
CashBox®

API Reference Guide

CashBox 5.0
February, 2014



CashBox 5.0: API Reference Guide
Copyright © 2006 – 2014 by Vindicia, Inc.

All rights reserved. 

Restricted Rights

Build Online Revenue, CashBox, CashBox DataBridge, CashBox Insight, CashBox Select, 
CashBox StoreFront, ChargeGuard, Marketing and Selling Automation for the Digital 
Economy, Vindicia, Your Chargebacks. Our Problem., and all related logos are trademarks 
or registered trademarks of Vindicia, Inc. All other company and product names may be 
trademarks of their respective owners.

This document may contain statements of future direction concerning possible functionality 
for Vindicia's software products and technology. All functionality and software products will 
be available for license and shipment from Vindicia only if and when generally commercially 
available. Vindicia disclaims any express or implied commitment to deliver functionality or 
software unless or until actual shipment of the functionality or software occurs. The 
statements of possible future direction are for information purposes only, and Vindicia 
makes no express or implied commitments or representations concerning the timing and 
content of any future functionality or releases.

This document is subject to change without notice, and Vindicia does not warrant that the 
material contained in this document is error-free. If you find any problems with this 
document, please report them to Vindicia in writing.

No part of this document may be reproduced or transmitted in any form or by any means, 
electronic or mechanical, including photocopying and recording, for any purpose without the 
express written permission of Vindicia, Inc.

The information contained in this document is proprietary and confidential to Vindicia, Inc. 

March 1, 2014
© 2014 Vindicia, Inc.  



Table of Contents
CashBox® API Guide Preface

CashBox API Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

The Return Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

Chapter 1 The Account Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

1.1  Account Object Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2  Account Data Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3  Account Subobjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Credit Subobject  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

CurrencyAmount Subobject  . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

EmailPreference Subobject  . . . . . . . . . . . . . . . . . . . . . . . . . . 10

TaxExemption Subobject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

TimeInterval Subobject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

TokenAmount Subobject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
CashBox 5.0: API Reference Guide Table of Contents i



CashBox 5.0: API Reference Guide
1.4  Account Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

addChildren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

decrementTokens  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

extendEntitlementByInterval  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

extendEntitlementToDate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

fetchAllCreditHistory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

fetchByEmail  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

fetchByMerchantAccountId  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

fetchByPaymentMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

fetchByVid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

fetchByWebSessionVid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

fetchCreditHistory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

fetchFamily. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

grantCredit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

grantEntitlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

incrementTokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

isEntitled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

makePayment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

redeemGiftCard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

removeChildren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

reversePayment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

revokeCredit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

revokeEntitlement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

stopAutoBilling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

tokenBalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

tokenTransaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

transferCredit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

update  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

updatePaymentMethod  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
© 2014 Vindicia, Inc. Table of Contents ii



CashBox 5.0: API Reference Guide
Chapter 2 The Activity Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70

2.1  Activity Data Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.2  Activity Subobjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

ActivityCallType Subobject  . . . . . . . . . . . . . . . . . . . . . . . . . 72

ActivityCancelInitType Subobject . . . . . . . . . . . . . . . . . . . 73

ActivityCancellation Subobject . . . . . . . . . . . . . . . . . . . . . 73

ActivityEmailContact Subobject . . . . . . . . . . . . . . . . . . . . . 73

ActivityFulfillment Subobject  . . . . . . . . . . . . . . . . . . . . . . 74

ActivityLogin Subobject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

ActivityLogout Subobject  . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

ActivityNamedValue Subobject  . . . . . . . . . . . . . . . . . . . . . . . 75

ActivityNote Subobject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

ActivityPhoneContact Subobject . . . . . . . . . . . . . . . . . . . . . 76

ActivityType Subobject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

ActivityTypeArg Subobject  . . . . . . . . . . . . . . . . . . . . . . . . . . 78

ActivityURIView Subobject  . . . . . . . . . . . . . . . . . . . . . . . . . . 79

ActivityUsage Subobject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.3  Activity Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Chapter 3 The Address Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82

3.1  Address Data Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2  Address Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

fetchByVid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

update  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Chapter 4 The AutoBill Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

4.1  AutoBill Data Members  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2  AutoBill Subobjects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

AutoBillItem Subobject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

AutoBillItemModification Subobject . . . . . . . . . . . . . . . . . 95

AutoBillStatus Subobject  . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

BillingPlanHistoryRecord Subobject . . . . . . . . . . . . . . . . . 98

PaymentDetails Subobject  . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
© 2014 Vindicia, Inc. Table of Contents iii



CashBox 5.0: API Reference Guide
4.3  AutoBill Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

addCampaign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

addCharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

cancel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

changeBillingDayOfMonth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

delayBillingByDays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

delayBillingToDate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

fetchAllCreditHistory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

fetchAllInSeason  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

fetchAllOffSeason  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

fetchByAccount  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

fetchByAccountAndProduct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

fetchByEmail  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

fetchByMerchantAutoBillId . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

fetchByVid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

fetchByWebSessionVid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

fetchCreditHistory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

fetchDailyInvoiceBillings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

fetchDeltaSince  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

fetchFutureRebills  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

fetchInvoice  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

fetchInvoiceNumbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

fetchRemainingPaymentDetails . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

fetchUpgradeHistoryByMerchantAutoBillId  . . . . . . . . . . . . . . . . . . 131

fetchUpgradeHistoryByVid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

finalizeCustomerAction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

finalizePayPalAuth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

grantCredit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

makePayment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

migrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

modify. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

redeemGiftCard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

reversePayment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

revokeCredit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

update  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

writeOffInvoice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
© 2014 Vindicia, Inc. Table of Contents iv



CashBox 5.0: API Reference Guide
Chapter 5 The BillingPlan Object. . . . . . . . . . . . . . . . . . . . . . . . . .  162

