features used to call window.open(). Any features without a
corresponding method function should be included here. By default, this string reads:
location=yes, menu=yes, toolbar=yes, scrollbars=yes,
resizable=yes, status=yes.

setHTML(html)
Sets the html to be the window's content. (An alternative to setURL().)

93

setLocation(x, y)
Sets a screen location for the top left corner of the window, overriding setMode().
(This method works in IE5 and NN, but not in IE4.)

setMode(str)
Sets the display mode for the window, which may be auto (the default) or normal. In
auto mode, the window will appear slightly smaller than the Desktop window, and
centered within it. In normal mode, the window's size and position will be determined
by browser defaults.

setName(name)
Sets the text string to display in the window's title bar.

setSize(w, h)
Sets a width and height for the window, overriding setMode().

setURL(url)
Sets an initial URL for the window to display.

Functions
None.

94

DTButton

The DTButton package defines the Button class.

Classes
Button

Defines a button object which may include text and an image. The image, if supplied, appears at
the left edge of the button. The text, if supplied, is centered in the remaining space.

Inherits from DTContainer.Container.

Constructor
Button(text, icon, toolTip)

text, icon, and toolTip define the text, image, and mouse-over text to be
associated with the button, respectively. All three are optional. icon is an URL string,
and takes one of two forms. For an image from the Desktop.com site, icon should
begin with top.DTPATH.IMAGES, and have the specific location appended. For an
image that resides in the current user's filesystem, icon should be built using
DTFileSystem.makePrivateURL(). (See DTFileSystem.) toolTip sets
the ALT text to be displayed during mouse-over events.

Actions
clicked: the button was clicked.

Methods
getImage()
getText()
getToolTip()
setAlignment(alignment)

setBackgroundColor(color)
setImage(icon)
setText(text)
setToolTip(toolTip)

getImage()
Returns the image used for the button.

getText()
Returns the text used for the button.

getToolTip()
Returns the text that appears when the mouse is over the image (the ALT text). (This
method is recognized by Internet Explorer only.)

setAlignment(alignment)
Sets the alignment for the text within the button. Valid input includes CENTER (default),
LEFT, and RIGHT.

95

setBackgroundColor(color)
Sets the background color for the button. color is defined as a 6-digit hex string which
begins with a "#" character, such as "#00CC99."

setImage(icon)
Sets the image to be used for the button. icon is an URL string, as for the DTButton
constructor.

setText(text)
Sets the text string to be used for the button.

setToolTip(toolTip)
Sets the text string to appear when the mouse is over the image (the ALT text). (This
method is recognized only by Internet Explorer.)

Note that calling setSize(), setImage() and setText() all require repaints. For best
results, call these methods before calling addComponent().

Functions
None.

96

DTCallback

The DTCallback package defines the Callback class.

Classes
Callback

Defines a wrapper for a function or method to be invoked at a later time, potentially more than
once. A Callback object manages three things: a target to be invoked, a creator data parameter,
and a caller data parameter.

A Callback object's target is established when the Callback object is instantiated. The target is
either a function reference or an object-reference/method-name pair. Blocking functions and
methods cannot be used as Callback targets.

Creator data and caller data are parameters that are passed to the target when it is invoked. Both
are optional, and may store values of any type. Creator data is established when the Callback is
instantiated, and does not vary from invocation to invocation. Caller data is established when the
Callback is invoked, and may vary from invocation to invocation.

The Callback class is a global symbol, meaning that Callback objects may be instantiated without
reference to the DTCallback package.

See also DTNamedCallback.

Inherits from DTObjectFramework.DTObject.

Constructor
Callback(arg1, arg2, arg3)

Constructs a Callback object.

To create a Callback to a function, pass a reference to the target function for arg1.
Creator data may be passed for arg2 (optional).

To create a Callback to a method, pass a reference to the object containing the target
method for arg1, pass a string containing the name of the target method for arg2.
Creator data may be passed for arg3 (optional).

Methods

call(arg)
Invokes the Callback. arg (optional) provides caller data.

Functions
None.

97

DTCheckBox

The DTCheckBox package defines the CheckBox class.

Classes
CheckBox

Defines a single checkbox, which may include a text label extending to the right.

Inherits from DTContainer.Container.

Constructor
CheckBox(text, checked)

text (optional) specifies the text string for the CheckBox. checked (optional)
specifies whether the CheckBox is initially checked: true if checked, false if not. If
absent, the CheckBox will be initially unchecked.

Actions
checked: the CheckBox has changed to the checked state.
unchecked: the CheckBox has changed to the unchecked state.

Methods
getChecked()
getText()

setChecked(checked)
setText(text)

getChecked()
Returns the state of the CheckBox: true if checked; false if not.

getText()
Returns the text string associated with the CheckBox.

setChecked(checked)
Sets the state of the CheckBox: true if checked; false if not.

setText(text)
Sets the text string associated with the CheckBox.

Functions
None.

98

DTColumnLayoutManager

The DTColumnLayoutManager package defines the ColumnLayoutManager class.

Classes
ColumnLayoutManager

A layout manager that arranges child Components in a specified number of columns.
Components flow down, then across, in the order in which they were added. Items are arranged
roughly to minimize the height of the columns.

Inherits from DTLayoutManager.LayoutManager.

Constructor
ColumnLayoutManager()

Methods
setColSpacing(spacing)
setNumCols(n)

setVertSpacing(spacing)

setColSpacing(spacing)
Sets the number of pixels separating columns horizontally. Default is 20.

setNumCols(n)
Sets the number of columns. Default is 1.

setVertSpacing(spacing)
Sets the number of pixels separating components vertically. Default is 5.

Functions
None.

99

DTComponent

The DTComponent package defines the Component class.

Classes
Component

Defines a generic component. Serves as the base class for all GUI components. May be
instantiated directly to create a component whose appearance is to be defined by HTML content.

Inherits from DTContent.Content.

Constructor
Component()

Actions
resized: the Component has been resized.
moved: the Component has been moved.

Methods
addActionListener(o, m)
addMouseListener(o, m)
getActionLabel()
getScreenLocation()
getSizing()
isActive()
isEnabled()
removeActionListener(o, m)
removeMouseListener(o, m)
repaint(now)

setActionLabel(label)
setCursor(pointer_img)
setEnabled(enabled)
setFocusable(focusable)
setHeight(h)
setLocation(x, y)
setPrimary()
setSize(w, h)
setSizing(s)
setWidth(w)

addActionListener(o, m)
Adds an action listener to the Component. An action listener is a method that is called
each time the Component emits an action. The actions emitted by each Component class
are described in its "Actions" section. A Component may have any number of action
listeners, and the order in which they are called is undefined.

o is a reference to the object in which the listener method is to be called, and m is the
name of the method. The listener method should be defined to accept three parameters:
obj, a reference to the Component emitting the action; label, the Component's
action-label string; and action, a string that specifies what action is occurring.

100

addMouseListener(o, m)
Adds a mouse listener to the Component. A mouse listener is a method that is called
each time a mouse event occurs within the Component. A Component may have any
number of mouse listeners, and the order in which they are called is undefined.

o is a reference to the object in which the listener method is to be called, and m is the
name of the method. The listener method should be defined to accept one parameter:
event, a reference to a DTEventObject.EventObject that describes the mouse event.

Note that mouse listeners provide a lower-level view of user activity than action listeners.
Most Component classes are designed to emit actions each time an event occurs,
including each time a mouse event occurs. Therefore, it should rarely be necessary to
use a mouse listener in addition to normal Component action listeners.

getActionLabel()
Returns the action label string set with setActionLabel().

getScreenLocation()
Returns an object with properties x and y, whose integer values describe the location of
the Component relative to the Desktop.com screen (the browser window in which the
Desktop.com environment is running). This method differs from getLocation(),
which returns the coordinates of a Component relative to its parent Container.

getSizing()
Returns the current sizing style.

isActive()
Returns true if the Component is active, false if inactive. (Being active is a focus-
related concept.)

isEnabled()
Returns true if the Component is enabled, false if not.

removeActionListener(o, m)
Removes an action listener added with addActionListener().

removeMouseListener(o, m)
Removes a mouse listener added with addMouseListener().

repaint(now)
Redraws the Component by regenerating its on-screen HTML content. If now is true,
repainting occurs immediately. If now is false or omitted, repainting is scheduled to
occur sometime in the near future. It is often best to delay repaint(), as in some
cases multiple requests may be made to repaint the same Component; if these requests
are for delayed repainting, only a single redraw will occur.

101

setActionLabel(label)
Sets a string label for the component that will appear as a parameter in calls to action
listeners, providing a way to distinguish between multiple components that call the same
action listener. (See addActionListener() above.) Each component subclass
has its own, default action label; this default usually matches the name of the class.

setCursor(pointer_img)
Sets the image for the cursor to show when it is over the Component. pointer_img
is a string that takes one of the following values: "auto", "crosshair",
"default", "e-resize", "help", "move", "n-resize", "ne-
resize", "nw-resize", "pointer", "s-resize", "se-resize",
"sw-resize", "text", or "wait". Default value is "default".

(Supported only in Internet Explorer. Equivalent to the style.cursor property in the
Internet Explorer DOM: consult a DHTML reference for details.)

setEnabled(enabled)
Enables the Component if enabled is true; disables it if enabled is false. A
disabled Component does not respond to mouse or keyboard events, and may have a
different appearance than when it is enabled. Components are enabled by default.

setFocusable(focusable)
Sets whether the component may receive focus. Default is true.

setHeight(h)
Changes the height of the component to the defined pixel size. Generates the action
resized.

setLocation(x, y)
Moves the component to the defined location in its container. Generates the action
moved.

setPrimary()
Makes the specified Component the primary Component on the screen. (Being primary is
a focus-related concept.)

setSize(w, h)
Changes the width and height of the component to the defined pixel dimensions.
Generates the action resized.

setSizing(s)
Sets the sizing style for the Component. The sizing style is a hint to layout managers
regarding how a Component may be resized during the layout process. Different layout
managers interpret the sizing style in different ways.

Valid sizing styles are DTComponent.Component.SIZING_NATURAL, which
indicates that a Component should be allowed to assume the size dictated by its content;

102

DTComponent.Component.SIZING_WIDTH, which indicates that a
Component's width may be changed but its height should remain unchanged; and
DTComponent.Component.SIZING_BOTH, which indicates that a Component
may be resized in both dimensions.

The default sizing style is SIZING_NATURAL.

setWidth(w)
Changes the width of the component to the defined pixel size. Generates the action
resized.

Functions
None.

103

DTConfirm

The DTConfirm package defines the DoConfirm$() function.

Classes
None.

Functions

DoConfirm$(text, where)
Displays a confirmation dialog window, similar to JavaScript's confirm(), with the
specified text string, and OK and Cancel buttons. where (optional) specifies a
reference to an object (either an Application or a Window) relative to which the dialog is
to be centered and made modal. If where is omitted, the dialog will be centered on the
screen and made system-modal.

DoConfirm$() should always be called as a blocking function. It will not return until
the user clicks the OK or Cancel button in the dialog displayed. The return value will
indicate which button was pressed: true for the OK button, and false for the Cancel
button.

DoConfirm$() is preferable to the JavaScript confirm() because it is
implemented within the Desktop.com environment, which allows more control over
appearance and provides the user with feedback that clearly comes from within
Desktop.com.

Dialog windows are resized to fit the text. text is wrapped where appropriate, may
include HTML tags, and will translate "\n" appearing in text as a line break.

104

DTContainer

The DTContainer package defines the Container class.

Classes
Container

Defines a generic container. By default, a container does not include a layout manager.

Inherits from DTComponent.Component.

Constructor
Container(layout_manager)

layout_manager (optional) is a reference to the LayoutManager object to be
attached to the container.

Actions
None.

Methods
addComponent(component, constraints)
doLayout(force)
getComponent(index)
getLayoutManager()
getNumberComponents()

removeComponent(c)
removeComponents()
setLayoutManager(lm)
setSize(w, h)

addComponent(component, constraints)
Adds the specified component to the container. constraints is the constraint object
to be passed to the layout manager's addComponent method. Note that not all layout
managers require a constraints object.

doLayout(force)
Asks the layout manager to recalculate layout.

getComponent(index)
Returns a reference to the child Component with the specified index from the
components array of the container. (Index numbers are generated for components by the
order in which they are added to a container.)

getLayoutManager()
Returns the LayoutManager for this Container, or null if none exists.

getNumberComponents()
Returns the number of child components in this container.

105

removeComponent(c)
Removes a component from the container. c is a reference to the component to remove.

removeComponents()
Removes all components from the container.

setLayoutManager(lm)
Sets the layout manager. lm is a reference to the layout manager to set. Any
components added before this method will be ignored by the layout manager.

setSize(w, h)
Specifies the width and height dimensions of the container. Causes the LayoutManager
(if any) to recalculate layout.

Functions
None.

106

DTContent

The DTContent package defines the Content class.

Classes
Content

The Content class is the browser-specific class that represents a region of dynamic HTML
content in the browser.

Never construct a raw Content instance. Instead, use DTComponent.Component, a
browser-neutral subclass of DTContent.

Inherits from DTObjectFramework.DTObject.

Constructor
DTContent()

Methods
getBackgroundColor()
getBackgroundImage()
getContent()
getImages()
getLocation()
getSize()
getStyle()
getVisible()
getZ()
IsOnScreen()

setBackgroundColor(color)
setBackgroundImage(image_location)
setContent(content, style)
setHeight(h)
setLocation(x, y)
setSize(w, h)
setStyle(style)
setVisible(desiredVisibility)
setWidth(w)
setZ(z)

getBackgroundColor()
Returns the background color for the region.

getBackgroundImage()
Returns the background image for the region.

getContent()
Returns the content (as an HTML string) and an optional style (a reference to a
DTStyle.Style object) of the region.

getImages()
Returns the array of images for the region. The order of entries in the array corresponds
to the order in which elements appear in the region's content. Each entry in the
array is an IMG object from the browser DOM. (Consult a DHTML reference for details.)

107

The array contains only those elements from the content of the region itself; it
excludes elements from child regions.

The main purpose of calling getImages() is to change an image dynamically.
For example:
this.getImages()[0].src=top.DTPATH.IMAGES+"foo.gif"

getLocation()
Returns the location of the region relative to its parent Container.

getSize()
Returns an object with two properties: w, the width, and h, the height of the region in
pixels.

getStyle()
Returns the style of the region as an instance of DTStyle.Style. If there is no
current style object for the region, one is created and returned.

getVisible()
Returns whether the region is visible. Default is true.

getZ(z)
Returns the zero-based stacking position of the region within its parent Container.

IsOnScreen()
Returns true if the region is painted in the browser; false if not.

setBackgroundColor(color)
Sets the background color for the region. color is defined as a 6-digit hex string which
begins with a "#" character, such as "#00CC99."

setBackgroundImage(image_location)
Sets the background image for the region. image_location is an URL string, and
takes one of two forms. For an image from the Desktop.com site, icon should begin
with top.DTPATH.IMAGES, and have the specific location appended. For an image
that resides in the current user's filesystem, icon should be built using
DTFileSystem.makePrivateURL(). (See DTFileSystem.)

setContent(content, style)
Sets the content (as an HTML string) and an optional style (a reference to a
DTStyle.Style object) of the region.

setHeight(h)
Sets the height of the region in pixels.

108

setLocation(x, y)
Sets the location of the region relative to its parent Container.

setSize(w, h)
Sets an object with two properties: w, the width, and h, the height of the region in pixels.

setStyle(style)
Sets the style of the region as an instance of DTStyle.Style. If the style object is
not supplied, a default (empty) style is used.

setVisible(desiredVisibility)
Sets whether the region is visible: true if visible, false if not. Default is true.

setWidth(w)
Sets the width of the region in pixels.

setZ(z)
Sets the zero-based stacking position of the region within its parent Container.

Functions
None.

109

DTDetailsRow

The DTDetailsRow package defines the DetailsRow class.

Classes
DetailsRow

Defines a table row of text, which includes an icon to the far left. DetailsRow differs from a table in
that the spacing, alignment and width of the cells of text may be set individually.

Note that for efficiency, repaint() is not called after changing text, icons or any of the
content. To see changes, call repaint() on this object after making the changes.

The number of columns exclude the icon at the left of the row.

Inherits from DTComponent.Component.

Constructor
DetailsRow(column_text, width, icon, alignments)

column_text is an array of strings which specify the text of each column in the table;
width is an array of pixel values which specify their widths. icon is a string URL
which sets the icon to be displayed before the first column. alignments is an array of
symbolic constants which specify the column/text alignments: possible values include
DTDetailsRow.DetailsRow.ALIGN_CENTER,
DTDetailsRow.DetailsRow.ALIGN_LEFT, and
DTDetailsRow.DetailsRow.ALIGN_RIGHT.

Actions
None.

Methods
getText(col_num)
setColumnPadding(padding)
setColumnWidth(width)

setIcon(icon)
setText(col_num, text, alignment, width)

getText(col_num)
Returns the text from the column specified by its zero-based column number.

setColumnPadding(padding)
Sets the number of pixels between columns.

setColumnWidth(width)
Sets the width of the columns in pixels. width is an array of integers.

110

setIcon(icon)
Sets the icon to be displayed before the first column of the row. icon is an URL, as
defined for the DTDetailsRow constructor.

setText(col_num, text, alignment, width)
Sets the text string to be displayed in the column specified by its zero-based column
number. alignment is a symbolic constant, as defined for the DTDetailsRow
constructor alignments parameter, which sets the alignment for the text within the
column. width defines the width of the text within the column, in pixels.

Functions
None.

111

DTDialogWindow

The DTDialogWindow package defines the DialogWindow class.

Classes
DialogWindow

Defines a dialog window. Dialog windows are similar to Application windows, except that while in
existence, they maintain focus, and are not resizable.

Inherits from DTBorderedWindow.BorderedWindow.

Constructor
DialogWindow()

Actions
None.

Methods
None. (All methods are inherited.)

Functions
None.

112

DTDragManager

The DTDragManager package enables drag and drop both within and between Desktop
applications. Enabling drag for a component causes rubber-banding of the component: an outline
of the component is created when the user holds the mouse down when above it, which follows
the movement of the cursor. When the mouse is released, DragManager checks to see if it is
over an interested target, and notifies that target if it is.