5.1  BillingPlan Data Members  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.2  BillingPlan Subobjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

BillingPlanPeriod Subobject  . . . . . . . . . . . . . . . . . . . . . . . 165

BillingPlanPeriodType Subobject . . . . . . . . . . . . . . . . . . . 166

BillingPlanPrice Subobject  . . . . . . . . . . . . . . . . . . . . . . . . 166

BillingPlanStatus Subobject  . . . . . . . . . . . . . . . . . . . . . . . 167

5.3  BillingPlan Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

fetchAll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

fetchAllInSeason  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

fetchAllOffSeason  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

fetchByBillingPlanStatus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

fetchByMerchantBillingPlanId  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

fetchByMerchantEntitlementId . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

fetchByVid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

update  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Chapter 6 The Campaign Object . . . . . . . . . . . . . . . . . . . . . . . . . .  178

6.1  Campaign Data Members  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.2  Campaign Related Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

CouponCode Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.3  Campaign Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

activateCampaign  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

activateCode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

cancelCampaign  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

deactivateCampaign  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

fetchAllCampaigns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

fetchByCampaignId . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

fetchByVid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

retrieveCouponCodes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

validateCode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
© 2014 Vindicia, Inc. Table of Contents v



CashBox 5.0: API Reference Guide
Chapter 7 The Chargeback Object. . . . . . . . . . . . . . . . . . . . . . . . .  195

7.1  Chargeback Data Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.2  Chargeback Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

fetchByCaseNumber and fetchByReferenceNumber. . . . . . . . . . . 199

fetchByMerchantTransactionId  . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

fetchByStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

fetchByStatusSince  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

fetchByVid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

fetchDelta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

fetchDeltaSince  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

update  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Chapter 8 The Entitlement Object . . . . . . . . . . . . . . . . . . . . . . . . .  214

8.1  Entitlement Data Members  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

8.2  Entitlement Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

fetchByAccount  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

fetchByEntitlementIdAndAccount. . . . . . . . . . . . . . . . . . . . . . . . . . 219

fetchDeltaSince  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Chapter 9 The GiftCard Object. . . . . . . . . . . . . . . . . . . . . . . . . . . .  223

9.1  GiftCard Data Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

9.2  GiftCard Subobjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

GiftCardStatus Subobject  . . . . . . . . . . . . . . . . . . . . . . . . . . 226

GiftCardStatusType Subobject  . . . . . . . . . . . . . . . . . . . . . . 227

9.3  GiftCard Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

reverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

statusInquiry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Chapter 10 The NameValuePair Object . . . . . . . . . . . . . . . . . . . . . .  231

10.1 NameValuePair Data Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

10.2 NameValuePair Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

fetchNameValueNames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

fetchNameValueTypes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
© 2014 Vindicia, Inc. Table of Contents vi



CashBox 5.0: API Reference Guide
Chapter 11 The PaymentMethod Object . . . . . . . . . . . . . . . . . . . . .  235

11.1 PaymentMethod Data Members  . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

11.2 PaymentMethod Subobjects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Boleto Subobject  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

CarrierBilling Subobject  . . . . . . . . . . . . . . . . . . . . . . . . . . 240

CreditCard Subobject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

DirectDebit Subobject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

ECP Subobject  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

ExtendedCardAttributes Subobject . . . . . . . . . . . . . . . . . . 246

HostedPage Subobject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

MerchantAcceptedPayment Subobject . . . . . . . . . . . . . . . . . 249

PaymentMethodType Subobject  . . . . . . . . . . . . . . . . . . . . . . . 251

PayPal Subobject  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

PhoneNumber Subobject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

PriceCriteria Subobject . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

11.3 PaymentMethod Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

fetchByAccount  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

fetchByMerchantPaymentMethodId . . . . . . . . . . . . . . . . . . . . . . . . 258

fetchByVid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

fetchByWebSessionVid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

update  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

validate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Chapter 12 The PaymentProvider Object . . . . . . . . . . . . . . . . . . . .  271

12.1 PaymentProvider Data Members  . . . . . . . . . . . . . . . . . . . . . . . . . . 272

12.2 PaymentProvider Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

dataRequest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

fetchByName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Chapter 13 The Product Object . . . . . . . . . . . . . . . . . . . . . . . . . . . .  276

13.1 Product Data Members  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

13.2 Product Subobjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

ProductDescription Subobject  . . . . . . . . . . . . . . . . . . . . . . 279

ProductPrice Subobject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

ProductStatus Subobject . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
© 2014 Vindicia, Inc. Table of Contents vii



CashBox 5.0: API Reference Guide
13.3 Product Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

fetchAll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

fetchByAccount  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

fetchByMerchantEntitlementId . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

fetchByMerchantProductId. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

fetchByVid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

update  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Chapter 14 The RatePlan Object . . . . . . . . . . . . . . . . . . . . . . . . . . .  289

14.1 RatePlan Data Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

14.2 RatePlan Subobjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Event Subobject  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

RatedUnitSummary Subobject  . . . . . . . . . . . . . . . . . . . . . . . . 295

RatePlanTier Subobject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

14.3 RatePlan Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

deductEvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

fetchAll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

fetchByMerchantRatePlanId  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

fetchByVid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

fetchEventById . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

fetchEventByVid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

fetchEvents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

fetchUnbilledEvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

fetchUnbilledRatedUnitsTotal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

recordEvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

reverseEvent  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Chapter 15 The Refund Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  312

15.1 Refund Data Members  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

15.2 Refund Subobject  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

RefundTokenAction Subobject  . . . . . . . . . . . . . . . . . . . . . . . 315

15.3 Refund Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

fetchByAccount  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

fetchByTransaction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

fetchByVid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

fetchDeltaSince  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

perform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
© 2014 Vindicia, Inc. Table of Contents viii



CashBox 5.0: API Reference Guide
Chapter 16 The SeasonSet Object. . . . . . . . . . . . . . . . . . . . . . . . . .  325

16.1 SeasonSet Data Members  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

16.2 SeasonSet Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

fetchAll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

fetchAllInSeason  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

fetchAllOffSeason  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

fetchByMerchantSeasonSetId . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

fetchByVid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

fetchCurrentSeason . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

fetchNextSeason . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

isInSeason . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

update  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

Chapter 17 The Token Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  337

17.1 Token Data Members  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

17.2 Token Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

update  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Chapter 18 The Transaction Object . . . . . . . . . . . . . . . . . . . . . . . . .  342

18.1 Transaction Data Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

18.2 Transaction Subobjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

AVSMatchType Subobject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

MigrationTaxItem Subobject  . . . . . . . . . . . . . . . . . . . . . . . . 352

MigrationTransaction Subobject . . . . . . . . . . . . . . . . . . . . 352

MigrationTransactionItem Subobject . . . . . . . . . . . . . . . . 356

MigrationTransactionType Subobject . . . . . . . . . . . . . . . . 357

TransactionItem Subobject  . . . . . . . . . . . . . . . . . . . . . . . . . 358

TransactionStatus Subobject  . . . . . . . . . . . . . . . . . . . . . . . 360

TransactionStatusBoleto Subobject . . . . . . . . . . . . . . . . . 363

TransactionStatusCreditCard Subobject  . . . . . . . . . . . . 363

TransactionStatusECP Subobject . . . . . . . . . . . . . . . . . . . . 363

TransactionStatusHostedPage Subobject  . . . . . . . . . . . . 364

TransactionStatusPayPal Subobject . . . . . . . . . . . . . . . . . 364

TransactionStatusType Subobject . . . . . . . . . . . . . . . . . . . 365

TransactionValidationResponse Subobject  . . . . . . . . . . 366
© 2014 Vindicia, Inc. Table of Contents ix



CashBox 5.0: API Reference Guide
18.3 Transaction Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

addressAndSalesTaxFromPayPalOrder  . . . . . . . . . . . . . . . . . . . . 370

auth  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

authCapture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

calculateSalesTax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

cancel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

fetchByAccount  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

fetchByAutobill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

fetchByMerchantTransactionId  . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

fetchByPaymentMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

fetchByVid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

fetchByWebSessionVid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

fetchDelta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

fetchDeltaSince  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

finalizeCustomerAction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

finalizePayPalAuth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

migrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

score  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

Chapter 19 The WebSession Object . . . . . . . . . . . . . . . . . . . . . . . .  419

19.1 WebSession Data Members  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

19.2 WebSession Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

fetchByVid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

finalize  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

initialize  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
© 2014 Vindicia, Inc. Table of Contents x



CashBox® API Guide Preface

CashBox is an on-demand solution for recurring and one-time billing, available for 
integration with your application through an object-oriented application programming 
interface (API), based on the Simple Object Application Protocol (SOAP). The CashBox 
solution is accessed through a public API to the CashBox application, which is hosted and 
maintained on the Vindicia network.

The CashBox API leverages a Service Oriented Architecture (SOA), meaning that CashBox 
users are not required to install application software on their network. Instead, use SOAP to 
communicate with the CashBox application, either through a thin client provided by Vindicia, 
or through a WSDL published by the Vindicia SOAP servers (e.g. http://soap.vindicia.com/
1.0/Transaction.wsdl). (These SOAP servers comprise the first tier of Vindicia's network, 
and it is the only tier that is publicly accessible.)

This manual, the CashBox API Guide, lists and describes the Objects available in the 
CashBox solution, and provides pseudo-code examples.
© 2014 Vindicia, Inc.  1



CashBox 5.0: API Reference Guide
CashBox API Overview

Each CashBox object consists of data members and methods that operate on those 
members. The data members fall into one of the following categories:

• Standard, built-in data types, such as integers or strings, that are common to 
programming languages.

• Enumerations, which are scalar types coded as standard data types, but which are 
restricted to a specific set of legal values.

• Data structures, which consist of multiple data members, each of which can be of 
different data types.

• Arrays, containing zero or more data elements, all of which must be the same data type.

A CashBox object’s methods are functions that require one or more input arguments. 
Methods always return a code that indicates the success or failure of the function call. In the 
event of failure, the code value should provide clues on why the call failed.

The CashBox API is a structured language, and requires input parameters to be entered in 
the order shown. Parameters must be place-marked if not specified.

This guide presents Objects and their data members and methods alphabetically, for ease of 
reference. Variable parameters for the methods are presented in syntactical order.

Input Parameters

The CashBox SOAP API requires input parameters to be entered in the order shown, and 
must be place-marked if not specified.

For example, if you wish to use the Account.makePayment method to enter a payment 
against an Account, and you wish to add a note without specifying the invoiceId or 
overageDisposition, you must enter null for those two parameters.

(See the makePayment method for details.)

To enter a payment of $37 against an Account, call

Account->makePayment($acct, 
$paymentMethod, 37, USD, null, null, "note")

Calling 

Account->makePayment($acct, $paymentMethod, 37, USD, "note") 

would result in a payment applied to invoiceId "note," with no note included, which is, 
most likely, an invalid call.
© 2014 Vindicia, Inc. Table of Contents Preface 2



CashBox 5.0: API Reference Guide
The Return Object

All methods in the CashBox API return a Return object, which contains the return codes for 
the call.

The Return object contains three data members: 

• returnCode: This data member contains a value that corresponds to a standard 
HTTP return code. For values of 400 or higher, assume that your call failed. The failure 
could be due to several reasons, such as an authentication failure or a CashBox failure 
to find any objects that match your input. See Table 1: Standard Return Codes for a list 
of the most common return codes. 