The DragManager does not check the visibility of a container before firing the drop event, nor
does it check to see if that container is blocked by an arbitrary component (or even clipped by a
parent container) on the screen. Doing this would require the DragManager to examine the
location of every component on the screen, which would be prohibitively expensive.

To verify the validity of a drop event, the DragManager checks to see if the event is blocked by a
window, then leaves any additional checks to the application developer (the owner of the
window). Additional checks are necessary only if the droppable component could be blocked or
clipped by some other component (or made invisible).

The DragManager does not perform any actions implied or necessitated by a drag and drop
procedure. It simply notifies the drop Component of the event. The involved Components must
then handle any action subsequent to the drop themselves, such as moving the component, and
sending re-parenting notification to the appropriate Containers.

Classes
None.

Functions

DisableDrag(component)
Disables dragging for the specified component.

DisableDrop(component, object, method)
Unregisters the specified component as an interested drop target.

EnableDrag(component)
Enables dragging for the specified component. The Drag Manager then listens for mouse
events and creates and moves the component outline.

To make componentA draggable, use:
DTDragManager.EnableDrag(componentA)

EnableDrop(component, object, method)
Registers a component as an interested drop target. When a drag event ends on such a
component, the DragManager sends notification of the event by passing the component
being dragged as an argument to the specified object and method.

113

To make componentB available to drag-n-drop events, use:
DTDragManager.EnableDrop(componentB, object, method)

Then, if any draggable component (such as componentA) is dragged and dropped on
componentB, object[method]() is called, with the first argument as
componentB and the second argument as componentA. method is
dropPerformed by default.

114

DTDropDownComboBox

The DTDropDownComboBox package defines the DropDownComboBox class.

Classes
DropDownComboBox

Defines a text input field with a drop-down combo box, in which users may either type in the value
or select among a list of drop-down menu items.

Inherits from DTPane.Pane.

Constructor
DropDownComboBox(index)

index (optional) specifies the default selection. If absent, the default selection will be
zero (the first item in the Menu).

Actions
changed: The user has changed the selection. Call getIndex() or getText() to
determine which is the current selection.

Methods
addItem(text, index, id)
getIndex()
getSelectedId()
getText()
modifyText(id, text)
removeId(id)

setEditable(bool)
setIndex(index)
setSelectedId(id)
setText(text)
setWidth(w)
size()

addItem(text, index, id)
Adds an item to the list at the specified (zero-based) index location, with the specified
text and id.

getIndex()
Returns the (zero-based) index of the current selection.

getSelectedId()
Returns the ID of the current selection.

getText()
Returns the text string of the current selection, or the currently visible text.

modifyText(id, text)
Changes the display-text of the item with the specified id to text.

115

removeId(id)
Removes the item with the specified id.

setEditable(bool)
Sets whether the text input field is editable: true if editable (default); false if not.

setIndex(index)
Sets the current selection by (zero-based) index. The changed action is not emitted.

setSelectedId(id)
Sets the selected item's ID to id. Pass in null to reset the menu to the first option in
the list.

setText(text)
Sets the text string displayed in the text field to text.

setWidth(w)
Sets the width of the DropDownComboBox in pixels.

Functions
None.

116

DTEventGrabber

The DTEventGrabber package defines the EventGrabber class.

Classes
EventGrabber

Defines an event grabber object, which is an invisible component that may be sized and placed
over other components in order to intercept events and translate them into actions. An event
grabber may be placed over components that do not normally generate actions, in order to create
the illusion that they do. This allows developers to add events and actions as desired.

An event grabber may also be placed over multiple Components, to be used for unified mouse
listening. It will emit a single event, with pixel coordinates, for all mouse events which take place
within it. If the coordinates for all Components are known, the event may then be processed for
the appropriate Component, without attaching an event listener to each Component individually.
This feature is also useful when only a single action is required from multiple components.

The component generates clicked and doubleclicked actions.

Inherits from DTComponent.Component.

Constructor
EventGrabber()

Actions
clicked: the user has clicked on the EventGrabber.
doubleclicked: the user has double-clicked on the EventGrabber.

Methods
None. (Methods allowing manipulation are inherited from content.)

Functions
None.

117

DTEventObject

The DTEventObject package defines the EventObject class.

Classes
EventObject

Defines a structure that provides details of a mouse or keyboard event. Unlike most classes in the
DTAPI, EventObject exposes properties rather than methods.

Constructor
None. (This class should not be instantiated directly.)

Properties
alt
component
ctrl
key
mButton
offX

offY
original
shift
type
x
y

alt

A Boolean indicating whether the Alt key was down at the time of the event: true if
pressed, false if not. Present only for keyboard events.

component
A reference to the Component in which the event occurred. If the event is being
redistributed to a parent Component, component is a reference to the immediate child
Component passing the event up.

ctrl

A Boolean indicating whether the Ctrl key was down at the time of the event: true if
pressed, false if not. Present only for keyboard events.

key
The key that was pressed. Present only for keyboard events. Symbolic constant that may
be compared against the constants defined in DTKeyEvent. (See also Appendix II:
KeyEvent constants.)

mButton

An integer specifying which mouse button was pressed. Present only for mousedown,
mouseup, and click events. For a two-button mouse, left button is 1, and right is 2.
For a three-button mouse, left is 1, right is 3, and center is 2.

118

offX

The x coordinate of the mouse pointer at the time of the event, relative to component.
Present only for mouse events.

offY

The y coordinate of the mouse pointer at the time of the event, relative to component.
Present only for mouse events.

original
A reference to the Component in which the event originally occurred.

shift

A Boolean indicating whether the Shift key was down at the time of the event: true if
pressed, false if not. Present only for keyboard events.

type
A string indicating the type of event that has occurred. Possible values are
"mousemove", "mousedown", "mouseup", "click", "keydown",
"keyup", and "keypress".

x
The x coordinate of the mouse pointer at the time of the event, relative to the entire
browser window. Present only for mouse events.

y
The y coordinate of the mouse pointer at the time of the event, relative to the entire
browser window. Present only for mouse events.

Functions
None.

119

DTFileDownload

The DTFileDownload package allows users to select and download files from their account to
their local computer.

Classes
None.

Functions

download$(path_or_app)
Downloads a file from the user's filesystem to their local computer. If the
path_or_app argument is a string, it is assumed to be a path to the file to be
downloaded, and download begins immediately. If path_or_app is a reference to an
application object, the DTFileWindow.GetFile$() is called to allow the user to
select the file to downloaded.

120

DTFileSharing

The DTFileSharing package provides a layer on top of the filesystem that allows users to share
directories with other users, and to access others' shared files.

File sharing is based on two mechanisms: shared navigation and sharing permissions.

Shared navigation enables a user to specify a path into another user's filesystem space. Paths
within a user's space are relative to the filesystem root. Paths that reference another user's space
are relative to that user's share root. A user's share root is a publicly visible directory that contains
sharing links, which are smart links to the directories that the user has defined as shared. A path
into another user's space has the syntax "user:/sharename/path", where user is the
target user's username, sharename is the name of the share link to follow in the target user's
share root, and path is a path within the directory to which sharename points.

Sharing permissions are attributes of a sharing link. Sharing permissions are embodied in access
control lists, or ACLs. An ACL defines which users the server will allow to follow a sharing link.

A directory is said to be directly shared if it is the target of a sharing link. A directory or file is said
to be indirectly shared if it has an ancestor directory that is the target of a sharing link.

See also DTFileSystem.

All paths are strings of link names separated by slash characters. For more information on paths
and links, see the Developers' Guide chapter: The FileSystem.

Classes
AccessControlList

Encapsulates access permissions on a node in the filesystem. An AccessControlList has one
property per user to whom access is granted.

Inherits from DTObjectStore.PersistentObject.

Constructor
None. (Only createACL$() should instantiate this class.)

Methods

setPermission(key, value)
A wrapper around the PersistentObject.set() method which checks that a
valid permission value is supplied. key is the username as a string, and value the
permission allowed, which may be "R" (read), or "RW" (read-write). The special username
"all" denotes permissions for all users.

121

Functions

Error Returns

In the DTFileSharing package, all blocking functions (i.e., all functions whose names end in "$")
return objects. These objects have a variety of properties, which include properties that match the
blocking function’s argument(s), and a Boolean success property that indicates whether the
call succeeded. When success is false, there is an error property whose value is an
error code. Error codes may be compared against properties of DTFileSharing.ERRNO
(e.g., DTFileSharing.ERRNO.ERR_FILENOTFOUND), or they may be converted to
meaningful error messages using DTFileSharing.getErrorString(). When
success is true, certain calls place additional properties in the objects they return. These
properties are noted as bracketed return property names in the documentation of each blocking
function.

For example, the object returned from getACL$(path): {path, success,
[error], [acl]} has a path property whose value matches the argument passed to
getACL$(). The success property is always present. When success is false,
error is present; when success is true, acl is present. In this case, acl is a reference
to the object retrieved by getACL$().

The list of definitions for the errors returned is given at the end of the functions list.

createACL$(path)
Creates and returns a new AccessControlList (ACL) object for a given sharing link under
the current user's share root. path is a string which specifies the sharing link on which
the ACL is to be placed, and will be interpreted as relative to the share root. If an ACL
already exists for that sharing link, it will simply be returned.

Returns {path, success, [acl, existing], [error]}, where acl
is a reference to the new ACL object, and existing is a Boolean that indicates
whether the ACL already existed.

Possible errors include: ERR_INDIRECT, ERR_NOPATH, ERR_NOTDIR, and
ERR_NOPERMS.

getACL$(path)
Obtains the AccessControlList object, if any, associated with a given sharing link under
the current user's share root. path will be interpreted as relative to the share root.

Returns {path, success, [error], [acl]}. acl is null.

Possible errors include: ERR_BADPATH, ERR_NOPATH, ERR_NOTDIR, and
ERR_NOPERMS.

122

getErrorString(err)
Converts an error number returned by a DTFileSharing function into an error message
string that may be displayed to users.

getShareStatus$(path)
Returns the sharing status of the node specified, by path, in the private portion
(anywhere not under the share root) of the user's filesystem. path is relative to the
filesystem root.

Note that getShareStatus$() is a potentially expensive operation, as it may need
to traverse many filesystem nodes.

Returns {path, success, [sharing], [error]}, where sharing is
null if the node is not shared. If the node is shared, sharing is an object with one or
both of {direct, indirect}, each an array of objects {path, acl}, with
acl an AccessControlList.

Possible errors include: ERR_BADPATH, ERR_NOPATH, ERR_NOTDIR, and
ERR_NOTPRIVATE.

getShareTarget$(sharePath)
Returns the target of the sharing link specified by sharePath under the current user's
share root. sharePath is relative to the share root.

Returns {sharePath, success, [error], [targetPath]}

Possible errors include: ERR_BADPATH, ERR_NOPATH, ERR_NOTDIR, and
ERR_NOTSHARELINK.

removeACL$(path)
Destroys an AccessControlList on a sharing link under the current user's share root. The
path argument is interpreted in the same way as the argument to createACL$().

Returns {path, success, [error]}

Possible errors include: ERR_BADPATH, ERR_NOPATH, ERR_NOTDIR, and
ERR_NOPERMS.

share$(sharePath, target)
Creates a sharing link from the current user's share root to a directory in the current
user's filesystem. Calling share$() is the first of two steps necessary to share a
directory; setting up an ACL with createACL$() is the second.

The sharePath argument specifies the path to the link to be created under the share
root. It will be interpreted as relative to the share root. target specifies a path to the
directory being shared, relative to the filesystem root.

123

Returns {sharePath, target, success, [error]}

Possible errors include: ERR_BADARGS, ERR_BADPATH, ERR_INDIRECT,
ERR_NOPATH, ERR_NOTDIR, ERR_EXISTS, and ERR_NOSMART.

unshare$(target)
Destroys a sharing link under the current user's share root. The link to be destroyed may
be specified either by source or by target. To specify a source, provide a path that
resolves to a sharing link under the share root. In this case, only the specified sharing link
is unlinked. To specify a target, provide a path that resolves to a directory that is not
under the share root. In this case, all sharing links that point to the specified directory are
unlinked. To specify a source, use the syntax ":/path/to/link," which will be interpreted as
relative to the share root. To specify a target, omit the colon from your path, and the path
will be interpreted as relative to the filesystem root.

Possible errors include: ERR_BADARGS, ERR_BADPATH, ERR_INDIRECT,
ERR_NOPATH, ERR_NOTDIR, and ERR_NOSMART.

Errors
ERR_BADARGS: invalid argument(s).
ERR_BADPATH: syntax error in path.
ERR_EXISTS: there is already something at the specified location.
ERR_INDIRECT: sharePath traverses a share link, and thus does not point to a shared
folder.
ERR_NOPATH: path does not exist.
ERR_NOPERMS: path points at something that cannot have an ACL.
ERR_NOSMART: the target is of a type that cannot be shared.
ERR_NOTAVAIL: specified user has no shared area, or specified path points to a symlink that
contains a private path.
ERR_NOTDIR: path attempts to traverse a non-directory.
ERR_NOTEMPTY: specified folder is not empty. unlink() or unshare() everything in it
first.
ERR_NOTFILE: path points to something that is not a file.
ERR_NOTPRIVATE: path points at something in the shared area. This method is meant only
for things outside the shared area.
ERR_NOTSHARELINK: path points at something that is not a share link.
ERR_NOUSER: no user with specified username.

124

DTFileSystem

The DTFileSystem package defines a collection of functions that provide a persistent filesystem
hierarchy, within which persistent data may be stored.

The filesystem consists of nodes, which may be files or directories. Files serve as placeholders
for RootPersistentObjects (RPOs). Directories serve to organize files.

A hard link points from a directory node to a node (file or directory) that it contains, and is the
primary link to a node. A smart link also points from a directory to a node that it contains, but is
viewed as a secondary link to a node, and may define secondary routes between directories
and/or files in a user's filesystem. A symbolic link, or symlink, is a path reference to another node
in which only the target node’s path is encoded. By convention, symlinks are used only to create
links to other users’ filesystems.

For more information, see The DTFileSystem.

Classes
None.

Functions

Error Returns

In the DTFileSystem package, all blocking functions (i.e., all functions whose names end in "$")
return objects. These objects have a variety of properties, which include properties that match the
blocking function’s argument(s), and a Boolean success property that indicates whether the
call succeeded. When success is false, there is an error property whose value is an
error code. Error codes may be compared against properties of DTFileSystem.ERRNO
(e.g., DTFileSystem.ERRNO.ERR_FILENOTFOUND), or they may be converted to
meaningful error messages using DTFileSystem.getErrorString(). When
success is true, certain calls place additional properties in the objects they return. These
properties are noted as bracketed return property names in the documentation of each blocking
function.

For example, the object returned from get$(path): {path, success, [error],
[object]} has a path property whose value matches the argument passed to get$().
The success property is always present. When success is false, error is present;
when success is true, object is present. In this case, object is a reference to the
object retrieved by get$().

The list of definitions for the errors returned is given at the end of the functions list.

In general, a path passed to any DTFileSystem function may traverse any kind of link: hard link,
smart link, or symlink. Except where noted, all paths must be absolute.

125

The paths passed to get$(), getDirectoryEntryArray$(),
getDirectoryEntries$(), and getEntry$() may be paths within the current
user’s filesystem, or they may refer to files in other users’ filesystems. To refer to another user’s
filesystem, construct a path string of the form “username:/path/to/file. Such paths are interpreted
as relative to the named user’s share root.

addDirectoryWatcher$(path, watcher)
Registers watcher, a Callback (see DTCallback) to be called when an operation is
performed on the directory specified by path. This function is provided to allow graphic
representations of directories to be updated as actions occur in the underlying directories.
Only actions that occur in the named directory are reported; actions in subdirectories are
not.

Returns {path, success, [error], [key]}, where the key returned is
necessary to remove a directory watcher with removeDirectoryWatcher().
Removing directory watchers is encouraged when they are no longer needed, in the
interest of efficiency.

Possible errors include:, ERR_BADPATH, ERR_NOPATH, and ERR_NOTDIR.

The Callback provided is called with an object that always has an action property that
names the action being performed, and a path property, which provides the path to the
directory being watched. Additional properties provide details on the action.

The following action / parameter combinations are supported:
ANCESTOR_RENAME / <none>

an ancestor directory has been renamed.
DIR_DELETE / <none>

the watched directory has been removed. This watcher will never be called
again, even if the directory is recreated.

DIR_MODIFY / <properties>
the watched directory has been modified. <properties> are one or more of the
properties given by DIR_ADD that have changed: either shared, or
iconPathType and iconPath (in the latter case, both may be null;
which indicates icon removal).

DIR_RENAME / oldName, newName
the directory has been renamed.

DIR_UPDATE / entries
The directory's contents have been updated from the server. There may be no
changes, a single change, or multiple changes; it is best to rebuild any views of
the watched directory. entries is an array of the objects returned by
getEntry$().

ENTRY_ADD / <properties>
a new entry has been added, described by <properties>.

ENTRY_DELETE / name
the entry specified by name has been deleted.

126

ENTRY_MODIFY / name, <properties>
the entry has been modified. <properties> are one or more of the properties
given by ENTRY_ADD that have changed: either shared, or
iconPathType and iconPath (in the latter case, both may be null;
which indicates icon removal).

ENTRY_RENAME / oldName, newName
the entry has been renamed.

Note that the watcher will be called immediately with an action of DIR_INIT, before
addDirectoryWatcher$() returns. This provides an initial view of the directory's
contents so that the watcher is guaranteed to be in sync. An entries property is
returned with DIR_INIT as with DIR_UPDATE.

The following list serves as a summary of when and how watchers are called:
makeDirectory$(): calls ENTRY_ADD for the directory containing the new
directory.
move$() to a different directory: calls ENTRY_DELETE for the original containing
directory; DIR_DELETE for the moved node if a directory, and recursively for
subdirectories; and ENTRY_ADD for new containing directory.
move$() to the same directory (i.e., rename): calls ENTRY_RENAME for the
containing directory; DIR_RENAME for the moved node, if a directory; and
ANCESTOR_RENAME recursively for subdirectories of the moved node, if a directory.
put$(): calls ENTRY_ADD for the directory containing the new file.
removeDirectory(): calls ENTRY_DELETE for the containing directory(ies);
and DIR_DELETE for the removed directory.
setIcon$(): calls ENTRY_MODIFY for the containing directory(ies); and
DIR_MODIFY for the moved node, if a directory.
smartlink$(): calls ENTRY_ADD for the directory containing the new smartlink.
symlink$(): calls ENTRY_ADD for the directory containing the new symlink.
unlink$(): calls ENTRY_DELETE for the containing directory(ies).