• returnString: If returnCode indicates an error condition (a non-200 return code), 
your application can check returnString for further information. Use the CashBox 
API to generate a log of returnString, to help you debug your application in the 
development and production phases.

• soapId: This ID is returned for certain calls to Vindicia, especially those made to 
submit a batch of data (for example, a batch of transactions or account activities) for 
ChargeGuard processing. This ID helps Vindicia track your batched data in Vindicia’s 
system and, if the ID is available, you should log it in your application. If an incident 
arises that requires troubleshooting by Vindicia, a Vindicia representative might ask you 
for this ID to determine the status of your data.

Some return strings contain information specific to the call for which the return was 
generated. In some cases, these will take the format:

Unable to load product by VID input-VID: No match.

where input-VID specifies the object or call to which the return error applies.

In some cases, these will take the format:

Unable to load product by VID input-VID: error-description.

where error-description more specifically explains the cause of the error. In both cases, 
variable text is displayed in bold-italic.
© 2014 Vindicia, Inc. Table of Contents Preface 3



CashBox 5.0: API Reference Guide
The following table lists and describes the most common return codes. If a method returns 
different return codes, they are listed with the method.

Table 1 Standard Return Codes

Return Code Description 

200 The call succeeded.

400 Your call failed, which could be due to an authentication failure, 
invalid user input, or a CashBox failure to find any objects that 
match your input.

403 The Vindicia server cannot authenticate your request. 

500 The Vindicia server encountered an internal error. That error 
could occur for various reasons, the most common being an 
incorrectly populated input object, especially when you are 
making the call from a client library whose language does not 
support strict data-type checking. For resolution, especially 
during the development phase, contact Vindicia Technical 
Support. 

503 A Vindicia back-end service, such as a database, is unavail-
able. Retry your call later.
© 2014 Vindicia, Inc. Table of Contents Preface 4



CashBox 5.0: API Reference Guide
1 The Account Object

When a customer registers on your website, use the CashBox API to create an Account 
object. The Account object defines your customer’s account, that is, it encapsulates the 
data members and methods that enable you to populate and maintain a customer’s account 
information. Before someone can successfully order a product from you and be billed for it, 
an Account object that represents that person’s account with you must exist in CashBox. 
You may create an Account object independently, or while creating an AutoBill object for 
a one-time transaction or recurring billing.

Note: If you create an AutoBill and specify an Account that does not 
yet exist, CashBox will create the Account, and attach it to the 
AutoBill.
© 2014 Vindicia, Inc. Table of Contents The Account Object 5



CashBox 5.0: API Reference Guide Account Object Hierarchies
1.1 Account Object Hierarchies

The CashBox Account object supports two-level account hierarchies for payment and 
reporting; you may define parent and children accounts. A parent can have multiple children, 
but a child may have only one parent, and a child may not be a parent to another account.

The CashBox SOAP API allows you to:

• Link existing Accounts as parent and child.

• Unlink Accounts as parent and child. (Linking and unlinking an account is audited.)

• Transfer Credits from a parent to a child, or from one child to another. (An audit trail is 
kept of credit transfers.)

• Have a parent pay for a child's AutoBill by adding a PaymentMethod owned by the 
Parent to the AutoBill which includes the child’s Account. (The child receives the 
entitlements; the parent pays.) 

• Return all AutoBills that an Account pays.

• Return all children, all siblings, or the full family of any Account.

• Return the transaction history of a parent Account’s PaymentMethod.
© 2014 Vindicia, Inc. Table of Contents The Account Object 6



CashBox 5.0: API Reference Guide Account Data Members
1.2 Account Data Members

The following table lists and describes the data members of the Account object.

Note Some CashBox objects’ data members are CashBox data types 
that are data structures, which contain multiple data members 
themselves. These data structures are often listed as Subobjects in 
the documentation that follows.

Table 1-1 Account Object Data Members

Data Members Data Type Description

company string The customer’s company name, if specified.

credit Credit A read-only data member that holds credit types (tokens, 
time, currency) available to this Account. CashBox popu-
lates this in the Account object returned to you in re-
sponse to API calls. 

Do not directly set the value of this attribute. To manipu-
late credit available to this Account, use methods such 
as grantCredit() or revokeCredit(). 

See the Credit Object Data Members.

emailAddress string The email address for this Account object, if specified.

emailTypePref-
erence

EmailPreference The CashBox enumerated data type that specifies wheth-
er to send email to Account as plain text or HTML. 

See the EmailPreference Subobject. 

entitlements Entitlement An array of Entitlements associated with this Account. 
Note that Account entitlement modifications must be 
made using Account methods such as grantEntitle-
ment or revokeEntitlement. Entitlement modifica-
tions made by other means (i.e. update), will be silently 
ignored.

See Section 8.1: Entitlement Data Members.

merchantAc-
countId

string Required. Your unique identifier for this Account object, 
such as a database ID, a user name, or an email address. 
Once you have created the object with this ID, you may 
refer to the Account using the ID for future operations.

name string The customer’s name, if specified. This name usually cor-
responds to the name on the credit card listed for the Ac-
count.

nameValues NameValuePair[] Optional. An array of name–value pairs associated with 
the customer for later reference.

See Section 10: The NameValuePair Object.
© 2014 Vindicia, Inc. Table of Contents The Account Object 7



CashBox 5.0: API Reference Guide Account Data Members
paymentMethods PaymentMethod[] A list of default methods, one of which will be applied to a 
recurring transaction generated for this Account object if 
the customer has not explicitly specified a payment meth-
od for a subscription (AutoBill). Mark the payment 
methods active or inactive and sort them in order of pref-
erence. The first paymentMethod in the sort order will be 
used as the default.