Watchers are always called in the order indicated. When calls are made recursively for
subdirectories, a preorder depth-first traversal is used, but the order of calls among
sibling subdirectories is undefined. The order of calls among multiple containing
directories is also undefined.

If there are multiple events that cause watchers to be called, the watcher calls from the
various events will always occur in the same order as the events themselves.

basename(path)
Returns the last item in path. (For example: path = "path/to/file," basename = "file.") An
empty string indicates that the path is the root directory.

127

canonicalize(path, default_dir)
Turns a path into a canonical path (an unambiguous, simplified form), with path
specifying a path, relative path or filename, and default_dir specifying an optional
directory to use when the path is relative.

dirname(path)
Returns the directory part of path. (For example: path = "path/to/file," dirname =
"path/to.") An empty string indicates the path is either the root directory or something in it.

get$(path)
Retrieves a RootPersistentObject from the filesystem. Path may be within the current
user's filesystem, or to another user's filesystem.

Returns {path, success, [error], [object]}

Possible errors include: ERR_BADCHARS, ERR_NOPATH, ERR_NOTDIR,
ERR_FILENOTFOUND, and ERR_NOTFILE.

getDirectoryEntryArray$(path)
Returns information about the entries in a given directory. Path may be within the current
user's filesystem, or to another user's filesystem.

Returns {path, success, [error], [entries]}, where entries is
an array of the objects returned by getEntry$().

Possible errors include: ERR_BADCHARS, ERR_NOPATH, and ERR_NOTDIR.

getDirectoryEntries$(path)
Returns information about the entries in a given directory. Path may be within the current
user's filesystem, or to another user's filesystem.

Returns {path, success, [error], [entries]}, where entries is a
hash of the objects returned by getEntry$(). (A hash is an object with properties
whose names denote the names of the entries, and whose values are object references.)

Possible errors include: ERR_BADCHARS, ERR_NOPATH, and ERR_NOTDIR.

getEntry$(path)
Returns information about a given directory entry. Path may be within the current user's
filesystem, or to another user's filesystem.

Returns {path, success, [error], [entry]}, where entry is an
object with the properties:

name: the name of the entry within the directory specified.

128

shared: a Boolean indicating whether the entry is directly shared. Indirect
sharing (sharing of an ancestor directory) is not indicated. This property is not
present for entries in other users' spaces.
iconPathType, iconPath: if an icon has been established with
setIcon$(), these properties are present and describe the icon.
rpoType: a string that gives the class name of the RPO that the file represents
(if any).
dateCreated: a Date object specifying when the entry was created.
symlinkPath: gives the path stored by a symlink. Present only for symlink
entries.

Possible errors include: ERR_BADPATH, ERR_NOPATH, and ERR_NOTDIR.

getErrorString(err)
Converts an error number returned by a FileSystem function into an error message string
that may be displayed to users.

getLinks$(target)
Retrieves a list of the traceable links to a node specified by target. Traceable links
include hard links and smart links.

Returns {target, success, [error], [HARD], [SHARE],
[USER]} where HARD, SHARE and USER are each arrays of paths. target may
be a path string or a reference to an RPO. If target specifies an RPO that is not in the
filesystem, getLinks$() will return {target:target, success:true}.
(Note the absence of the HARD property in the return value.)

Possible errors include: ERR_BADARGS, ERR_BADCHARS, ERR_BADPATH,
ERR_NOPATH, and ERR_NOTDIR.

getSmartLinkTarget$(path)
Retrieves the path to the target of the smart link with the specified path.

Returns {path, success, [error], [targetPath]}

Possible errors include: ERR_BADCHARS, ERR_BADPATH, ERR_NOPATH,
ERR_NOTDIR, and ERR_NOTSMARTLINK.

makeDirectory$(path)
Makes a new directory at path, and generates all parent directories, if necessary.

Returns {path, success, [error], [object]}

Possible errors include: ERR_BADCHARS, ERR_BADPATH, and ERR_EXISTS.

129

makePrivateURL(path)
Constructs an URL to a file in the current user's filesystem, where path is the full path
to the desired file. This URL will work only within the Desktop.com site, and only for the
current user. The target file must be an uploaded file (RawFile RPO type). Returns an
URL string.

move$(origPath, newPath)
Moves the file or directory at origPath to newPath. If newPath is not absolute,
it will be assumed to be rooted in the same directory as the node being moved. If the
node has smart links other than through the specified origPath, they are unaffected.
To determine if other links exist, call getLinks$(). Symlinks referencing
origPath will break without warning.

Note that the directory containing the desired target path must exist:
makeDirectory$() is not called automatically to make parents of newPath.

Returns {origPath, newPath, success, [error],
[whichPath]}, where whichPath will be either "ORIG" or "NEW" to indicate
the path returning the error.

Possible errors include: ERR_BADARGS, ERR_FILENOTFOUND (there is nothing at
origPath), ERR_EXISTS, ERR_BADCHARS, ERR_BADPATH, ERR_NOPATH,
and ERR_NOTDIR.

put$(path, obj)
Links an RPO into the filesystem. obj is a reference to the RPO to be linked.

Returns {path, obj, success, [error]}

Possible errors include: ERR_BADCHARS, ERR_BADPATH, and ERR_EXISTS.

putTemp$(path, prefix, obj)
Links an RPO into the filesystem, and generates a filename guaranteed to be unique.
path specifies a directory; prefix (which may be an empty string) specifies initial
characters for the filename.

Returns {obj, path, success, [error]}, where path is the full path.

Possible errors include: ERR_BADCHARS, ERR_BADPATH, ERR_NOPATH, and
ERR_NOTDIR.

removeDirectoryWatcher$(key)
Removes a watcher established with addDirectoryWatcher$(). The key
returned by addDirectoryWatcher$() must be provided.

130

removeDirectory$(path)
Removes the empty directory at path. To remove a directory that is not empty, first
unlink$() everything in it, then call removeDirectory$().

Returns {path, success, [error]}

Possible errors include: ERR_BADARGS, ERR_BADCHARS, ERR_NOPATH,
ERR_NOTDIR, and ERR_NOTEMPTY.

setIcon$(nodePath, iconPathType, iconPath)
Establishes an icon for the node defined by nodePath. iconPathType indicates
the type of path to which iconPath points. If iconPath is "URL", then
iconPathType is an URL to an image.

Passing null for iconPathType causes any icon at the node to be removed.

Returns {nodePath, iconPathType, iconPath, success,
[error]}

Possible errors include: ERR_BADARGS, ERR_BADCHARS, ERR_BADPATH,
ERR_NOPATH (nodePath does not exist), and ERR_NOTDIR (nodePath
attempts to traverse a non-directory).

smartlink$(source, target)
Creates a smart link from source to target, both of which are path strings.

Returns {source, target, success, [error]}

Possible errors include: ERR_BADARGS, ERR_BADCHARS, ERR_BADPATH,
ERR_NOPATH, ERR_NOTDIR, ERR_EXISTS, and ERR_NOSMART.

symlink$(source, target)
Creates a symlink at source which points to target, both of which are path strings.

Returns {source, target, success, [error]}

Possible errors include: ERR_BADARGS, ERR_BADCHARS, ERR_NOPATH,
ERR_NOTDIR, and ERR_EXISTS.

unlink$(path)
Removes a link to a node. If a hard link is removed, and the node has any smart links,
the smart links are also removed.

Returns {path, success, [error]}

131

Possible errors include: ERR_BADARGS, ERR_BADCHARS, ERR_NOPATH,
ERR_NOTDIR, and ERR_DIRECTORY.

updateDirectory$(path)
Updates the entries for the directory defined by path from the server. Call
updateDirectory$() only if another user may have modified the contents of a
directory.

validate(path)
Returns false if path contains unacceptable characters; true if path is valid.

Errors Returned:
ERR_BADARGS: invalid argument(s).
ERR_BADCHARS: illegal characters in path.
ERR_BADPATH: syntax error in a specified path.
ERR_DIRECTORY: the path specifies a directory. Use removeDirectory() instead.
ERR_EXISTS: there is already something at the specified source path.
ERR_FILENOTFOUND: the specified directory exists, but the specified filename within that
directory does not.
ERR_NOPATH: the directory containing the specified source path does not exist.
ERR_NOSMART: the target of a smartlink can only be a file or directory. A target path was
specified that points at something else.
ERR_NOTDIR: the specified source path attempts to traverse a non-directory.
ERR_NOTEMPTY: the specified directory is not empty.
ERR_NOTFILE: the specified path points at something other than a file.
ERR_NOTSMARTLINK: the path points to something that is not a smart link.

132

DTFileUpload

The DTFileUpload package allows users to upload files from their computers to the Desktop
server.

Classes
None.

Functions

upload$(targetDirPath)
Displays a dialog in which the user selects one or more files to upload from their
computer. targetDirPath is a path string that specifies a directory in the user's
Desktop.com filesystem. The uploaded files will be placed in this directory, with names
that match the original names of the uploaded files as closely as possible.

Returns after the user closes the dialog. Returns {success, path, files}.
success is normally true; if false, an error occurred. path is the
targetDirPath specified, and files is an array of file name strings for the
uploaded files inserted into the user's Desktop.com filesystem. Note that the length of the
files array may be zero, indicating that the user canceled the upload operation.

133

DTFlowLayoutManager

The DTFlowLayoutManager package defines the FlowLayoutManager class.

Classes
FlowLayoutManager

Arranges Components from left to right in wrapping rows. Line breaks are determined
automatically, but may also be manually set.

Inherits from DTLayoutManager.LayoutManager.

Constructor
FlowLayoutManager()

Methods
getHorizontalPadding()
getVerticalPadding()
lineBreak(item)

setHorizontalPadding(p)
setVerticalPadding(p)

getHorizontalPadding()
Returns the horizontal padding in pixels.

getVerticalPadding()
Returns the vertical padding in pixels.

lineBreak(item)
Adds a line break after a Component: either the Component with (zero-based) index
number item, or the last Component added if item is not specified.

setHorizontalPadding(p)
Sets the horizontal padding in pixels.

setVerticalPadding(p)
Sets the vertical padding in pixels.

Functions
None.

134

DTFontProber

The DTFontProber package defines the FontMetrics class.

Classes
FontMetrics

Encapsulates accurate measurements of various display size properties for a single font and font
size.

In addition to raw text metrics, information is available on the sizing of text-input HTML form
elements in the given font and font size. The two kinds of form elements are text fields (single-
line, used in DTTextInputField components) and text boxes (multi-line, used in
DTNativeTextInputBox components).

See also DTTextInputField, DTNativeTextInputBox, and DTStyle.

Inherits from DTObjectFramework.DTObject.

Constructor
None. (The FontMetrics class should not be instantiated directly. ProbeFont$() will return
an instance of it.)

Methods
charCodeWidth(c)
charHeight()
charWidth(c)
getStringOfWidth(str, width)
stringWidth(s)
textboxCols(width)

textboxRows(height)
textboxHeight(rows)
textboxWidth(cols)
textfieldHeight()
textfieldSize(width)
textfieldWidth(size)

charCodeWidth(c)
Returns the pixel width in this font of the character specified by c, an integer representing
an ASCII character code.

charHeight()
Returns the pixel height of the font.

charWidth(c)
Returns the pixel width in this font of the first character in the string specified by c.

getStringOfWidth(str, width)
Returns the largest left substring of the string str with a pixel width in this font less than
or equal to width.

135

stringWidth(s)
Returns the pixel width of the string s.

textboxCols(width)
Returns the maximum number of columns a text box using this font and font size may
have before its pixel width exceeds width.

textboxRows(height)
Returns the maximum number of rows a text box using this font and font size may have
before its pixel height exceeds height.

textboxHeight(rows)
Returns the pixel height of a text box using this font and font size and having the number
of rows specified by rows.

textboxWidth(cols)
Returns the pixel width of a text box using this font and font size and having the number
of columns specified by cols.

textfieldHeight()
Returns the pixel height of a text field using this font and font size.

textfieldSize(width)
Returns the maximum size a text field using this font and font size may have before its
pixel width exceeds width.

textfieldWidth(size)
Returns the pixel width of a text field using this font and font size, and having the size
specified by size.

Functions

ProbeFont$(font_name, font_size)
Creates and returns an instance of FontMetrics for the specified font_name and
font_size. Both parameters are strings, and both are optional. Omitting either
parameter will yield metrics that use the browser default for the omitted parameter.

font_name may take any value that is valid for the font-family attribute of a
CSS style. Recognized values include serif, sans-serif, cursive,
fantasy, and monospace. font-size may take any value that is valid for the
font-size attribute of a CSS style. Recognized values include absolute sizes (xx-
small, x-small, small, medium, large, x-large, xx-large), relative
sizes (smaller, larger), font lengths (any positive integer followed by pt or em),
and relative percentages (any positive integer followed by %).

136

CSS styles are encapsulated by the DTStyle.Style class, which allows fonts and font
sizes (and other attributes) to be specified for Components.

Note that the default fonts that browsers use for raw text, text fields, and text boxes differ
from one another. When font_name and font_size are specified, these three
text types will use the same font.

137

DTGridLayoutConstraints

The DTGridLayoutConstraints package defines the GridLayoutConstraints class.

Classes
GridLayoutConstraints

Defines the parameters used to construct a grid layout.

Constructor
GridLayoutConstraints()

Actions
None.

Methods
getAnchor()
getBreak()
getFill()
getSpanX()
getSpanY()
getWeightX()
getWeightY()
lineBreak()

setAnchor(a)
setBreak(b)
setDefaults()
setFill(fill)
setSpanX(s)
setSpanY(s)
setWeightX(w)
setWeightY(w)

getAnchor()
Returns the anchor which positions the component within its cell(s).

getBreak()
Returns the location for a break.

getFill()
Returns the fill style, which defines how the component should be resized by the layout
manager in order to fill the space that it is in.

getSpanX()
Returns the horizontal span (the number of columns that the component crosses along
the X axis).

getSpanY()
Returns the vertical span (the number of columns that the component crosses along the
Y axis).

138

getWeightX()
Returns the horizontal (along the X axis) weight of the cell.

getWeightY()
Returns the vertical (along the Y axis) weight of the cell.

lineBreak()
Inserts a line break.

setAnchor(a)
Sets the anchor to position the component within its cell(s). Valid input includes:
GridLayoutConstraints.NORTH, GridLayoutConstraints.NORTH_EAST,
GridLayoutConstraints.EAST, GridLayoutConstraints.SOUTH_EAST,
GridLayoutConstraints.SOUTH, GridLayoutConstraints.SOUTH_WEST,
GridLayoutConstraints.WEST, GridLayoutConstraints.NORTH_WEST, and
GridLayoutConstraints.CENTER (default).

setBreak(b)
Sets the location for a break.

setDefaults()
Resets all grid constraints to their default values.

setFill(fill)
Sets the fill style, which defines how the component should be resized by the layout
manager in order to fill the space that it is in. Valid input includes:
GridLayoutConstraints.FILL_HORIZONTAL, GridLayoutConstraints.FILL_VERTICAL,
GridLayoutConstraints.FILL_BOTH, and GridLayoutConstraints.FILL_NONE (default).

setSpanX(s)
Sets the horizontal span (the span along the X axis). Span defines the number of
columns that the components may cross, and must be a positive integer.

setSpanY(s)
Sets the vertical span (the span along the Y axis). Span defines the number of columns
that the components may cross, and must be a positive integer.

setWeightX(w)
Sets the horizontal weight (the weight along the X axis). Weight affects the size of the cell
in relation to the other cells in its row, and must be a number between 0 and 1.

setWeightY(w)
Sets the vertical weight (the weight along the Y axis). Weight affects the size of the cell in
relation to the other cells in its row, and must be a number between 0 and 1.

Functions
None.

139

DTGridLayoutManager

The DTGridLayoutManager package defines the GridLayoutManager class

Classes
GridLayoutManager

The layout manager for grid components.

Grids differ from tables in that grids are more rigid. All columns must be the same width, and all
rows the same height across the grid.

Inherits from DTLayoutManager.LayoutManager.

Constructor
GridLayoutManager()

Methods

addComponent(component, constraints)
Adds a component with the specified constraints.

layoutComponents()
Lays out the components for the grid.

Functions
None.

140

DTHelpWindow

The DTHelpWindow package defines a Web pane-based help window.

Classes
None.

Functions

HelpWindow(parentApp, title, helpURL)
Defines a new Help window as a child window of the parent application, using the parent
application, the title for the new window, and the URL for the (initial) help page. On
Internet Explorer, the Help window consists of a web pane inside an application window,
with supporting navigation buttons. On Netscape Navigator, the Help window opens as a
new browser window (outside of the Desktop.com environment).

141

DTHTMLBox

The DTHTMLBox package defines the HTMLBox class.

Classes
HTMLBox

Defines a pane with dynamic (pseudo) HTML content. Content is distinguished from pure HTML
in that links may be set which activate programmatic events within an application. The links are
specified as . When the link is clicked, the action listener is
called with the "action" as a parameter.

The links specified by name and action must be created and defined by the developer. The action
they specify is then passed to action listeners when the links are clicked.

Inherits from DTComponent.Component.

Constructor
HTMLBox(html)

html sets the HTML source file to be shown in the box

Actions
link: an action was generated after a link was clicked.
mouse: an action was generated due to a mouse event.
other: an action was generated for some other reason.

Methods
getActionType()
getHTML()

setHTML(html)

getActionType()
Returns the type of action over a link. Possible values includes link, mouse, and
other. This method should be called only after receiving an action from the HTMLBox.

getHTML()
Returns the HTML file for the frame.

setHTML(html)
Sets the HTML file for the frame.

Functions
None.

142

DTHTMLBrowser

The DTHTML package defines the HTMLBrowser class.

Classes
HTMLBrowser

Opens a new browser window within the Desktop.com environment, which allow users to surf
pages consisting of panes or components. Links within the pages require action listeners to
trigger browser updates.

Inherits from DTPane.Pane.

Constructor
HTMLBox(html)

Actions
None.