See Section 11.1: PaymentMethod Data Members.

preferredLan-
guage

string The customer’s preferred language for communications. 
This preference is set in the customer account and must 
adhere to the W3C IANA Language Subtag Registry stan-
dard. Even though CashBox also supports the ISO-639.2 
standard, the IANA Language Subtag Registry is the most 
recent and complete standard and is preferred.

If you use CashBox’s email notification feature, and have 
uploaded an email template in the preferred language to 
CashBox, CashBox notifies the customer in this language.

shippingAddress Address The customer’s shipping address. This field is optional if, 
for example, it is the same as billingAddress. Cash-
Box looks up this address first when calculating a transac-
tion’s sales tax for this Account object.

See Section 3.1: Address Data Members. 

taxExemptions TaxExemption[] An array of default exemptions for the sales tax on this Ac-
count’s transactions. Multiple tax exemptions may be de-
fined.

See the TaxExemption Subobject.

tokenBalances TokenAmount[] An array of TokenAmount objects that describes the ac-
count balance of various Token types. Each object in the 
array specifies the quantity of a specific type of Token. 
This is a read-only attribute, returned in the Account ob-
ject in response to an update() call. 

See the TokenAmount Subobject.

VID string Vindicia's Globally Unique Identifier (GUID) for this object. 
When creating a new Account object, leave this field 
blank; it will be automatically populated by CashBox.

warnBeforeAuto-
Billing

Boolean A Boolean flag that, if set to true, and if you are using 
CashBox’s email notification feature, triggers an email no-
tification to the customer before every recurring billing.

Table 1-1 Account Object Data Members  (Continued)

Data Members Data Type Description
© 2014 Vindicia, Inc. Table of Contents The Account Object 8



CashBox 5.0: API Reference Guide Account Subobjects
1.3 Account Subobjects

The Account object has several subobjects:

• Credit Subobject

• CurrencyAmount Subobject

• EmailPreference Subobject

• TaxExemption Subobject

• TimeInterval Subobject

• TokenAmount Subobject

Credit Subobject

An array of Credit amounts. Credit may be currency, time, or Tokens. 

Table 1-2 Credit Object Data Members

Data Members Data Type Description

currency-
Amounts

CurrencyAmount An array of CurrencyAmount objects.

timeIntervals TimeInterval An array of TimeInterval objects, each of which 
specifies a unit of time (day, week, month, year) and 
its amount. 

tokenAmounts TokenAmount An array of TokenAmount objects. Each TokenAm-
ount object specifies a Token Type, and the number 
of tokens of that type to be credited. A Token object 
must exist before being used in a Credit object. 
© 2014 Vindicia, Inc. Table of Contents The Account Object 9



CashBox 5.0: API Reference Guide Account Subobjects
CurrencyAmount Subobject

Defines the Currency Credit. 

EmailPreference Subobject

Allows you to set whether the Account prefers to receive HTML or plain text emails. 

Table 1-3 CurrencyAmount Object Data Members

Data Members Data Type Description

amount decimal The amount of currency granted. Must be a positive 
value.

currency string The ISO 4217 currency code used for the currency 
amount. Default is USD.

description string A description of the currency grant.

nameValues NameValuePair An optional array of name-value pairs to associate 
with this currency credit.

See Section 10: The NameValuePair Object.

reason string The reason for the currency credit.

sortValue integer Used to determine the order in which Credit is re-
deemed.

VID string Vindicia's Globally Unique Identifier (GUID) for this 
object. When creating a new CurrencyAmount ob-
ject, leave this field blank; it will be automatically pop-
ulated by CashBox.

Table 1-4 EmailPreference Object Data Members

Data Members Data Type Description

html string The customer prefers to receive email in HTML for-
mat.

multipart string The customer prefers to receive email messages in 
mixed media format. 

Note: CashBox does not yet support this value; it is a 
placeholder for future implementation.

plaintext string The customer prefers to receive email in plain text 
format.
© 2014 Vindicia, Inc. Table of Contents The Account Object 10



CashBox 5.0: API Reference Guide Account Subobjects
TaxExemption Subobject

Describes an Account-specific tax exemption.

An Account may have several Tax Exemptions. If the country specified in the TaxRegion 
data member of the TaxExemption object matches the country in which a Transaction 
occurs, the Transaction is exempted, and no tax is applied. This exemption will override any 
otherwise applicable taxes for the Transaction. 

TimeInterval Subobject

Defines the Time Interval Credit. 

Table 1-5 TaxExemption Object Data Members

Data Members Data Type Description

active Boolean If set to true, specifies that the exemption is active 
and serves as a criterion for calculation of sales tax.

exemptionId string Specifies the type of exemption, such as the U.S. Tax 
ID or value-added tax (VAT) ID.

region TaxRegion Specifies the geographical region for the tax exemp-
tion. TaxRegion is the ISO-3166-1 two-letter code 
for the country (for example, US, GB, or FR), for 
which CashBox computes sales tax.

Table 1-6 TimeInterval Object Data Members

Data Members Data Type Description

amount integer Amount of time to be credited.

description string A description of the time interval grant.

nameValues NameValuePair An optional array of name-value pairs to associate 
with this time-interval credit.

See Section 10: The NameValuePair Object.

reason string The reason for the time grant.

sortValue integer Used to determine the order in which Credits are re-
deemed.

type TimeInterval-
Type

Unit of time in which this time duration is specified. 
Possible values for TimeIntervalType are:

• Day
• Week
• Month 
• Year 

VID string Vindicia's Globally Unique Identifier (GUID) for this 
object. When creating a new TimeInterval object, 
leave this field blank; it will be automatically populat-
ed by CashBox.
© 2014 Vindicia, Inc. Table of Contents The Account Object 11



CashBox 5.0: API Reference Guide Account Subobjects
TokenAmount Subobject

Defines the Token Credit. 

Table 1-7 TokenAmount Object Data Members

Data Members Data Type Description

amount integer The number of Tokens to be credited.

token Token The Type of Token for this Credit. 

See Section 17.1: Token Data Members.
© 2014 Vindicia, Inc. Table of Contents The Account Object 12



CashBox 5.0: API Reference Guide Account Methods
1.4 Account Methods

The following table summarizes the methods for the Account object. 

Table 1-8 Account Object Methods

Method Description

addChildren Creates a parent-child relationship.

decrementTokens Deducts from this Account object the specified number of tokens 
of various token types. This method is equivalent to tokenTrans-
action with negative values for the token amounts.

extendEntitlementByInter-
val

Extends an Account entitlement by the interval specified.

(The entitlement must already exist and be on the Account when 
this method is called.)

extendEntitlementToDate Extends an account entitlement to the date specified.

(The entitlement must already exist and be on the Account when 
this method is called.)

fetchAllCreditHistory Returns all credit grants and decrements for all Accounts.

fetchByEmail Returns the Account objects with the specified email address.

fetchByMerchantAccountId Returns the Account with the specified ID (merchantAc-
countId).

fetchByPaymentMethod Returns all Account objects with the specified payment method. 
Identify the payment method with the VID, your payment method 
ID, or a unique identifier for the payment method type, such as a 
credit-card account number if the payment method type is credit 
card.

fetchByVid Returns the Account object with the specified VID.

fetchByWebSessionVid Returns the Account object with the specified WebSession VID.

fetchCreditHistory Returns an audit log of credit-related events for an Account, or 
for all Accounts.

fetchFamily Returns the family of the given Account.

grantCredit Adds a specified amount of credit to an Account.

grantEntitlement Grants entitlement to an Account.

incrementTokens Adds the specified number of tokens to this Account. This method 
is equivalent to tokenTransaction with positive values for the 
token amounts.

isEntitled Determines whether or not an Account has an entitlement. This 
checks Account entitlements, as well as entitlements associated 
with the Account’s AutoBills.

makePayment Enters a payment against the Account.

redeemGiftCard Redeems a specified gift card and adds the corresponding credit to 
an Account.
© 2014 Vindicia, Inc. Table of Contents The Account Object 13



CashBox 5.0: API Reference Guide Account Methods
removeChildren Removes a child or multiple children from a parent.

reversePayment Reverses an Account payment made using makePayment. This 
method may only be used with payments using MerchantAc-
ceptedPayment payment methods.

revokeCredit Deducts a specified amount of credit from the Account.

revokeEntitlement Revokes an entitlement from the Account. 

Note: This method will revoke only those Entitlements granted 
using the grantEntitlement method; it will not revoke entitle-
ments acquired through an AutoBill.

stopAutoBilling Cancels one or more AutoBill objects (subscriptions) associated 
with this Account object.

tokenBalance Returns the balance of tokens of the specified type for this Ac-
count. If no type is specified, returns the balances for all the token 
types in the object.

tokenTransaction Performs one or more token transactions, which can be on multiple 
token types, on this Account. The transactions may be positive, 
increasing the token balance; or negative, reducing the token bal-
ance.

transfer Merges the target Account with a given (source) Account, and 
returns the target Account with the merged content.

transferCredit Transfers credits from one Account to another.

update Creates or updates an Account object.

updatePaymentMethod Updates a payment method for this Account object. Call this 
method to update the payment methods on the active subscriptions 
(AutoBill objects) associated with this Account.

Table 1-8 Account Object Methods  (Continued)

Method Description
© 2014 Vindicia, Inc. Table of Contents The Account Object 14



CashBox 5.0: API Reference Guide addChildren
addChildren

This method adds one or more child Accounts to a parent Account using an input array of 
child Accounts. 

Input parent: the Account that will be parent to these children.

child: an array of the child or children Accounts to attach to this parent Account.

force: a Boolean flag that, if set to true, replaces any parents that these children may 
already have.

payerReplacementBehavior: an action to take on methods that might, as a side effect, 
change who pays for an Account, for example: Account.addChildren.

payerReplacementBehavior may be one of the two following strings:

Output return: an object of type Return that indicates the success or failure of the call.

childAdded: the array of Accounts added.

Returns This method returns the codes listed in Table 1: Standard Return Codes.

ReplaceOnAllAutoBills This option specifies that any AutoBills that the child 
has, or will have, are to be paid by the parent Account. 

ReplaceOnlyFutureAuto-
Bills

This option specifies that all future AutoBills for the child 
Account are to be paid by the parent Account. Existing 
AutoBills will be left as is.
© 2014 Vindicia, Inc. Table of Contents The Account Object 15



CashBox 5.0: API Reference Guide addChildren
Example // to add children to an existing account

$parentAcct = new Account();

// account id for an existing account that will be the parent
$parentAcct->setMerchantAccountId('dad-101);

// existing accounts that will be the children
$childAcct1 = new Account();
$childAcct1->setMerchantAccountId('son-101);
$childAcct2 = new Account();
$childAcct2->setMerchantAccountId('son-102);

// want to replace existing parent of children, if any
$force = true; 

// Future autobills for the children will be paid using 
// parent's payment method 
$payerReplacementBehavior = 'ReplaceOnlyFutureAutoBills';

$response = $parentAcct->addChildren(
array($childAcct1, $childAcct2),
$force,
$payerReplace);

if ($response['returnCode'] == 200) {
// children successfully added to the parent

}
else {

// Error while adding the children
print $response['returnString'] . "\n";

}

© 2014 Vindicia, Inc. Table of Contents The Account Object 16



CashBox 5.0: API Reference Guide decrementTokens
decrementTokens

The decrementTokens method deducts the specified number of tokens, of named token 
types, from the Account object. Before calling decrementTokens, call tokenBalance() 
to verify that there are enough tokens of the specified type to fulfill the call. Use 
decrementTokens to deduct tokens from an Account object without conducting a formal 
CashBox transaction.