Methods
addPage(comp)
back()
forward()

home()
setSize(width, height)

addPage(comp)
Adds and displays a new page to the HTMLBrowser. The page may consist of panes or
components.

back()
Displays the previous page in the queue. If no such page exists, no action is taken.

forward()
Displays the next page in the queue. If no such page exists, no action is taken.

home()
Displays the home page, the first page the HTML browser receives using the
addPage() method, in the browser.

setSize(width, height)
Sets the width and height for the browser window in pixels.

Functions
None.

143

DTIconsView

The DTIconsView package defines the IconsView class.

Classes
IconsView

Defines a scroll pane in which icons composed of an image and associated text may be placed
and arranged by the user. The window in which these icons are placed has a scrollbar on both its
right and bottom sides. Users may drag and arrange icons anywhere within the scroll pane.

Inherits from DTScrollPane.ScrollPane.

Constructor
IconsView(lm)

lm is the layout manager to be associated with the component.

Actions
None.

Methods
addNode(node, width, height, align, tooltip)
enableDrag()
moveIcon(event)

removeNode()
setColor()
setSelectedNode(node)

addNode(node, width, height, align, tooltip)
Adds an icon to the pane, defined by its width; height; tooltip text; and text
alignment, which may be center, left, or right. The icon is defined using
node.icon; the text is node.data.text.

clear()
Removes all components from the pane except for the focus indicator.

enableDrag()
Enables dragging of icons within the pane: true if draggable; false if not.

moveIcon(event)
Sets an icon to move in response to the defined event.

removeNode()
Removes the specified node. Generates node_removed action for all action
listeners.

144

setColor()
Sets the color for the text displayed in the icon, defined as a 6-digit hex string which
begins with a "#" character, such as "#00CC99."

setSelectedNode(node)
Sets the node that should be selected. Generates a selected action for the action
listeners if the node is not null.

Functions
None.

145

DTImageArea

The DTImageArea package defines the ImageArea class.

Classes
ImageArea

Defines a component in which images may be placed. Three display modes are supported:
plain, which displays the image in its absolute size, with no margins; centered, which
displays the image in its absolute size, but allows the ImageArea component's size to be set,
leaving any difference as a margin; and stretch, which forces the image dimensions to the
specified size.

Inherits from DTComponent.Component.

Constructor
ImageArea(imagePath, toolTip, mode)

imagePath defines the path to the image to be displayed; toolTip sets the ALT
text to be displayed during mouse-over events; and mode sets the display mode:
PLAIN, CENTER, or STRETCH.

Actions
clicked: the icon has been clicked (including clicks in margins when in centered mode).

Methods
getBorder()
getImage()
getMode()
getToolTip()
setBorder(thickness)

setImage(imagePath)
setMode(newMode)
setSize(w, h)
setToolTip(toolTip)

getBorder()
Returns the border thickness in pixels.

getImage()
Returns the absolute path string for the image.

getMode()
Returns the display mode.

getToolTip()
Returns the text that appears when the mouse is over the image (the ALT text).

146

setBorder()
Sets the border thickness in pixels. Default is 0.

setImage(imagePath)
Sets the absolute path string for the image.

setMode(newMode)
Sets the display mode. Possible values include plain (default), centered, and
stretch.

setSize(w, h)
Sets the width and height for the image area. setSize() has no immediate effect in
plain mode, since plain mode images are naturally sized, but will be used for all
subsequent setMode() calls. If an image area is resized to a smaller size, be certain
to repaint any parent objects behind it in the window.

setToolTip(toolTip)
Sets the text string that appears when the mouse is over the image (the ALT text).

Functions
None.

147

DTImageButton

The DTImageButton package defines the DTImageButton class.

Classes
ImageButton

Defines a button Component, which may include up to three images: one each for inactive,
mouseover, and mouse clicked events.

Inherits from DTComponent.Component in Netscape Navigator; and DTImageArea.ImageArea on
Internet Explorer.

Constructor
ImageButton(images)

images is an array of images. The images array is indexed as [inactive,
mouseover, mousedown]. If the mouseover or mousedown elements are
undefined, the inactive image substitutes for them.

Actions
None.

Methods
handleMouseEvent(e)
setClicked(isClicked)

setImage(image)
setImages(images)

handleMouseEvent(e)
Called when a mouse event is received.

setClicked(isClicked)
If isClicked is true, sets the image button to its defined mousedown
appearance; if false, sets it to its inactive appearance.

setImage(image)
Sets the default image to be used for the button. image is an URL string, as for the
DTButton constructor.

setImages(images)
Sets the images to be used for the button. images is an array of URL strings, with the
URL format as for the DTButton constructor, indexed as [inactive,
mouseover, mousedown].

Functions
None.

148

DTImageResize

The DTImageResize package defines an interface to a server-side utility that creates thumbnails
of uploaded image files.

Classes
None.

Functions

resize$(source_path, dest_path, x_max, y_max)
Creates a thumbnail image. source_path and dest_path are path strings that
specify the locations of the source and destination files, respectively, in the current user's
filesystem. The source file must be an uploaded GIF or JPEG image file, and there must
not be a anything located at the destination path. x_max and y_max are positive
integers that specify the maximum dimensions for the thumbnail. The thumbnail will be of
the same file type as the source file.

Returns an object with named properties. If the property success is true, the
operation succeeded and the remaining properties are meaningful; if not, the operation
failed. The remaining properties x_source and y_source define the pixel size of
the source image, and x_dest and y_dest define the pixel size of the thumbnail.

149

DTIncrSlider

The DTIncrSlider package defines an incremental slider widget, as distinct from a continuous
slider, which DTSlider (the parent class) provides.

Classes
IncrSlider

Defines an incremental slider widget.

Incremental sliders take on discrete values of the form (min + n * incr), where n takes on positive
integer values and incr is an increment value specified by the widget's calling code.

Dragging and bumping behaviors are different for an incremental slider than for a continuous
slider. Dragging jumps among the allowable quantified values, rather than sliding smoothly; and
bumping jumps by increments, rather than by a fixed fraction of the slider's total travel.

Incremental sliders are displayed with tick marks to indicate the allowed slider-button center
positions. Labels may be provided either for the first and last ticks or for all ticks. Ticks and labels
appear on the bottom side of a horizontal slider, and on the right side of a vertical slider.

Either setNumIncrements() or setIncrementSize() must be called during
initialization of an incremental slider. If both are called, the second call is used and the first
ignored. There must be a positive integer number of increments, and increment size must exactly
divide the difference between min and max into equal segments.

Increment and tick-label setup is immutable.

When setSize() is called on a horizontal incremental slider with tick labels, the width
argument will be used to size and position all sub-components under the assumption that the tick
label text at the two endpoints does not extend beyond the boundary of the slider's background
pane.

Note that long text strings may cause the labels to be truncated. To prevent this, set the slider's
lengthPadding property to the number of extra pixels required to accommodate the labels.
lengthPadding specifies the total number of extra pixels, not the number of pixels per end
(half of the total). lengthPadding must be set to an even number or incorrect behavior will
result.

Inherits from DTSlider.Slider.

Constructor
IncrSlider()

Actions
None.

150

Methods
getIncrementSize()
getNumIncrements()
setIncrementSize(incrSize)

setNumIncrements(n)
setTickLabels(labels)
setValue(value)

getIncrementSize()
Returns the size of the increment in pixels.

getNumIncrements()
Returns the number of increments for the slider bar.

setIncrementSize(incrSize)
Sets the size of the increment in pixels.

setNumIncrements(n)
Sets the number of increments for the slider bar. Note that n specifies the number of
segments, not the number of possible values (ticks), which is one greater than the
number of segments.

setTickLabels(labels)
Sets the labels to be used for the tick marks. labels should be an array of strings. If
the length of this array is 2, the two strings will be used for the lowest- and highest-valued
ticks. If the length is equal to getNumIncrements() + 1, the strings will be used
successively for all ticks. An array of any other length will be ignored.

setValue(value)
The argument to setValue() will be silently rounded to the nearest allowable value.
Call getValue() to determine the effects of rounding.

Functions
None.

151

DTKeyEvent

The DTKeyEvent package defines the KeyEvent class.

Classes
KeyEvent

The DTKeyEvent class defines a list of constants which allow you to grab almost every available
keyboard input as an event.

Constructor
KeyEvent()

Constants

KeyEvent constants are defined using the syntax KeyEvent.kVK_key. Such as:

KeyEvent.kVK_2

KeyEvent.kVK_S

KeyEvent.kVK_PERIOD

For a complete list of defined constants, see Appendix II: KeyEvent Constants.

Functions
None.

152

DTLabelledTextBox

The DTLabelledTextBox package defines the LabelledTextBox class.

Classes
LabelledTextBox

Defines a window object which contains a label and a text input field. The developer-defined label
is placed to the left of the text input field, which may contain text when the box is first displayed.

Inherits from DTPane.Pane.

Constructor
LabelledTextBox(label, entry_size)

label defines the text to be used for the label; and entry_size defines the size of
the TextInputField in characters.

Actions
None.

Methods
getText()
getTextInputField()
getTextLabel()
makeBold()

setBackgroundColor(color)
setText(text)
setTextColor(color)

getText()
Returns the text from the user input field.

getTextInputField()
Returns the TextInputField object.

getTextLabel()
Returns the TextLabel object.

makeBold()
Makes the label text bold

setBackgroundColor(color)
Sets the background color for the box. color is defined as a 6-digit hex string which
begins with a "#" character, such as "#00CC99."

setText(text)
Sets the text for the user input field.

153

setTextColor(color)
Sets the text color for the box. color is defined as a 6-digit hex string which begins
with a "#" character, such as "#00CC99."

Functions
None.

154

DTLayoutManager

The DTLayoutManager package defines the abstract base class for Desktop.com layout
managers. All layout managers are a subclass of the LayoutManager class.

Classes
LayoutManager

Defines a layout manager: an object associated with a Container (see DTContainer.Container),
which controls the size and/or position of the Container and/or its children.

To use a layout manager, instantiate the appropriate LayoutManager subclass and pass the
resulting object to either the constructor or the setLayoutManager() method of the
relevant Container. Be certain to instantiate a separate layout manager object for each container,
and do not share layout managers between containers.

Some layout managers function automatically, while others require configuration, either before or
during the process of adding Components to the associated Container. LayoutManager subclass
methods enable layout manager configuration.

Most layout managers' behavior is affected by the order in which Components are added to the
associated Container. Once components have been added to a container, there is no way to
change their order other than to remove and then replace all Components in the desired order.
After all Components have been added to the layout manager’s associated Container, layout will
be performed each time the Container is resized. Layouts may also be forced by calling
Container.doLayout().

If you are using a layout manager and seeing strange results, try calling the setCautious()
method of LayoutManager. By default, layout managers operate in non-cautious mode;
setCautious(true) will force them into cautious mode, which is more conservative but
slightly less efficient.

To implement a new kind of layout manager, either generic or single-purpose, create a subclass
of LayoutManager and implement a single method in that class called
layoutComponents(). This method will be called each time layout is to be performed,
such as when the layout manager’s associated Container is resized, or an explicit call is made to
Container.doLayout(). A layout manager must contain the two class-default properties
NEED_CONTAINER_SIZE and NEED_COMPONENT_SIZE. (To set a class-default property,
use DTObjectFramework.SetDefault().) If the layout manager requires a defined size for the
associated Container before layoutComponents() will work correctly (i.e., if
layoutComponents() calls this.container.getSize()), set
NEED_CONTAINER_SIZE to true; otherwise set it to false. If layoutComponents()
needs a defined size for any child Components, set NEED_COMPONENT_SIZE to true;
otherwise set it to false.

155

Within layoutComponents(), you may query and operate upon the container and items
properties of the this object. container is a reference to the associated Container object, and
items is an array containing a reference to each Component in the associated Container.

If a layout manager subclass seems always to need a call to setCautious(true) to make
it work correctly, set the class-default property cautious to true.

Inherits from DTObjectFramework.DTObject.

Constructor
LayoutManager()

Methods

setCautious(cautious)
Sets the layout mode to cautious. If true, forces the layout manager into cautious
mode; if false, into non-cautious mode. Cautious mode draws the components before
arranging them; non-cautious arranges, then draws the components, which is faster, but
may engender visual mistakes.

Functions
None.

156

DTLinkArea

The DTLinkArea package defines the LinkArea class.

Classes
LinkArea

Defines a component to contain the hypertext link.

Inherits from DTTextBox.TextBox.

Constructor
LinkArea(text, alignment)

Sets the text to be linked, and its alignment within the component.

Actions
None.

Methods

setCb(cb)
Sets the callback, which is called when the link is clicked.

Functions
None.

157

DTListBox

The DTListBox package defines the ListBox class.

Classes
ListBox

A scrolling list of text items.

Inherits from DTScrollPane.ScrollPane.

Constructor
ListBox()

Actions
None.

Methods
appendListItem(text, data)
clearListItems()
getItemData(index)
getItemText(index)
getSelectedData()
getSelectedItem()
getSelectedText()

removeListItem(index)
setItemData(index, data)
setItemText(index, text)
setSelectedData(data)
setSelectedItem(index)
setSelectedText(text)

appendListItem(text, data)
Adds a text item to the end of the list. data is an optional data element that may be
stored with the list item. Data will be returned to be used when events are fired.

clearListItems()
Removes all the items from the list.

getItemData(index)
Returns the data associated with the item defined by index, or null if that index item
does not exist.

getItemText(index)
Returns the text associated with the item defined by index, or null if that index item
does not exist.

getSelectedData()
Returns the data associated with the item that is currently selected, or null if nothing is
selected.

158

getSelectedItem()
Returns the index number of the item that is currently selected, or null if nothing is
selected.

setSelectedText(text)
Returns the text of the item that is currently selected, or null if nothing is selected.

removeListItem(index)
Removes the item specified by index from the list.

setItemData(index, data)
Sets the data to be associated with the item defined by index, or null if that index
item does not exist.

setItemText(index, text)
Sets the text to be associated with the item defined by index, or null if that index
item does not exist.

setSelectedData(data)
Sets the data to be associated with the item that is currently selected, or null if nothing
is selected.

setSelectedItem(index)
Sets the index number of the item that is currently selected, or null if nothing is
selected.

setSelectedText(text)
Sets the text of the item that is currently selected, or null if nothing is selected.

Functions
None.

159

DTMenu

The DTMenu package defines the Menu class.

Classes
Menu

Defines a pop-up or pull-down menu widget.

Menus are made up of three types of entries: items, selectable text entries; submenus, text
entries that cause additional menus to cascade; and separators, horizontal markers that separate
categories of entries. Items and sub-menus always display text, and may include an icon to the
left of the text.

Menus may be created in two ways: by entry list and incrementally. To use an entry list, pass an
array of entry definitions to the Menu constructor to define any number of items, separators, and
sub-menus with a single call. To set up a menu incrementally, make one call to addItem(),
addSeparator(), or addSubmenu() for each entry to be added. After menu
construction, entries may be added or removed incrementally at any time. It is also possible to
enable and disable individual entries at any time, and change the text or icon of any entry.

All entry manipulation is keyed by entry IDs, which must be supplied by callers when adding
entries. IDs may be any string or number. They must never be null, as null is used to
indicate that no item is selected. IDs must always be unique within a Menu and all its submenus,
or incorrect behavior will result. The uniqueness of newly supplied IDs is checked in some
circumstances, but not all.

When an item is selected in a menu or any of its submenus, the menu disappears and a
selected action is emitted. There are two ways to listen for this action: with an action listener
applied to the Menu as a whole, which calls getSelectedItemId() to determine what
was selected; or by applying action listeners to individual items using
setItemListener().

Do not insert a Menu into a Container as a child component: Menus are automatically parented
by the screen.

Inherits from DTContainer.Container.

Constructor
Menu(app, entryList)

app (optional) specifies the application to be associated with the menu.
entryList is also optional; if omitted, an empty menu is created. If given, it contains
an ordered array of objects; each of which specifies an entry using the following named
properties:

id: specifies the ID of the entry. Required.

160

separator: if present and true, the entry represents a separator, and all
properties except id are ignored.
menu: if this property is present, the entry is a submenu, and this property
provides a reference to the submenu definition, which follows the same format as
entryList itself. If not present, the entry is an item.
text: specifies the text to be displayed for the item. Required for an item or
submenu.
icon: if present, specifies the path of the icon to display to the left of the entry.
enabled: if present, specifies whether the entry is initially enabled or not:
true if enabled; false if not. If absent, the entry will be enabled.
listener: if the entry is an item and this property is present, it provides the
name of a listener function to be called when the item is selected. The application
object established with the app argument, or with setApp(), will be assumed
to contain a listener method by this name.

Actions
selected: an item has been selected by the user.

Methods
addItem(id, text, iconPath, listener, enabled, beforeId)
addSeparator(id, beforeId)
addSubMenu(id, text, menu, iconPath, enabled, beforeId)
advanceSelection(direction)
cascade(direction)
clearBottomAnchor()
getEntries()
getEntryText(id)
getMenu(id)
getParentage()
getSelectedItemId()
handleSelection()
isEntryEnabled(id)

reinit(entryList)
removeEntry(id)
setApp(app)
setBottomAnchor(left, bottom)
setEntryEnabled(id, enabled)
setEntryIcon(id, iconPath)
setEntryText(id, text)
setItemListener(id, listener)
setLazyEvaluator(func, alwaysCall)
setLocation()
setSelectionToEnd(whichEnd)
setVisible(visible)
undisplay()

Note that all methods that take an id parameter are recursive: they will find a specified ID
anywhere in the top-level menu or in any submenus.

Note also that any method which changes the appearance of a menu, such as setText() or
addSeparator(), will not take effect until the menu is hidden and redrawn.

addItem(id, text, iconPath, listener, enabled, beforeId)
Adds an item to the menu, with the given id and text. iconPath (optional) defines
an icon to be placed to the left of the text entry. listener (optional) provides the
name of an action listener to be associated with the menu item. enabled (optional)
defines whether the submenu is enabled (default is true). beforeId (optional)
specifies the ID of an existing entry before which the given entry is to be inserted. If
beforeId is omitted, the entry is inserted at the end of the top level menu.