Input account: the Account object from which to deduct tokens. Use the merchantAccountId 
or VID to identify the object.

tokenAmounts: an array of one or more TokenAmount objects, each of which specifies the 
type of token to deduct and its quantity. The quantity must be a positive number. Before 
calling decrementTokens, you must have created the token types.

Output return: an object of type Return that indicates the success or failure of the call.

tokenAmounts: an array of one or more TokenAmount objects, each of which specifies a 
type of token, and its balance (quantity) in the Account object, if the call succeeds.

Returns This method returns the codes listed in Table 1: Standard Return Codes.
© 2014 Vindicia, Inc. Table of Contents The Account Object 17



CashBox 5.0: API Reference Guide decrementTokens
Example // to deduct tokens from an existing account

$acct = new Account();

// Reference an existing account from which tokens are to be deducted
$acct = new Account();
$acct->setMerchantAccountId('9876-5432');

// Refer to an existing token type using its id
$tok = new Token();
$tok->setMerchantTokenId("US_FREQ_BOOK_BUYER_PT");

// create a TokenAmount object and populate it with token type and
// quantity
$tokAmt = new TokenAmount();
$tokAmt->setToken($tok);
$tokAmt->setAmount(2); 
// Refer to another existing token type using its id
$tok2 = new Token();
$tok2->setMerchantTokenId("US_FREQ_DVD_BUYER_PT");

// create a TokenAmount object and populate it with token type and
// quantity
$tokAmt2 = new TokenAmount();
$tokAmt2->setToken($tok2);
$tokAmt2->setAmount(2); 

$tokAmounts = array($tokAmt, $tokAmt2);

// make the SOAP call to decrement tokens

$response = $acct->decrementTokens($tokAmounts);

if($response['returnCode']==200) {
// the call returns new token balances on the account
// print those out
$newTokBalances = $response['tokenAmounts'];
foreach ($newTokBalances as $newTokBal) {

print "Token type" . $newTokBal->token->merchantTokenId . "\n";
print "Token amount available" . $newTokBal->amount . "\n";

}

}

© 2014 Vindicia, Inc. Table of Contents The Account Object 18



CashBox 5.0: API Reference Guide extendEntitlementByInterval
extendEntitlementByInterval

The extendEntitlementByInterval method extends an Account entitlement by the 
interval provided.

(The entitlement must already exist and be on the Account when this method is called.)

Input account: the Account to which this extension applies.

entitlement: an object of type Entitlement for the given Account.

merchantEntitlementId: the merchant's unique ID for this entitlement. This may be 
specified in lieu of the full Entitlement object. Note that either the Entitlement or the 
merchantEntitlementId must be specified.

interval: the extension interval to be applied to entitlement.

note: an optional memo regarding the entitlement extension.

Output return: an object of type Return that indicates the success or failure of the call.

account: the Account object with modified entitlements.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 One of the following:

• Entitlement not specified.
• Base Account not specified.
• Extension interval not specified.
• Account not found.
• Entitlement not found.
• Entitlement extension failed: error-description.
• Failed to save Account after entitlement extension: 

error-description.
• Failed to reload account after entitlement extension: 

error-description.
© 2014 Vindicia, Inc. Table of Contents The Account Object 19



CashBox 5.0: API Reference Guide extendEntitlementByInterval
Example // to extend entitlements by 2 days

$acct = new Account();
$acct->setMerchantAccountId('xyz123');

$interval = new TimeInterval();
$interval->setType('Day');
$interval->setAmount(2);

$entitle = new Entitlement();
$entitle->setDescription('For playing Scrabble');
$entitle->setStartTimestamp($today);
$entitle->setEndTimestamp($tomorrow);
$entitle->setMerchantEntitlementId('bac');

$acct->grantEntitlement($entitle);

$response = $acct->extendEntitlementByInterval(
$entitle,
null,
$interval,
'Extended by 2 days'

);

// check $response ...
© 2014 Vindicia, Inc. Table of Contents The Account Object 20



CashBox 5.0: API Reference Guide extendEntitlementToDate
extendEntitlementToDate

The extendEntitlementToDate method extends an Account entitlement to the date 
provided.

(The entitlement must already exist and be on the Account when this method is called.)

Input account: the Account to which this extension applies.

entitlement: an object of type Entitlement for the given Account.

merchantEntitlementId: the merchant's unique ID for this entitlement. This may be 
specified in lieu of the full Entitlement object. Note that either the Entitlement or the 
merchantEntitlementId must be specified.

extensionDate: the new end time for entitlement.

note: an optional memo regarding the entitlement extension.

Output return: an object of type Return that indicates the success or failure of the call.

account: the Account object with modified entitlements.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 One of the following:

• Entitlement not specified.
• Base Account not specified.
• Extension date not specified.
• Account not found.
• Entitlement not found.
• Failed to convert extension date: error-description.
• Entitlement extension failed: error-description.
• Failed to save Account after entitlement extension: 

error-description.
• Failed to reload account after entitlement extension: 

error-description.
© 2014 Vindicia, Inc. Table of Contents The Account Object 21



CashBox 5.0: API Reference Guide extendEntitlementToDate
Example // to extend entitlements to a given date

$acct = new Account();
$acct->setMerchantAccountId('xyz123');

$entitle = new Entitlement();
$entitle->setDescription('For playing Scrabble');
$entitle->setStartTimestamp($today);
$entitle->setEndTimestamp($tomorrow);
$entitle->setMerchantEntitlementId('bac');

$acct->grantEntitlement($entitle);

$next_friday = '2011-08-12T23:59:59Z';

$response = $acct->extendEntitlementToDate(
$entitle,
null,
$next_friday,
'Extended until next friday'

);

// check $response ...
© 2014 Vindicia, Inc. Table of Contents The Account Object 22



CashBox 5.0: API Reference Guide fetchAllCreditHistory
fetchAllCreditHistory

The fetchAllCreditHistory method returns all Credit events that match the input 
timestamp parameters, for all Accounts.