161

addSeparator(id, beforeId)
Adds a separator to the menu with the specified id. beforeId (optional) specifies the
ID of an existing entry before which the given entry is to be inserted. If beforeId is
omitted, the entry is inserted at the end of the top level menu.

addSubMenu(id, text, menu, iconPath, enabled, beforeId)
Adds a submenu entry with the given text and id. menu is a reference to the
submenu to be associated with the entry. iconPath (optional) defines an icon to be
placed to the left of the text entry. enabled (optional) defines whether the submenu is
enabled. beforeId (optional) specifies the ID of an existing entry before which the
given entry is to be inserted. If beforeId is omitted, the entry is inserted at the end of
the top level menu.

advanceSelection(direction)
Advances the selection through the menu entries in the specified direction (-1 for
backwards; 1 for forwards). This method is circular, skips selectors, and does not skip
disabled entries.

cascade(direction)
Opens or closes submenus as appropriate. cascade(1) opens a submenu if the
selection is on a submenu entry and no submenu is visible yet. cascade(-1) closes
the submenu if the selection is on a submenu entry and the submenu from that entry is
visible. Calls to cascade() are recursive; cascade() will perform multiple levels of
cascade display and undisplay.

Returns true if it did anything; false if no action was taken.

clearBottomAnchor()
Clears the bottom anchor designation of a menu. To change a Menu's anchoring from
bottom to top, call this method, then call setLocation().

getEntries()
Returns an array representing all the entries in the menu. Each element in the array is an
object with the following properties:
id: the ID of the entry. Always present.
type: the type of entry. Valid values are Menu.ENTRY_ITEM, Menu.ENTRY_SEP, and
Menu.ENTRY_SUB. Always present.
text: the display text for the entry. Present for items and submenus.
icon: the icon path for the entry. May be null. Present for items and submenus.
enabled: defines whether the entry is enabled. Present for items and submenus.
menu: a reference to the entry's submenu object. Present for submenus.

getEntryText(id)
Returns the text of the entry with the specified id.

162

getMenu(id)
Returns a reference to the menu associated with the entry that has the specified id.

getParentage()
Returns the position of a submenu within its parent menu, if one exists. Returns null if
the menu is not a submenu. If it is a submenu, returns an object with the properties
menu, a reference to the parent menu, and id, the ID of the parent Menu entry from
which the Menu cascades.

getSelectedItemId()
Returns the selected item's ID. Call this method in response to the selected action.

handleSelection()
Causes the menu to behave as though it had received a mouse-up event. If an item is
selected and enabled, the menu will disappear and emit the selected action.

isEntryEnabled(id)
Returns a Boolean indicating whether the entry with the specified id is enabled.

reinit(entryList)
Clears all entries from the Menu, and repopulates the Menu with the entries defined in
entryList (which follows the same format as the entryList parameter to the
Menu constructor).

removeEntry(id)
Removes the entry with the specified id from the menu.

setApp(app)
Sets the application to be associated with the menu. This is the application object that will
be assumed to contain methods with the names specified in setItemListener(),
and the listener properties in entry lists passed to the constructor and reinit().

setBottomAnchor(left, bottom)
Sets bottom-left screen-relative pixel coordinates for a Menu.

setEntryEnabled(id, enabled)
Enables the entry with the specified id if enabled is true; disables the entry if
false.

setEntryIcon(id, iconPath)
Sets an icon to be displayed to the left of the entry with the specified id. Icons should be
exactly Menu.ICON_WIDTH by Menu.ICON_HEIGHT pixels.

setEntryText(id, text)
Sets the text of the entry with the specified id.

163

setItemListener(id, listener)
Associates the specified listener (the name of a method in the application specified
by the app parameter to the constructor, or with setApp()) with the menu item that
has the specified id.

setLazyEvaluator(func, alwaysCall)
Allows the Menu's entries to be determined dynamically by an evaluation function when
the menu is about to be displayed. The evaluation function may be specified with a direct
function reference; with two arguments, the first an object and the second a method
name; or with a method-name string, in which case the method will be assumed to exist
within the application object specified in the constructor or with setApp(). The
evaluation function must provide two parameters: the first receives a reference to the
menu object that the evaluation function should populate; the second receives a callback
that must be called when the menu is complete. (Declare the evaluation function as a
blocking "$" function.) When the evaluation function is called, the menu will be empty.

If alwaysCall is true, the evaluation function will be called each time the menu is
about to be redisplayed (that is, made visible after a call to undisplay()). If
alwaysCall is false or null, the content of the menu will be cached and reused
without update at redisplay.

setLocation()
Sets the top-left screen-relative pixel coordinates for a Menu.

setSelectionToEnd(whichEnd)
Moves the selection to the end of the Menu. whichEnd is -1 for the first entry, or 1 for
the last. Note that entries begin at the top and proceed to the bottom, regardless of
whether the anchoring component or point is at the top or the bottom of the menu.

setVisible(visible)
Called to show a Menu initially, or to toggle visibility. In most cases, undisplay()
will provide better performance than setVisible(false). However, if multiple
menus descend from a single anchor component, such as a menu bar, call
setVisible(false) to allow the user to move rapidly between menus.

undisplay()
Removes a menu's screen components. Called automatically when a selection occurs.

Functions
None.

164

DTMenuBar

The MenuBar class defines a menu bar object, which is a horizontal array of buttons, each of
which serves to anchor a menu. (Menu bars are normally created as part of AppWindows using
the setMenuBar() method.)

Classes
MenuBar

Encapsulates a menu bar component: a horizontal array of menu anchors, with an associated
Menu component for each.

In a menu bar, both the menus and their entries are keyed by ID. It is important to ensure that all
items in an menu bar have a unique ID. This uniqueness is not checked, and it is the caller's
responsibility to ensure it. As with menus, IDs may take any string or numeric value. null is
never a valid ID.

There are two ways to interact with a menu bar: Use getMenu() to retrieve a reference to a
particular menu, then manipulate that menu as a whole; or use the passthrough mutators and
accessors to manipulate menu entries based solely on IDs.

Menu bars automatically determine their own height and width. Calling setSize() has no
effect on a MenuBar.

Many of the methods of MenuBar are passthrough methods, which call their equivalents in the
Menu class. All passthrough methods are keyed by entry ID. The MenuBar searches all of its
Menus for the specified ID, then calls the equivalent method on the Menu that contains the
specified ID. (This is one reason why it is important to ensure that entry IDs in Menus are unique
across all Menus in a MenuBar.) The passthrough methods are not documented in detail here:
see the equivalent methods of DTMenu for details.

See DTMenu for more information.

Inherits from DTContainer.Container.

Constructor
MenuBar(app, entryList)

app is an optional argument that specifies the Application object with which the
MenuBar is to be associated. The use of this parameter is equivalent to calling
setApp(app). This is only relevant when using "listener" attributes for menu items.
entryList is also optional; if absent or null, an empty menu bar is created. If
present, entryList is an array of objects, in which each object specifies a menu, and
the order of objects specifies the order of menus. Each object specifies its entry using the
following named properties:

id: specifies the ID of the menu. Required.
text: specifies the text to be displayed with the menu anchor. Required.

165

menu: defines a menu. Follows the format of the entryList argument to the
Menu() constructor. Required.
enabled: if present, specifies whether the menu is initially enabled or not:
true if enabled; false if not. If absent, the menu will be enabled.

Actions
selected: a menu item has been clicked.

Note that there are three ways to listen for selected actions: by adding an action listener
to a MenuBar; by adding an action listener to an individual menu; or by calling
setItemListener(). When using more than one of these, be certain not to
respond to the same action twice.

Methods
addMenu(id, text, menu, enabled, beforeId)
getMenu(id)
getSelectedItemId()
isEntryEnabled(id)
isMenuEnabled(id)
peekSize()

reinit(entryList)
removeMenu(id)
setApp(app)
setMenuEnabled(id, enabled)
setMenuText(id, text)

Passthrough Methods (see Menu for more complete information)
addItem(id, text, iconPath, enabled, beforeId)
addSeparator(id, beforeId)
addSubMenu(id, text, menu, iconPath, enabled, beforeId)
getEntryText(id)
isEntryEnabled(id)

removeEntry(id)
setEntryEnabled(id, enabled)
setEntryIcon(id, iconPath)
setEntryText(id, text)
setItemListener(id, listener)

addMenu(id, text, menu, enabled, beforeId)
Adds an anchor and associated menu to a MenuBar, with the specified id and text.
(id must be unique across all menus and menu entries in the MenuBar.) enabled
(optional) specifies whether the new anchor is to be enabled: true if enabled; false
if not. If absent, the anchor will be enabled. beforeId (optional) specifies the ID of an
anchor before which the new anchor is to be inserted. If absent, the new anchor will be
placed at the end of the MenuBar.

getMenu(id)
Returns a reference to the Menu specified by id, or null if there is no such Menu.

getSelectedItemId()
Returns the ID of the selected item. Similar to Menu.getSelectedItemId().
Call this method in response to a selected event emitted from the MenuBar.

peekSize()
Returns an object {w, h} in which w and h indicate what the width and height of the
MenuBar are or will be, in pixels, even if the MenuBar has yet to be painted. Be certain to
add all Menus to a MenuBar before relying on the width reported by peekSize().

166

reinit(entryList)
Resets and reinitializes a MenuBar's content with entryList: a menu bar definition
that follows the same structure as the entryList parameter to the MenuBar
constructor. (Similar to Menu.reinit().)

removeMenu(id)
Removes the anchor specified by id, and its associated menu.

setApp(app)
Sets the Application object to be associated with a MenuBar. This method is relevant only
when using "listener" attributes for menu items. (Similar to Menu.setApp().)

setMenuEnabled(id, enabled)
Changes whether the anchor specified by id is enabled to respond to the mouse:
enabled is true if enabled; false if not.

setMenuText(id, text)
Changes the text displayed anchor specified by id.

Functions

isMenuEnabled(id)
Returns whether the Menu specified by id is enabled: true if enabled; false if not
enabled, or if no Menu with the specified id was found.

167

DTNamedCallback

The DTNamedCallback package defines a Callback with a unique name, by which it may be
referenced. This package is useful if you cannot pass the callback object by reference, but you
can pass a string. This package is seldom needed.

Classes
NamedCallback

Defines a callback.

Inherits from DTCallback.Callback.

Constructor
NamedCallback(arg1, arg2, arg3)

May be called in four different ways:
cb = new NamedCallback(func);
cb = new NamedCallback(func, data);
cb = new NamedCallback(obj, method_name);
cb = new NamedCallback(obj, method_name, data);

Methods

getName()
Returns the callback's name.

Functions

Call(name, arg)
Invokes a NamedCallback by name.

Forget(cb)
Unregisters the callback's name from the global NamedCallback namespace when it is
no longer needed.

168

DTNativeComponent

The DTNativeComponent package defines the NativeComponent class.

Classes
NativeComponent

An abstract base class for DTAPI Components that are implemented using HTML form elements.

Constructor
None. Do not instantiate this class directly.

Actions
None.

Functions
None.

169

DTNativeTextInputBox

The DTNativeTextInputBox package defines the NativeTextInputBox class.

Classes
NativeTextInputBox

Defines a text input box, with a specified number of rows and columns into which users may type
text entries, implemented using the browser's native HTML text area component.

Inherits from DTNativeComponent.NativeComponent.

Constructor
NativeTextInputBox(text, cols, rows)

text sets the text to appear in the box, beneath the specified number of column and
row input fields.

Actions
None.

Methods
getText()
setCols(cols)
setRows(rows)

setSize(w, h)
setText(text)
setWrap(wrap)

getText()
Returns the text from the input box.

setCols(cols)
Sets the number of columns for the box.

setRows(rows)
Sets the number of rows for the box.

setSize(w, h)
Sets the width and height of the box in pixels.

setText(text)
Sets the text for the input box.

setWrap(wrap)
Sets whether the text should automatically wrap.

Functions
None.

170

DTObjectStore

The DTObjectStore package defines the Persistent and Root Persistent Object classes

For more information, see Persistence.

Classes
PersistentObject

Defines an object with properties that may be stored on the Desktop.com server. These
properties may be numbers, strings, Booleans, or references to other POs.

All Persistent Objects are identified by a three-number tuple. The first number is the user ID, the
second is the RPO ID, and the third is the child ID. Each user has their own user ID, and all of
that person's POs start with their user ID as the first number in the tuple. The second number
identifies an Object Group. Every PO within that group has the same first and second number in
the tuple. The third number identifies the particular PO within the group, with the RPO always
having a child ID of 0.

Inherits from DTObjectFramework.DTObject.

Constructor
Constructor: PersistentObject(arg1, arg2)

arg1 defines the user ID, and arg2 the Root Persistent Object with which this PO will
be associated.
This constructor may be called in three different ways:
new PersistentObject(PORef, obj) creates a PO using PORef and obj,
which recreates the PO on the client side.
new PersistentObject(PO) creates a NEW PO in the same RPO as PO.
new PersistentObject(PORef) creates NEW PO using PORef.

It is important to note that this constructor should pass its two arguments to the PersistentObject
constructor, which will in turn call construct() or restore$(), as appropriate.

Methods
childArray()
children()
deleteKey(k)
deleteSelf()
fetchChild$(key)
fetchChildren$()
fetchChildrenRecursive$()

isDeleted()
keyArray()
keyExists(k)
keys()
nonChildKeyArray()
nonChildKeys()
set(key, value)

171

childArray()
Returns an array with the names of all properties that refer to other
PersistentObjects.

children()
Returns a hash with the names of all properties that refer to other
PersistentObjects.

deleteKey(k)
Deletes the property with key k.

deleteSelf()
Deletes the persistent object itself.

fetchChild$(key)
Asynchronously fetches the object for field name key and then calls the callback.

Returns {name, success, error}.

fetchChildren$()
Asynchronously fetches all child objects of this Persistent Object from the server, then
calls the callback (callback argument is {success, error, errors}).
Because only some child objects may fail, the errors property of the callback's
argument object is a hash with the child name as the key and the error as the value.

fetchChildrenRecursive$()
Asynchronously fetches all child objects, and their children recursively, then calls the
callback. Because only some child objects may fail, the errors property of the callback's
arg object is a hash with the child name as the key and the error as the value. Because
fetching is recursive, error values in the errors hash may themselves be error objects of
children. This indicates that the child itself came down fine, but one or more of its
descendants did not.

Returns {success, error, errors}. If success is false, the error
property is a number, and the errors property is an object.

isDeleted()
Returns true if the object is deleted; false if not.

keyArray()
Returns an array with all of the persistent property names.

keyExists(k)
Returns true if the property specified by its key (k) has been set; false if not.

172

keys()
Returns a hash with all of the persistent property names. This is meant to be used as:
for(var k in po.keys()) { ... }

nonChildKeyArray()
Return an array with the names of all properties that do not refer to
PersistentObjects.

nonChildKeys()
Return a hash with the names of all properties that do not refer to
PersistentObjects.

set(key, value)
Sets the property persistently.

RootPersistentObject

A RootPersistentObject (RPO) differs from a PersistentObject (PO) in that it acts as a container
for other PersistentObjects, and may be placed in the filesystem.

All PersistentObjects except RPOs must be associated with a RootPersistentObject.

Inherits from DTObjectStore.PersistentObject.

Constructor
RootPersistentObject(arg1,arg2)

arg1 defines the user ID, and arg2 the ID for this RPO.

RootPersistentObjects may be created in the following ways:
rpo = new RootPersistentObject(); creates a new RootPersistentObject
that does not live in the filesystem but can be placed there with
FileSystem.put().
rpo = new RootPersistentObject(PORef); creates a new
RootPersistentObject with a given ID.

Methods
childArray()
children()
construct()

keyArray()
keys()

childArray()
Returns an array of all public keys that are child objects.

children()
Returns a hash of all public keys that are child objects.

173

construct()
Constructs an RPO.

keyArray()
Returns an array of all public keys.

keys()
Returns a hash of all public keys.

Functions

getErrorString(err)
Returns the specified error as an English text string.

makeSafe(s)
Returns a new string, which is a "safe" encoding of the string specified. "safe" means that
it is a valid JavaScript identifier.

set(obj, prop, value)
Sets a property/value pair for a persistent object. obj may be a reference to the
PersistentObject, or a string representing the owner/id pair. prop is the property of the
variable to set. value is a number, string, or PersistentObject that represents the value
being set.

unMakeSafe(s)
Returns the original string, which may be an invalid JavaScript identifier.

update$(objs)
Updates the local copy of the object to the state of the server copy.

174

DTPane

The DTPane package defines the Pane class.

Classes
Pane

The Pane class is a subclass of Container that has the ability to manage its children (all
Components) with a concept of focus. At any one time, zero or one of a Pane’s focusable
children may have the Pane’s focus. If there is a child in focus, it is only active if the Pane itself
has focus within its parent Pane, and so on up to the Screen, which is the top-level Pane.

In tracing down the Pane/Component containment tree from its root at the Screen, the path along
which Components are active is called the active path. The deepest Component in the active
path, the active component, is called the primary Component.

A Pane may have one of its child Components designated as its default focus. A strong default
focus (which may be null) attempts to take focus when a Pane becomes active. A weak default
focus takes focus when a Pane becomes active and has no previously focused Component.

A focus ring is a stable ordering of focusable children in a Pane, used to define a serial path of
user movement among Components.

For more information, see Focus.

Inherits from DTContainer.Container.

Constructor
Pane(layout_manager)

layout_manager (optional) specifies the layout manager to attach to the pane.

Actions
None.

Methods
addComponent(component,
constraints, beforeComponent)
advanceFocus(direction)
handleKeyboardEvent(event)
removeComponent(component)
reorderComponent(component,
beforeComponent)

setAllowBackgroundSteals(allow)
setDefaultFocus(component, strong)
setEnabled(enabled)
setFocus(component)
setFocusToEnd(whichEnd)

175

addComponent(component, constraints, beforeComponent)
Adds a component to the pane, placed before beforeComponent in the focus
ring. constraints defines a constraints object to be passed to the layout manager's
addComponent method. Note that not all layout managers require a constraints
object.

advanceFocus(direction)
Advances focus through the focus ring in the direction specified: 1 for forward; -1 for
reverse.

handleKeyboardEvent(event)
Event handler for keyboard events. Pressing the tab key moves focus forward through
the focus ring. Pressing shift-tab moves focus backward through the focus ring. All other
keyboard events are ignored. This method is typically overridden to take application-
specific action based on the defined keyboard events.

removeComponent(component)
Removes the specified component from the pane. Changes focus and removes the
component from the focus ring, if necessary.

reorderComponent(component, beforeComponent)
Moves the specified component to the position before the beforeComponent.

routeRefocusEvent(component, reason, event)
Called by a child component when it has received a refocus event.

setAllowBackgroundSteals(allow)
Sets whether clicking on the Pane's background sets the focus to null. Default is
true.

setDefaultFocus(component, strong)
Specifies the component to which focus will be set by default. strong specifies
whether or not the default focus is strong. If true, an implicit refocus will change focus
to the default; if false, it will change to the last focused component.

setEnabled(enabled)
Sets the enabled state of the component: true if enabled; false if not.

setFocus(component)
Changes focus to the specified component. Returns true if focus was changed
successfully, false if not.

setFocusToEnd(whichEnd)
Sets focus to the end of the focus ring: -1 if the beginning; 1 if the end of the ring.

Functions
None.

176

DTPersistentArray

The DTPersistentArray package defines the PersistentArray class.

Classes
PersistentArray

A PersistentArray object stores an array of information that is maintained on the server, and
therefore persists from user session to user session. This may include information such as the
user ID, and whether the application was launched and its window location the last time the
Desktop.com session was ended.

For more information, see Persistence.

Inherits from DTObjectStore.PersistentObject.

Constructor
PersistentArray(arg1,arg2)

arg1 defines the user ID, and arg2 the RootPersistentObject with which this array is
associated.

Methods
getLength()
keyArray()
keys()
pop()
push(value)

set(index, value)
setLength(len)
sort(compare)
splice(array, start, delete_count, values)
top()

getLength()
Returns the length of the array.

keyArray()
Returns an array of all public keys.

keys()
Returns a hash of all public keys.

pop(a)
Removes and returns the last element of the array.

push(value)
Pushes the value on the end of the array.

177

set(index, value)
Sets the element at location index to the specified value.

setLength(len)
Sets the length of the array.

sort(compare)
Sorts the array based on compare, which is an optional function. Numeric or
alphabetic input is the default.

splice(array, start, delete_count, values)
Inserts and/or deletes elements in an array. A single call to splice() may insert
items, delete items, or do both simultaneously.

array is a reference to the array to work with. start is an integer that specifies a
zero-based index within array at which splice() will begin. delete_count is
an integer that specifies how many elements of array to remove. If delete_count
is zero, no deletion is performed. values (optional) is an array of elements to insert
into array. If values is omitted or an empty array, no insertion is performed.
Elements following the location of insertion or deletion are shifted so that no gaps appear
in array, and the length property of array is updated to reflect its new size.

Returns a reference to array.

For an example, see DTArray.

top()
Returns the last element of the array.

Functions
None.

178

DTProgressBar

The DTProgressBar package defines the ProgressBar class.

Classes
ProgressBar

Defines a standard, graphic progress bar.

Inherits from DTContainer.Container.

Constructor
ProgressBar()

Actions
None.

Methods
getProgress()
setProgress(p)

setSize(w, h)
setWidth(w)

getProgress()
Returns the progress amount as a number between -1 and 1. If -1, the progress bar is
inactive, and displays an animated picture that looks like a scrolling bar.

setProgress(p)
Sets the progress amount where p is a number between -1 and 1. If -1, the progress bar
is inactive, and displays an animated picture that looks like a scrolling bar.

setSize(w, h)
Sets the width of the bar. The height is always DTProgressBar.ProgressBar.HEIGHT, no
matter what h is passed in.

setWidth(w)
Sets the width of the bar in pixels.

Functions
None.

179

DTPrompt

The DTPrompt package defines the DoPrompt$() function.

Classes
None.

Functions

DoPrompt$(text, input, where)
Displays a dialog prompt window, which displays the given text, and the default value
input (optional) in a user-input field. where (optional) specifies a reference to an
object (either an Application or a Window) relative to which the dialog is to be centered
and made modal. If where is omitted, the dialog will be centered on the screen and
made system-modal. As window centering and modality is the most common, pass a
Window reference for where unless there is some reason not to.

Returns the user's input value, or null if cancelled.

180

DTQuestion

The DTQuestion package defines the AskQuestion$() function.

Classes
None.

Functions

AskQuestion$(text, where)
Displays a dialog window with the specified text, and Yes, No, and Cancel buttons.
Dialog windows are resized to fit the text. Text is wrapped where appropriate, and "\n"
inserted in a line of text will define a line break. where (optional) specifies a reference
to an object (either an Application or a Window) relative to which the dialog is to be
centered and made modal. If where is omitted, the dialog will be centered on the
screen and made system-modal. As window centering and modality is the most common,
pass a Window reference for where unless there is some reason not to.

Returns yes, no, or cancel.

181

DTQueue

The DTQueue package defines the Queue class.

Classes
Queue

The Queue class defines an ordered array of objects.

Inherits from DTObjectFramework.DTObject.

Constructor
Queue(max_size)

max_size sets the maximum length of the queue.

Methods
deQ()
enQ(data)
getSize()

peek(n)
remove(n)

deQ()
Removes and returns the object from the end of the queue.

enQ(data)
Adds the given data to the queue.

getSize()
Returns the number of elements in the queue.

peek(n)
Returns the object in the queue at position number n, with the first position zero. By
default, c=0.

remove(n)
Removes the object in the queue at position n.

Functions
None.

182

DTRadioButtonGroup

The DTRadioButtonGroup Package defines the RadioButtonGroup class.

Classes
RadioButtonGroup

Encapsulates a group of radio-button controls, which function like check boxes, except that only
one item in the group may be selected at a time. It is also possible to have none of the items in
the group selected.

A ColumnLayoutManager is automatically attached to the group. To configure a
RadioButtonGroup’s layout, call its getLayoutManager() method to retrieve a reference
to the ColumnLayoutManager, then call methods of the layout manager. Radio button groups
should not be sized with setSize().

Radio button groups are non-circular Panes, meaning that keyboard-based focus advances will
travel through the group and out the other side rather than wrapping around. (See Focus in the
GUI Structure chapter for details.) Radio button groups interpret the up- and down-arrow keys,
and the tab and shift-tab keys, as focus-advance keystrokes. Pressing the spacebar will select
the item in the group that is in focus.

Inherits from DTPane.Pane.

See also DTBorderedRadioButtonGroup.BorderedRadioButtonGroup, and
DTColumnLayoutManager.ColumnLayoutManager.

Constructor
RadioButtonGroup()

Actions
changed: selection has changed to a different item in the group.

Methods
addItem(text, data)
getCheckedItem()
getCheckedItemData()
setAllowUserUncheck(allow)

setCheckedItem(index)
setCheckedItemByData(data)
uncheckAllItems()

addItem(text, data)
Adds an item with the specified text to the group. Items appear listed in the order in
which they are added. The data argument is a string or number that serves to identify
the item being added. This value may be retrieved using getCheckedItemData()
when the item is selected. If data is omitted, the text argument will be used for the
item's data.

183

getCheckedItem()
Returns the (zero-based) index of the currently selected item, or null if no item is
selected.

getCheckedItemData()
Returns the data associated with the currently selected item, or null if no item is
selected.

setAllowUserUncheck(allow)
Sets whether users are able to deselect all items in the group. When allow is true,
users may deselect by clicking the selected item. Default is false.

setCheckedItem(index)
Selects the item with the specified (zero-based) index.

setCheckedItemByData(data)
Selects the item with the specified data.

uncheckAllItems()
Resets the group to the state in which no item is selected.

Functions
None.

184

DTRectangle

The DTRectangle package defines the Rectangle class.

Classes
Rectangle

Defines a rectangular border object used to outline groups of related components.

Note that a rectangle used to enclose other components must be placed BEHIND them. If it is
not, the components will be visible, but they will not respond to mouse events.

Inherits from DTContainer.Container.

Constructor
Rectangle(Color)

If color is set to white, the border of the rectangle is set to white; if not, it is black.

Actions
None.

Methods

setSize(w, h)
Sets the outer size of the rectangle, including its border, in pixels.

setThickness(thickness)
Sets the thickness of the rectangle border in pixels.

Functions
None.

185

DTRendezvous

The DTRendezvous package defines the Rendezvous class.

Classes
Rendezvous

Defines a meta-callback object that waits for a number of blocking function calls in parallel, then
returns the results in an array.

The following example will wait until 5 seconds elapse, or both asynchronous get calls succeed.

var rv = new DTRendezvous.Rendezvous();
foo.get("left", rv.register(0));
foo.get("right", rv.register(1));
var results = rv.timedWait$(5000)

The results array returned via the wait() or timedWait$() method contains all results
reported by that time.

You may also supply a notifier callback to the constructor. This notifier is called when the
Rendezvous gets a result with the result (see below). If the notifier wishes, it may call
rv.abort() with a reason and key to abort the wait immediately.

It is possible to register a number of calls with a Rendezvous, wait$(), register more, then
wait$()again.

The result returned from wait$() and timedWait$() is an object with the following
properties:

success: whether all calls succeeded
error: if success is false, returns DTRendezvous.ERRNO.ERR_TIMEOUT,
DTRendezvous.ERRNO.ERR_ABORT, DTRendezvous.ERRNO.ERR_INUSE, and
DTRendezvous.ERRNO.ERR_SOMEERRS.
abort_reason: the reason code passed to abort() if error is ERR_ABORT.
abort_key: the key as above.
results: all the results so far. Note that new results may appear in this object later.

Inherits from DTObjectFramework.DTObject.

186

Constructor
Rendezvous(notify_cb)

notify_cb defines an optional callback which is called whenever a result is reported.
This callback receives one argument, which is an object with two properties: rv, the
rendezvous; and value, the result returned.

Methods
abort(reason, key)
register(key)

timedWait$(timeout)
wait$()

abort(reason, key)
Signals an error. Should only be called from a notifier callback.

register(key)
Returns a callback used to submit a result. key (optional) should be a number or string.

timedWait$(timeout)
Waits until the time specified (in ms) and then passes results array to callback. Timeout
of -1 means wait indefinitely.

wait$()
Waits indefinitely (or until notify_cb returns non-null), then passes results array to
callback.

Functions
None.

187

DTScrollBar

The DTScrollBar package defines the ScrollBar class.

Classes
ScrollBar

Defines a scrollbar object, consisting of a bar with a moveable slider, and arrow buttons.

The slider size/position is not (necessarily) an integer value of pixels, which allows more precise
adjustment of its position. (It is only converted to an integer when passed to setPosition()
or setSize() for the slider.) This allows the developer, for example, to guarantee a 15-pixel
virtual increment regardless of the real size of the scroll bar.

Inherits from DTContainer.Container.

Constructor
ScrollBar(orientation)

orientation (required) may be either ScrollBar.HORIZ or ScrollBar.VERT to
construct a horizontal or vertical scrollbar, respectively.

Actions
None.

Methods
getOrientation()
getSliderSize()
positionComponents()

setSize(w, h)
setSliderSize(s)
setSliderSizeProportional(s)

getOrientation()
Returns the horizontal or vertical orientation of the scroll bar.

getSliderSize()
Returns the width and height of the slider, in pixels. Sliders are always square, and
therefore take only one size value.

positionComponents()
Updates the window components based on the current position and size of the slider.

setSize(w, h)
Sets the width and height of the scroll bar, in pixels.

setSliderSize(s)
Sets the width and height of the slider, in pixels. Sliders are always square, and therefore
take only one size value.

188

setSliderSizeProportional(s)
Sets the proportional location of the slider. Valid input is a number between 0 and 1.

Functions

getSliderPosition()
Returns the position of the slider in pixels.

getSliderPositionProportional()
Returns the position of the slider as a real number between 0 and 1.

getSliderSizeProportional()
Returns the proportional size of the slider. Valid input is a number between 0 and 1.

setSliderPosition(p)
Sets the position of the slider in pixels.

setSliderPositionProportional(p)
Sets the position of the slider as a real number between 0 and 1.

189

DTScrollingTextBox

The DTScrollingTextBox package defines the ScrollingTextBox class.

Classes
ScrollingTextBox

Defines an automatically scrolling text box, which has a vertical scrollbar, and resizes and
rewraps itself automatically, in which developer or user defined text may be displayed.

A Scrolling Text Box has two sizes: its size, and its virtual size. Size is the component's absolute
size, including any areas which might be beyond the displayed area and invisible to the user.
Virtual size is that visible on the screen at any time.

Inherits from DTScrollPane.ScrollPane.

Constructor
ScrollingTextBox()

Actions
None.

Methods
changeVirtualSize(dw, dh)
getText()
setSize(w, h)
setText(text)

setVirtualSize(w, h)
setVirtualWidth(w)
toggleInput(allow)

changeVirtualSize(dw, dh)
Changes the outer width and height of the virtual text box by the given number of pixels.

getText()
Returns the user input text from the box.

setSize(w, h)
Sets the visible outer width and height of the box.

setText(text)
Sets the text to display in the box.

setVirtualSize(w, h)
Sets the width and height of the virtual text box.

190

setVirtualWidth(w)
Sets the width of the virtual text box.

toggleInput(allow)
Allows the developer to turn input on or off.

Functions
None.

191

DTScrollPane

The DTScrollPane package defines the ScrollPane class.

Classes
ScrollPane

Defines a scroll pane (a window pane and an attached scrollbar), in which the visible size of the
pane is smaller than the size of its content. Attached scroll bars allow the user to scroll through
the entire pane.

Inherits from DTPane.Pane.

Constructor
ScrollPane(layout_manager)

layout_manager sets the manager to attach to the pane.

Actions
None.

Methods
addComponent(c)
changeVirtualSize(dw, dh)
getComponent(index)
getLayoutManager()
getNumberComponents()
getScrollPosition()
getVirtualSize()
removeComponent(c)

removeComponents(c)
setBackgroundColor(color)
setHorizontalScroll(enabled)
setScrollPosition(x, y)
setSize(w, h)
setVerticalScroll(enabled)
setVirtualSize(w, h)
setVirtualWidth(w)

addComponent(c)
Adds the specified component to the pane.

changeVirtualSize(dw, dh)
In Netscape, changes the scrollable width and height of the pane by the given number of
pixels. In Internet Explorer, does nothing, as size is set automatically.

getComponent(index)
Returns the component defined by index.

getLayoutManager()
Returns the layout manager associated with the scroll pane.

192

getNumberComponents()
Returns the number of components added to the scroll pane.

getScrollPosition()
In Netscape, Returns the coordinates of the origin of the slider in the scrolling region. In
Internet Explorer, returns null.

getVirtualSize()
In Netscape, Returns the scrollable width and height of the scroll pane (the virtual size of
the pane). In IE, returns the size of the visible region.

removeComponent(c)
Removes the specified component from the pane.

removeComponents(c)
Removes all components from the pane.

setBackgroundColor(color)
In Netscape, sets the color of the scrollbar, and the background color of the pane. In
Internet Explorer, does nothing. color is defined as a 6-digit hex string which begins
with a "#" character, such as "#00CC99."

setHorizontalScroll(enabled)
In Internet Explorer, enables horizontal scrolling. true by default.

setScrollPosition(x, y)
In Netscape, sets the x and y coordinates of the origin of the slider in the scrolling region.
In Internet Explorer, has no effect

setSize(w, h)
In Netscape, sets the viewable width and height of the scroll pane. In Internet Explorer,
does nothing, as size is set automatically.

setVerticalScroll(enabled)
In Internet Explorer, enables vertical scrolling. true by default.

setVirtualSize(w, h)
In Netscape, sets the scrollable width and height of the scroll pane. In Internet Explorer,
does nothing, as the virtual size is set automatically.

setVirtualWidth(w)
In Netscape, sets the scrollable width of the pane. In Internet Explorer, sets the viewable
width of the pane.

Functions
None.

193

DTSlideDialog
The DTSlideDialog package defines the SlideDialog class.

Classes
SlideDialog

Displays a dialog window containing a series of panes, only one of which is visible at a time. The
SlideDialog includes Next and Back buttons, which allow the user to navigate through the series.

Inherits from DTTransientDialogWindow.TransientDialogWindow.

Constructor
SlideDialog()

Actions
None.

Methods
addPane(pane, title)
backPane()
getPaneSize()
getVisibleIndex()

getVisiblePane()
nextPane()
setVisiblePane(idx)

addPane(pane, title)
Adds a pane with the given title.

backPane()
Displays the previous pane.

getPaneSize()
Returns the width and height of the pane.

getVisibleIndex()
Returns the index of the visible pane.

getVisiblePane()
Returns a key to the visible pane.

nextPane()
Displays the next pane in the series.

setVisiblePane(idx)
Sets the visible pane.

Functions
None.

194

DTSlider

The DTSlider package defines the Slider class.

Classes
Slider

Sliders are user-input controls that accommodate numeric values between two endpoints.
Graphically, a slider is a track with a button that may be dragged left or down (for decreasing
values) and right or up (for increasing values) along the track. Clicking along the track away from
the slider button will "bump" the slider along the track in that direction.

Sliders are not required to have integer values or limits. They may be forced to by specifying
integral limits and an integral increment size, using an incremental slider (see DTIncrSlider).

Sliders do not support dynamic dragging; they generate value change actions only at the end of
interactive drags, not during them. Continuous sliders round to the nearest pixel for both dragging
and bumping increments.

A slider cannot accept input of more than its maximum or less than its minimum.

The widget's breadth (size along the axis perpendicular to the track) cannot be changed; the
relevant argument to setSize() is ignored.

Note that in vertical sliders, a higher y value indicates a lower numerical value for the slider.

Inherits from DTContainer.Container.

Constructor
Slider()

Actions
drag finish: "changed"
bump click: "changed"
setValue(): "changed"

Methods
getLimits()
getOrientation()
getValue()
setLimits(minVal, maxVal)

setOrientation(orientation)
setSize(w, h)
setValue(value)

getLimits()
Returns the minimum and maximum values for the slider.

195

getOrientation()
Returns the orientation of the slider.

getValue()
Returns the value for the slider position. This method may return an undesirable number,
so callers should round off if a cleaner number is needed. If the desired rounding
granularity causes distinct pixel positions to map to the same value, use an incremental
slider. Note that using an incremental slider with increments that map to less than a few
pixels may work poorly.

setLimits(minVal, maxVal)
Sets the minimum and maximum values for the slider.

setOrientation(orientation)
Sets the vertical or horizontal orientation of the slider.

setSize(w, h)
Sets the width and height of the slider.

setValue(value)
Sets the value for the slider position.

Functions
None.

196

DTStack

The DTStack package defines the Stack class.

Classes
Stack

Defines a simple stack object.

Constructor
Stack()

Actions
None.

Methods
getSize()
peek(c)
pop()

push(element)
remove(n)

All Stack methods return undefined if the parameters are out of range.

getSize()
Returns the number of elements in the stack.

peek(c)
Returns the object on the stack at position number c, with the first position zero. By
default, c=0.

pop()
Pops and returns the top element.

push(element)
Pushes the element e on the end of the array.

remove(n)
Removes the top n things from the stack, or all things if no n is passed in.

Functions
None.

197

DTStyle

The DTStyle package defines the Style class.

Classes
Style

Defines a style object. Component.setStyles() may be used to set the style.

These methods should be used only in developer implemented, low-level components.

Inherits from DTObjectFramework.DTObject.

Constructor
Style()

Methods

get(prop)
Returns the style sheet properties for a component.

set(prop, value)
Sets the style sheet properties for a component.

Functions
None.

198

DTTableLayoutConstraints

The DTTableLayoutConstraints package defines the TableLayoutConstraints class.

Classes
TableLayoutConstraints

Defines the parameters used to construct a table layout.

Constructor
TableLayoutConstraints()

Actions
None.

Methods
setDefaults()

Sets the default layout constraints for the layout manager.

Functions
None.

199

DTTableLayoutManager

The DTTableLayoutManager package defines the TableLayoutManager class.

Classes
TableLayoutManager

Defines a TableLayoutManager, which may be associated with any pane or window.
Desktop.com tables closely resemble HTML tables, in that individual rows or columns may have
differing heights or widths, respectively. Padding for cells may be set by individual cell.

TableLayoutManagers differ from GridLayoutManagers both in the flexibility of cell and row sizing,
and in that a table will distribute available extra space to cells depending on their weight
properties.

See also GridLayoutManager.

Inherits from DTLayoutManager.LayoutManager.

Constructor
TableLayoutManager()

Methods
addComponent(component, constraints)
getColumns()
getRows()

layoutComponents()
setColumns(ncols)
setRows(nrows)

addComponent(component, constraints)
Adds a component to the table using the specified constraints, which may take
one or more of the following values:

fill: specifies if the component should be stretched vertically, horizontally, or
both to fill the cell. Valid input includes FILL_NONE, FILL_BOTH,
FILL_HORIZONTAL, and FILL_VERTICAL.
weight_x: the x sizing weight.
weight_y: the y sizing weight.
span_x: the number of columns the component may cross horizontally.
span_y: the number of columns the component may cross vertically.
pad_x: the horizontal padding.
pad_y: the vertical padding.
loc_x: the column position of the component.
loc_y: the row position of the component.

getColumns()
Returns the number of columns in the table.

200

getRows()
Returns the number of rows in the table.

layoutComponents()
Lays out the components for the table.

setColumns(ncols)
Sets the number of columns in the table.

setRows(nrows)
Sets the number of rows in the table.

Functions
None.

201

DTTabView

The DTTabView package defines the TabView class.

Classes
TabView

Defines a tabbed window, with multiple pane components, only one of which is visible at any
given time. This class defines a widget which allows users to switch between window panes by
clicking on tabs.

Note: Do not call setSize() on panes added to TabView, as TabView will automatically size
any added panes. To get the size TabView uses (for example, to adjust the size of a component
contained within a pane added to the TabView), call getSize() on an individual pane.

Inherits from DTPane.Pane.

Constructor
TabView()

Actions
tabbed: a new tab has been clicked.

Methods
getActivePane()
getLabel(num)
getNumPanes()
getPane(num)

removePane(num)
setActivePane(activePane)
setLabel(num, label)
setPane(num, pane)

addPane(pane, label)
Adds the specified pane to the tab view, and labels the added tab with the label
provided.

getActivePane()
Returns the active pane in the tab view.

getLabel(num)
Returns the tab label for the pane specified by num.

getNumPanes()
Returns the number of panes added to the tab view.

getPane(num)
Returns the pane specified by num.

202

removePane(num)
Removes the pane specified by num.

setActivePane(activePane)
Sets the specified pane to be active.

setLabel(num, label)
Sets the tab label of the pane specified by num.

setPane(num, pane)
Replaces the pane specified by num with the new pane (pane).

Functions
None.

203

DTTextBox

The DTTextBox package defines the TextBox class.

Classes
TextBox

Defines a box in which text is displayed.

Inherits from DTComponent.Component.

Constructor
TextBox(text, alignment)

Specifies the text and its alignment in the box.

Actions
None.

Methods
getAlignment()
getText()
setAlignment(alignment)

setColor(color)
setText(text)

getAlignment()
Returns the alignment for the text within the box.

getText()
Returns the text from the box.

setAlignment(alignment)
Sets the alignment for the text within the box. Valid input includes TextBox.LEFT,
TextBox.RIGHT and TextBox.CENTER.

setColor(color)
Sets the color of the text. color is defined as a 6-digit hex string which begins with a
"#" character, such as "#00CC99."

setText(text)
Sets the text string to be used for the box.

Functions
None.

204

DTTextImageLabel

The DTTextImageLabel package defines the TextImageLabel class.

Classes
TextImageLabel

Defines a text label object, with an optional image included above or to the left of the text. An
actionListener for events such as "click" and "double click" may be associated with this label.

Inherits from DTTextBox.TextBox.

Constructor
TextImageLabel(text, image, alignment, tooltip)

Specifies the text and image to be included for the label, with the given
alignment and tooltip to display for mouse-over.

Actions
None.

Methods
getImage()
setImage(image)

setText(text, num_breaks)

getImage()
Returns the path to the image.

setImage(image)
Sets the image to be displayed with the text.

setText(text, num_breaks)
Sets the text for the component. num_break specifies the number of new lines that
will be inserted between the image and the text.

Functions
None.

205

DTTextInputBox

The DTTextInputBox package defines the TextInputBox class.

Classes
TextInputBox

Defines a text input box, which may be used to gather user input. The box displays multi-line text
which the user may edit. Word wrapping is done automatically.

Inherits from DTComponent.Component.

Constructor
TextInputBox()

Actions
None.

Methods
deleteCharLeft()
getText()
insertChar(c)

setText(t)
wrap_lines(l, check_for_underflow, force_left_to_right)

deleteCharLeft()
Deletes the character to the left of the cursor.

getText()
Returns the string of text currently in the box.

insertChar(c)
Inserts the character c at the current cursor location.

setText(t)
Sets the text in the box to the string t, and word wraps if necessary.

wrap_lines(l, check_for_underflow, force_left_to_right)
Wraps the lines of text. l is the line from which to begin the wrap;
check_for_underflow checks to see if the previous line is full; and
force_left_to_right forces the wrapping algorithm to work from left to right, for
greater efficiency.

Functions

handleMouseEvent(e)
Called when a mouse event is received.

206

DTTextInputBox2

The DTTextInputBox2 package defines the DTTextInputBox2 class.

Classes
TextInputBox2

Defines a text input box, which may be used to gather user input. The box displays multi-line text
which the user may edit. Carriage returns are recorded. Word wrapping is done automatically.

Inherits from DTComponent.Component.

Constructor
TextInputBox2()

Actions
text_changed: the text in the Box has been changed.

Methods
deleteCharLeft()
getText()

insertChar(c)
setText(t)

deleteCharLeft()
Deletes the character to the left of the cursor.

getText()
Returns the string of text currently in the box.

insertChar(c)
Inserts the character c at the current cursor location.

setText(t)
Sets the text in the box to the string t, and word wraps if necessary.

Functions
None.

207

DTTextInputField

The DTTextInputField package defines the TextInputField class.

Classes
TextInputField

Defines a one-line text input field (which may be placed in a pane or other components),
implemented using the browser's native HTML <input type=text> component.

Inherits from DTNativeComponent.NativeComponent.

Constructor
TextInputField(t)

t (optional) defines the initial, editable text.

Actions
changed: focus is lost and text has changed.

Methods
getText()
setEnterKeyMode(on)
setFocusable(focusable)
setLength(length)

setSize(w, h)
setText(t)
setWidth(w)

getText()
Returns the text from the field.

setEnterKeyMode(on)
Sets whether the enter key will cause an event to occur.

setFocusable(focusable)
Sets whether the component may receive focus.

setLength(length)
Sets the width of the field in number of characters.

setSize(w, h)
Sets the width and height of the field in pixels.

setText(t)
Sets the text for the field, which may be user-defined.

208

setWidth(w)
Sets the width of the field in pixels.

Functions
None.

209

DTTextLabel

The DTTextLabel package defines the TextLabel class.

Classes
TextLabel

Defines a single-line version of the TextBox object. It displays a single line of text, which will not
wrap or resize the component in which it is placed.

Inherits from DTTextBox.TextBox.

Constructor
TextLabel(text, alignment)

Specifies the text for the label, and the text's alignment within the label.

Actions
None.

Methods

setSize(w, h)
Sets the size of the text label. Text will be truncated if it is beyond the size specified here.

Functions
None.

210

DTTextTreeView

The DTTextTreeView package defines the TextTreeView class.

Classes
TextTreeView

Defines an object which allows users to view a hierarchy in the form of a tree. The hierarchy is
stored by adding paths (using addPath()) where /foo/bar/bag represents bag as a child of bar
as a child of foo. Two paths, /foo/bar and /foo/bag represents bag and bar as equal children of
foo.

Note that this class may be used to represent any sort of hierarchy: filesystems are only one
possibility. In the first example above, /foo/bar/bag may represent both foo as father to bar, who is
father to bag, making foo bag's grandfather; as well as bag as a folder within bar, which is in turn
a folder within foo.

Inherits from DTScrollPane.ScrollPane.

Constructor
TextTreeView()

Actions
None.

Methods
addPath(path, icon1, data, icon2, hide, delimiter,
node_icon, no_update)
eraseBranch(node)
getNodeChild(node, child)
getNodeCollapsed(node)
getNodeData(node)
getNodeFromPath(path, delimiter)
getNodeIcon(node)
getNodeText(node)
getPathFromNode(node)
getSelectedData()
getSelectedNode()

hideChildNodes(node)
removePath(path, delimiter)
setNodeCollapsed(node, collapsed)
setNodeData(node, data)
setNodeIcon(node, icon)
setNodeText(node, text)
setSelectedData(data)
setSelectedNode(node)
setTopNode(text, icon)
update()
updateTreeChildren()
updateTreeSelectionIndicator()

addPath(path, icon1, data, icon2, hide, delimiter,
node_icon, no_update)

Adds a path to the tree, using the following arguments:
path: creates a path with all missing nodes from the root to the leaf. path is delimited
by the string specified in delimiter (default is "/" if unspecified).

211

icon1: defines the default icon image to display with the new node (applies only to the
leaf node being created)
icon2: (optional) specifies the image to use when the node is selected.
data: user specified data stored with the new node data is any object which a user
might want to attach to the node corresponding to a path. This may be retrieved for later
use by getNodeData.
hide: hides the node if true.
no_update: if set to true, the view is updated after the call. If the property exists,
the text displayed with the node is data.name; if data.name does not exist, it is
the name of the node as specified in the path.

eraseBranch(node)
Removes a branch of the tree and all its associated components, beginning with the
given node. The node itself is not removed from the view. If one of the child nodes is
selected, its parent node is also selected.

getNodeChild(node, child)
Returns the child of a node with the name specified by a string. Returns null if a child
with that name does not exist.

getNodeCollapsed(node)
Determines if a node is collapsed.

getNodeData(node)
Returns the data associated with the specified node.

getNodeFromPath(path, delimiter)
Returns the node in the view corresponding to the specified path. delimiter is the
separation in a path. Default is "/" (which specifies an absolute path).

getNodeIcon(node)
Returns the icon associated with the node.

getNodeText(node)
Returns the text associated with the node.

getPathFromNode(node)
Returns the path string in the form rootnode/path/to/node.

getSelectedData()
Returns the user specified data associated with the active node.

getSelectedNode()
Returns the selected node.

212

hideChildNodes(node)
Recursively hides all children of the specified node, as well as the node itself.

removePath(path, delimiter)
Removes a path from the tree. If the node specified by path exists, it will be removed
(along with all of its children).

setNodeCollapsed(node, collapsed)
Collapses or explodes the specified node.

setNodeData(node, data)
Sets the data associated with a node. This method is provided for users' convenience,
and allows them to attach data to nodes in the hierarchy.

setNodeIcon(node, icon)
Sets the icon associated with the node.

setNodeText(node, text)
Sets the text associated with the node.

setSelectedData(data)
Sets the data associated with the active node.

setSelectedNode(node)
Sets the selection to the specified node.

setTopNode(text, icon)
Sets the text and icon for the top-level node.

update()
Updates the view of the text fields' sizes and locations for the tree.

updateTreeChildren()
Updates the view of the text fields' sizes and locations for the tree and its children.

updateTreeSelectionIndicator()
Sets the selection indicator component to the correct size and location.

Functions
None.

213

DTTimer

The DTTimer package defines the Timer class.

Classes
Timer

Defines a timer object to be associated with a component, which invokes a callback after a
defined amount of time.

Inherits from DTObjectFramework.DTObject.

Constructor
Timer(callback, interval, repeat)

interval sets the number of seconds after which the callback should be called.
repeat, if true, repeats the callback every defined interval of seconds, for the length
of time the processor runs. (To prevent the callback from repeating, create a non-
repeating timer whose callback restarts the timer.)

Methods
isRunning()
setInterval(milli)

start()
stop()

isRunning()
Returns whether the timer is running.

setInterval(milli)
Sets the timer interval in milliseconds. Does not affect running timers.

start()
Starts the timer. By default, timers are created not running.

stop()
Stops the timer without calling the callback. Note that it is possible for the callback to
have already been called.

Functions

sleep$(milli)
Sets the timer to sleep the given number of milliseconds.

214

DTTransientDialogWindow

The DTTransientDialogWindow package defines the DTTransientDialogWindow class.

Classes
TransientDialogWindow

Defines a class of Windows that can be created without an associated Application. Defines a
temporary dialog, which may be used for any mutable application function. Dialog windows are
created empty: any desired components may be added.The window's visual state will not be
saved across Desktop sessions.

Inherits from DTDialogWindow.DialogWindow.

Constructor
TransientDialogWindow()

Actions
None.

Methods
autoLocation(arg)
close(arg)

enable$(arg)
wait$()

autoLocation(arg)
Automatically locates the window according to its size and the given Application, Window,
or, by default, the screen. arg (optional) specifies a reference to an object (either an
Application or a Window) relative to which the dialog is to be centered and made modal.
If arg is omitted, the dialog will be centered on the screen and made system-modal. As
window centering and modality is the most common, pass a Window reference for arg
unless there is some reason not to.

close(arg)
Closes the window. If a callback is defined with wait$(), it is called with the given
argument.

enable$()
Displays the window on the screen by calling the window's draw method.

wait$()
Waits until the window is closed, then returns the argument passed by close(arg).

Functions
None.

215

DTUserData

The DTUserData package provides an object used to encapsulate user information such as their
name and email address.

Classes
None.

Functions

getLogin()
Returns the current user's login. (This function is similar to the "whoami" function in
UNIX.)

getUID()
Returns the current user's UID (user identification number).

getUserInfo$()
Returns the user information as an object with four data members: success (true or
false); first, the user's first name as a string; last, the user's last name as a
string; and email; the user's email address.

loginToUID$(login)
Converts a login name to UID number, where UID is the hash key of the user on the
server (their reference number).

216

DTWindow
The DTWindow package defines the Window class.

Classes
Window

The base inner window used as the prototype for all application content panes in a managed
window. Should not be instantiated directly, but its methods are inherited by other object classes.

Inherits from DTPane.Pane.

Constructor
Window()

Actions
None. Actions are delivered from the WindowFrame associated with the window, and include
closed, resized, moved, and iconized.

Methods
close()
createVDO(parent_VDO)
destroyVDO(parent_VDO)
doneLoading()
getApp(app)
getLocation()
getTag()
init()
loading()

recreate(VDO)
restore()
setDrawMethod(method)
setLocation(x, y)
setRestoreMethod(method)
setSkipTaskBar(val)
setTag(tag)
setVisible(visible)
setWindowFrame(wRef)

close()
Closes the window.

createVDO(parent_VDO)
Creates a new visual display object with the parent object parent_VDO.

destroyVDO(parent_VDO)
Destroys the visual display object with the parent object parent_VDO.

doneLoading()
Called when the window is finished loading, just prior to the application calling itself.

getApp()
Returns the application associated with the window.

getLocation()
Returns the screen location of the window as an object with the properties x and y.

217

getTag()
Returns a string containing the tag assigned to the window's visual display object (VDO),
which contains information about the visual state of the window. The tag is set when the
application's addWindow() method is called. getTag() is typically called when the
user closes a window (or performs some other window action) to determine the action to
be taken based on which window has been closed or manipulated.

init()
Initializes the window.

loading()
Displays an in-pane method between the painting of the window and the painting of the
initial application components.

recreate(VDO)
Called to restore a window's visual state on redraw.

restore()
An optional method, which restores the paint style of the window. draw() is used if
restore() is not present.

setDrawMethod(method)
Sets the draw method used to paint the inner contents of the window.

setLocation(x, y)
Specifies the x and y coordinates for the location of the window.

setRestoreMethod(method)
Sets the draw method used to restore the window, which may differ from that used at
startup. This method is optional. If not supplied, the method set by
setDrawMethod() is used.

setSkipTaskBar(val)
Specifies whether or not the window is visible in the task bar. true by default.

setTag(tag)
Sets the unique tag string for the window, used to differentiate between windows owned
by an application.

setVisible(visible)
Sets whether the window is visible: true if visible (default), false if not.

setWindowFrame(wRef)
Sets the WindowFrame object to be associated with this window, by reference.

Functions
None.

218

DTWrappingTextBox

The DTWrappingTextBox package defines the WrappingTextBox class.

Classes
WrappingTextBox

Defines a window with developer-defined or user-input text, which will automatically wrap when
necessary.

Inherits from DTTextInputBox2.TextInputBox2.

Constructor
WrappingTextBox()

Actions
None.

Methods
handleKeyboardEvent(e)
rewrap_lines()
setSize(w, h)

setWidth(w)
toggleInput(allow)

handleKeyboardEvent(event)
Called when a keyboard event is received.

rewrap_lines()
Rewraps the text lines.

setSize(w, h)
Sets the width and height for the box.

setWidth(w)
Sets the width for the box.

toggleInput(allow)
Allows the developer to turn input on or off.

Functions
None.

219

Appendix I: The Console commands
This appendix is provided as a quick reference guide to commands available in the Desktop.com
Console, our command line interface application. All definitions are also available from the
console itself. Simply type "help" and press enter for a list of available commands, or type "help
command_name" for information on specific commands.

For all examples:
• The Console is case-sensitive.
• Italics denote user defined parameters.
• Items in brackets are optional.

basename: Prints the base name of path.
example: "basename path"

browse: Opens a web site.
example: "browse"

canonical: Prints the canonicalized name of path.
example: "canonical path"

cat: Displays file contents.
example: "cat file1 [file2 ... fileN]"

cd: Changes the working directory.
example: "cd [dir]"

chmod: Changes permissions for a directory or sharelink.
example: "chmod (-n|who (what|-)) sharepath"

chpass: Changes the current users password.
example: "chpass old_password new_password"

clear: Clears the screen.
example: "clear"

compile: Compiles a JSP file into a JSO file.
example: "compile JSP_filename JSO_filename"

dirname: Prints the dir name of path.
example: "dirname path"

220

download: Downloads a file.
example: "download"

eval: Evaluates a JavaScript expression.
example: "eval expression"

exec: Executes a compiled script.
example: "exec object_file"

getlinks: Displays links for a path.
example: "getlinks path"

getuid: Prints the UID of the requested user.
example: "getuid username"

getuserinfo: Prints the current users first name, last name, and email address.
example: "getuserinfo"

help: Lists available commands or describes the given command.
example: "help [command]"

history: Displays the command history.
example: "history [n]"

id: Prints the current user id.
example: "id"

ln: Creates a file link.
example: "ln (-s|-m) to_file from_file"
(with "–s" for a symbolic link, and "–m" for a smart link)

load_package: Imports a package into the code frame.
example: "load_package"

log: Writes a log message to the server.
example: "log message"

ls: Displays the contents of the current directory or specified directories.
example: "ls [-l|-p|-t] [dir1 [dir2 ... dirN]]"

mkdir: Creates a directory (ies).
example: "mkdir [-s] dir1 [dir2 ... dirN]"

221

(Including "–s" creates a symbolic path as well.)

mv: Renames a file.
example: "mv from_filename to_filename"

nuke: Unloads package(s) from the package manager.
example: "nuke package_name1 [package_name2 ...
package_nameN]"

open: Opens a file with an application associated with the given type.
example: "open filename [appname|null] [appargs]"

ps: Lists running applications.
example: "ps"

pwd: Displays the current working directory.
example: "pwd"

rm: Removes files.
example: "rm file1 [file2 ... fileN]"

rmdir: Removes directories.
example: "rmdir [-s] dir1 [dir2 ... dirN]"
(Including "–s" removes symbolic paths as well.)

run: Runs an application.
example: "run appname [appargs]"

seticon: Sets or clears the icon for a path.
example: "seticon path (type iconPath) | X"

share: Creates a share link.
example: "share path sharepath"

sharestatus: Shows sharing info for a path.
example: "sharestatus path"

tmpname: Prints a filename that does not exist in path.
example: "tmpname [prefix [path]]"

touch: Creates an empty file.
example: "touch file1 [file2 ... fileN]"

222

unshare: Removes a sharelink or all sharelinks to a target.
example: "unshare (path|sharepath)"

unwatch: Unregisters a directory watcher.
example: "unwatch watchnum"

upload: Uploads a file.
example: "upload"

uptime: Shows uptime on the A server.
example: "uptime"

watch: Registers for updates regarding a directory.
example: "watch path"

whoami: Prints the username of the current user.
example: "whoami"

223

Appendix II: KeyEvent Constants
This appendix lists all defined constants for the KeyEvent class. The keyboard input to which
these constants refer is self-explanatory, and is loosely arranged here as the standard keyboard
is arranged: top to bottom, and left to right.

All number keys, 0-9, in the format: KeyEvent.kVK_0
plus
 KeyEvent.kVK_BACK_QUOTE
 KeyEvent.kVK_MINUS
 KeyEvent.kVK_EQUALS

All Shift+number key combinations:
 KeyEvent.kVK_TILDE
 KeyEvent.kVK_EXCLAMATION
 KeyEvent.kVK_AT
 KeyEvent.kVK_POUND
 KeyEvent.kVK_DOLLAR
 KeyEvent.kVK_PERCENT
 KeyEvent.kVK_CARET
 KeyEvent.kVK_AMPERSAND
 KeyEvent.kVK_STAR
 KeyEvent.kVK_OPEN_PAREN
 KeyEvent.kVK_CLOSE_PAREN
 KeyEvent.kVK_UNDERLINE
 KeyEvent.kVK_PLUS

All letter keys, a-z, in the format: KeyEvent.kVK_A_LOWER.

All Shift+letter key combinations, A-Z, in the format: KeyEvent.kVK_A.

224

All other typographic input:
 KeyEvent.kVK_OPEN_CURLY
 KeyEvent.kVK_CLOSE_CURLY
 KeyEvent.kVK_PIPE

 KeyEvent.kVK_OPEN_BRACKET
 KeyEvent.kVK_CLOSE_BRACKET
 KeyEvent.kVK_BACK_SLASH

 KeyEvent.kVK_COLON
 KeyEvent.kVK_SEMI_COLON
 KeyEvent.kVK_DOUBLE_QUOTE
 KeyEvent.kVK_SINGLE_QUOTE

 KeyEvent.kVK_LESS_THAN
 KeyEvent.kVK_GREATER_THAN
 KeyEvent.kVK_QUESTION

 KeyEvent.kVK_COMMA
 KeyEvent.kVK_PERIOD
 KeyEvent.kVK_FORWARD_SLASH

 KeyEvent.kVK_SPACE
 KeyEvent.kVK_BACKSPACE
 KeyEvent.kVK_TAB
 KeyEvent.kVK_ENTER

And special computer input keys:
 KeyEvent.kVK_ESCAPE

 KeyEvent.kVK_UP_ARROW
 KeyEvent.kVK_DOWN_ARROW
 KeyEvent.kVK_LEFT_ARROW
 KeyEvent.kVK_RIGHT_ARROW

 KeyEvent.kVK_HOME
 KeyEvent.kVK_END
 KeyEvent.kVK_PAGE_UP
 KeyEvent.kVK_PAGE_DOWN
 KeyEvent.kVK_DELETE
 KeyEvent.kVK_INSERT

225

Appendix III: Color Values

Note that all color values within the Desktop.com development environment are defined as a 6-
digit hex string which begins with a "#" character, such as "#00CC99."

The following Desktop.com color palette values are provided for your convenience. #0066CC is
marked as the dominant color within the Desktop.com brand.

226

Index
A
Action Listeners ... 37
Alert .. 63
API Reference Manual... 57
Application..64, 65, 66, 67

Devtool ... 51
Application Data Types .. 49
Application Modes.. 47
ApplicationManager ... 68
ApplicationPrefsObject... 70
ApplicationStateObject... 71
AppWindow.. 72, 73
Array... 75, 76
ArrayLayoutManager ... 77, 78
AttachmentLayoutManager.. 80, 83

B
BasicButton .. 84
Bookmarks ... 86
BorderedRadioButtonGroup .. 87
BorderedWindow.. 89, 90
Browser .. 91
BrowserWindow ... 92
Button...84, 85, 94, 95, 147

BasicButton .. 84

C
Callback ... 96
Cesktop.com Packages ... 58
CheckBox... 97
Class Hierarchy.. 59
Classes .. 17
Code... 52, 53, 55

debugging... 55
downloading ... 53
editing ... 52
uploading .. 53

Color... 225
defining ... 225
Desktop.com palette... 225

ColumnLayoutManager.. 98
Common windows and dialogs .. 35
Component...99, 100, 101, 102
Components... 32
Confirm... 103
Console .. 56
Console commands ... 219
Container.. 104, 105
Containers.. 41
Content... 106, 107

227

D
Data.. 49

types ... 49
Debugging.. 55
Desktop.com API ... 10

introduction ... 10
Desktop.com Packages ... 58
DetailsRow... 109
Developers' Guide.. 11, 14
Devtool ... 12, 51, 54, 56

Compiling.. 54
console ... 56
introduction ... 12

DialogWindow .. 111
Directories .. 29
DragManager ... 112
DropDownComboBox .. 114, 115
DTAPI

class-based .. 15
classes.. 17
inheritance.. 19
methods.. 20
object types .. 18
packages .. 16

DTImageResize ... 148
DTWindow.. 216

E
Editing Code... 52
Event Handlers... 37
EventGrabber... 116
EventObject.. 117

F
File Directories ... 29
FileDownload ... 119
Files.. 29
FileSharing ... 120
FileSystem ...30, 124, 125, 127, 128, 129

class ... 128
package.. 124
structure.. 30

FileUpload .. 132
FlowLayoutManager .. 133
Focus ... 39
Focus Events ... 42
Focus-Advance Events .. 44
FontProber ... 134

G
global symbols ... 58
GridLayoutConstraints ... 137, 138
GridLayoutManager ... 139
GUI Structure ... 31

228

H
HelpWindow... 140
HTMLBox ... 141
HTMLBrowser .. 142

I
IconsView... 143
ImageArea.. 145
ImageButton... 147
ImageResize .. 148
IncrSlider .. 149
Inheritance ... 19

K
Keyboard Events.. 43
KeyEvent.. 151
KeyEvent constants ... 223

L
LabelledTextBox .. 152
Layout Managers ... 33
LayoutManager .. 154
LinkArea ... 156
ListBox ... 157

M
Menu ..159, 160, 161, 162, 163
MenuBar... 164, 165, 166
Methods ... 20

N
NamedCallback.. 167
NativeComponent .. 168
NativeTextInputBox.. 169

O
Object Types .. 18
ObjectFramework... 61
ObjectStore .. 170

P
Packages ... 16, 58
Pane... 174, 175
Panes ... 40
Persistence .. 21
Persistent Objects.. 22, 24, 26, 86

Bookmarks ... 86
creating... 22
restoring.. 24
subclassing... 26
working with.. 23

PersistentArray... 176
Programmatic Focus Changes .. 46
ProgressBar ... 178
Prompt.. 179

229

Q
Question... 180
Queue .. 181

R
RadioButtonGroup ... 182
Rectangle ... 184
Refocus Events .. 45
Rendezvous ... 185, 186
Restoring Persistent Objects ... 24
Root Persistent Objects ... 25, 26

subclassing... 26

S
ScrollBar... 187
ScrollingTextBox .. 189
ScrollPane.. 191
SlideDialog ... 193
Slider .. 194, 195
Stack .. 196
Style ... 197
symbols

global .. 58
System Requirements.. 13

T
TableLayoutConstraints ... 198
TableLayoutManager ... 199
TabView ... 201
TextBox .. 203
TextImageLabel ... 204
TextInputBox .. 205
TextInputBox2.. 206
TextInputField .. 207
TextLabel ... 209
TextTreeView... 210
The FileSystem .. 28
thumbnails.. 148
Timer .. 213
TransientDialogWindow... 214

U
Uploading and Downloading Code .. 53
UserData .. 215

W
Window .. 89, 90, 216, 217

Bordered... 89
WrappingTextBox .. 218
Writing an Application .. 50

	Desktop.com API
	Developers' Guide
	Devtool
	System Requirements

	Developers' Guide
	The DTAPI Class-Based Object Framework
	Packages
	Classes
	Object Types
	Inheritance

	Methods

	Persistence
	Creating Persistent Objects
	Working with Persistent Objects
	Restoring Persistent Objects
	Root Persistent Objects
	Subclassing PersistentObject and RootPersistentObject

	The FileSystem
	Files and Directories
	The DTFileSystem

	GUI Structure
	Components
	Layout Managers
	Common windows and dialogs
	Event Handlers and Action Listeners
	
	
	
	Listening
	Actions
	Events

	Focus
	Panes
	Containers
	Focus Events
	Keyboard Events
	Focus-Advance Events
	Refocus Events
	Programmatic Focus Changes

	Application Modes
	
	
	Launching Applications
	Launching a File
	Single Instance
	Multiple Instances

	Application Data Types
	Writing an Application
	Devtool
	Editing Code
	
	
	
	Images and HTML

	Uploading and Downloading Code
	Compiling
	Debugging
	The Console

	API Reference Manual
	Desktop.com Packages
	Class Hierarchy
	DTObjectFramework
	Classes
	DTObject

	Functions

	DTAlert
	Classes
	Functions

	DTApplication
	Classes
	Application

	Functions

	DTApplicationManager
	Classes
	Functions

	DTApplicationPrefsObject
	Classes
	ApplicationPrefsObject

	Functions

	DTApplicationStateObject
	Classes
	ApplicationStateObject

	Functions

	DTAppWindow
	Classes
	AppWindow

	Functions

	DTArray
	Classes
	Functions

	DTArrayLayoutManager
	Classes
	ArrayLayoutManager

	Functions

	DTAttachmentLayoutManager
	Classes
	AttachmentLayoutManager

	Functions

	DTBasicButton
	Classes
	BasicButton

	Functions

	DTBookmarks
	Classes
	BookmarkRecord

	Functions

	DTBorderedRadioButtonGroup
	Classes
	BorderedRadioButtonGroup

	Functions

	DTBorderedWindow
	Classes
	BorderedWindow
	BorderedWindowFrame

	Functions

	DTBrowser
	Classes
	Functions

	DTBrowserWindow
	Classes
	BrowserWindow

	Functions

	DTButton
	Classes
	Button

	Functions

	DTCallback
	Classes
	Callback

	Functions

	DTCheckBox
	Classes
	CheckBox

	Functions

	DTColumnLayoutManager
	Classes
	ColumnLayoutManager

	Functions

	DTComponent
	Classes
	Component

	Functions

	DTConfirm
	Classes
	Functions

	DTContainer
	Classes
	Container

	Functions

	DTContent
	Classes
	Content

	Functions

	DTDetailsRow
	Classes
	DetailsRow

	Functions

	DTDialogWindow
	Classes
	DialogWindow

	Functions

	DTDragManager
	Classes
	Functions

	DTDropDownComboBox
	Classes
	DropDownComboBox

	Functions

	DTEventGrabber
	Classes
	EventGrabber

	Functions

	DTEventObject
	Classes
	EventObject

	Functions

	DTFileDownload
	Classes
	Functions

	DTFileSharing
	Classes
	AccessControlList

	Functions

	DTFileSystem
	Classes
	Functions

	DTFileUpload
	Classes
	Functions

	DTFlowLayoutManager
	Classes
	FlowLayoutManager

	Functions

	DTFontProber
	Classes
	FontMetrics

	Functions

	DTGridLayoutConstraints
	Classes
	GridLayoutConstraints

	Functions

	DTGridLayoutManager
	Classes
	GridLayoutManager

	Functions

	DTHelpWindow
	Classes
	Functions

	DTHTMLBox
	Classes
	HTMLBox

	Functions

	DTHTMLBrowser
	Classes
	HTMLBrowser

	Functions

	DTIconsView
	Classes
	IconsView

	Functions

	DTImageArea
	Classes
	ImageArea

	Functions

	DTImageButton
	Classes
	ImageButton

	Functions

	DTImageResize
	Classes
	Functions

	DTIncrSlider
	Classes
	IncrSlider

	Functions

	DTKeyEvent
	Classes
	KeyEvent

	Functions

	DTLabelledTextBox
	Classes
	LabelledTextBox

	Functions

	DTLayoutManager
	Classes
	LayoutManager

	Functions

	DTLinkArea
	Classes
	LinkArea

	Functions

	DTListBox
	Classes
	ListBox

	Functions

	DTMenu
	Classes
	Menu

	Functions

	DTMenuBar
	Classes
	MenuBar

	Functions

	DTNamedCallback
	Classes
	NamedCallback

	Functions

	DTNativeComponent
	Classes
	NativeComponent

	Functions

	DTNativeTextInputBox
	Classes
	NativeTextInputBox

	Functions

	DTObjectStore
	Classes
	PersistentObject
	RootPersistentObject

	Functions

	DTPane
	Classes
	Pane

	Functions

	DTPersistentArray
	Classes
	PersistentArray

	Functions

	DTProgressBar
	Classes
	ProgressBar

	Functions

	DTPrompt
	Classes
	Functions

	DTQuestion
	Classes
	Functions

	DTQueue
	Classes
	Queue

	Functions

	DTRadioButtonGroup
	Classes
	RadioButtonGroup
	Functions

	DTRectangle
	Classes
	Rectangle

	Functions

	DTRendezvous
	Classes
	Rendezvous

	Functions

	DTScrollBar
	Classes
	ScrollBar

	Functions

	DTScrollingTextBox
	Classes
	ScrollingTextBox

	Functions

	DTScrollPane
	Classes
	ScrollPane

	Functions

	DTSlideDialog
	Classes
	SlideDialog

	Functions

	DTSlider
	Classes
	Slider

	Functions

	DTStack
	Classes
	Stack

	Functions

	DTStyle
	Classes
	Style

	Functions

	DTTableLayoutConstraints
	Classes
	TableLayoutConstraints

	Functions

	DTTableLayoutManager
	Classes
	TableLayoutManager

	Functions

	DTTabView
	Classes
	TabView

	Functions

	DTTextBox
	Classes
	TextBox

	Functions

	DTTextImageLabel
	Classes
	TextImageLabel

	Functions

	DTTextInputBox
	Classes
	TextInputBox

	Functions

	DTTextInputBox2
	Classes
	TextInputBox2

	Functions

	DTTextInputField
	Classes
	TextInputField

	Functions

	DTTextLabel
	Classes
	TextLabel

	Functions

	DTTextTreeView
	Classes
	TextTreeView

	Functions

	DTTimer
	Classes
	Timer

	Functions

	DTTransientDialogWindow
	Classes
	TransientDialogWindow

	Functions

	DTUserData
	Classes
	Functions

	DTWindow
	Classes
	Window

	Functions

	DTWrappingTextBox
	Classes
	WrappingTextBox

	Functions

	Appendix I: The Console commands
	Appendix II: KeyEvent Constants
	Appendix III: Color Values