CashBox maintains a log of credit-related events for each account. This log keeps track of 
events such as credit granted, revoked, consumed, or earned from a gift card redemption. 
Retrieve the audit log by calling the fetchAllCreditHistory or fetchCreditHistory 
methods for the Account or AutoBill objects. 

The following table describes data members of the CreditEventLog object. 

(For more information, see the fetchCreditHistory method below.)

Table 1-9 CreditEventLog Object Data Members

Data Members Data Type Description

credit Credit The Credit object used during a credit-related action or 
event. 

See the Credit Subobject.

note string A memo regarding the Credit event.

timeStamp dateTime Time when this credit related action or event took place.

type CreditEventType Type of this credit related action or event. Use this to de-
cide whether this action or event incremented or decre-
mented credit. 

See Table 1-9: CreditEventLog Object Data Members.

Table 1-10 CreditEventType Object Enumeration Values

Value Description

Consumption Credit decremented due to use in a recurring or one time transaction

GiftCardRedemption Credit added due to a redemption of a gift card.

GiftCardReversal Credit decremented due to a reversal of a gift card that was previously 
redeemed.

GiftCardStatusInquiry No change in credit.

Grant Credit added due to a credit grant you made.

Refund Credit added due to refund of a credit based transaction.

Revocation Credit decremented due to a credit revocation you made.
© 2014 Vindicia, Inc. Table of Contents The Account Object 23



CashBox 5.0: API Reference Guide fetchAllCreditHistory
Input timestamp: the starting timestamp (lower limit) for the range of credit event logs you wish to 
retrieve.

endTimestamp: the ending timestamp (upper limit) for the range of credit event logs you 
wish to retrieve.

page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to display per page per call. This value must be greater 
than 0.

Output return: an object of type Return that indicates the success or failure of the call.

creditEventLogs: the array of Credit events (grants and deductions) with a timestamp and 
event type.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 One of the following:

• Unable to load account.
• No matching credit events found.
• Invalid value or values of timestamp, and/or page, 

and/or page size.
© 2014 Vindicia, Inc. Table of Contents The Account Object 24



CashBox 5.0: API Reference Guide fetchAllCreditHistory
Example // to fetch all credit history for an account

$acct = new Account();

// account id for an existing customer whose
// credit history you want to retrieve

$acct->setMerchantAccountId('jdoe101');

$page = 0; // paging begins at 0
$pageSize = 5; // five records

do {
$ret =

$acct->fetchAllCreditHistory($page, $pageSize);
$count = 0;
if ($ret['returnCode'] == 200) {

$fetchedLogs = $ret['creditEventLogs'];
$count = sizeof($fetchedLogs);
foreach ($fetchedLogs as $log) {

$credit = $log->getCredit();
$ts = $log->getTimeStamp();
$eventType = $log->getType();
// process retrieved credit event log
// details here.

}
$page++;

}
} while ($count > 0);
© 2014 Vindicia, Inc. Table of Contents The Account Object 25



CashBox 5.0: API Reference Guide fetchByEmail
fetchByEmail

The fetchByEmail method returns an Account object whose email address matches the 
input. If you use an email address as an identifier for your customers, you may call this 
method to retrieve an Account object.

Input emailAddress: the Account object’s email address, which serves as the search criterion.

Output return: an object of type Return that indicates the success or failure of the call.

accounts: the most recently modified Account object whose email address matches the 
input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example // Create an account object to make the SOAP call
$account = new Account();

// now load a customer account into the account object
$response = $account->fetchByEmail('somebody@yahoo.com');
if($response['returnCode'] == 200) {

$fetchedAccount = $response['data']->account;

foreach $fetchedAcct ($fetchedAccount) {
// process a fetched account

}
}
else {

// The call was unsuccessful 
print "Return code: " . $response['returnCode'] . "\n";
print "Return string: " . $response['returnString'] . "\n";

}

Return Code Return String

400 Must specify email address to load by!

404 One of the following:

• Unable to load account by emailAddress input-
emailAddress: No match.

• No AutoBills found for email address input-
emailAddress: No match.

• Unable to load account by email address input-
emailAddress: No match.
© 2014 Vindicia, Inc. Table of Contents The Account Object 26



CashBox 5.0: API Reference Guide fetchByMerchantAccountId
fetchByMerchantAccountId

The fetchByMerchantAccountId method returns an Account object whose ID (the 
merchantAccountId assigned by you) matches the input. When you first create an 
Account object in the Vindicia database with the update method, specify a unique value 
for the merchantAccountId field of that object. Best practice suggests that the 
merchantAccountId value map directly to the customer’s unique ID in your own 
database.

Input merchantAccountId: your Account ID (merchantAccountId), which serves as the 
search criterion.

Output return: an object of type Return that indicates the success or failure of the call.

account: the Account object whose ID assigned by you (merchantAccountId) matches 
the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example // Create a SOAP caller object
$account = new Account();
$accountId = "34583";

// now load an account into the Account object 
// by (unique) Account ID
$response = $account->fetchByMerchantAccountId($accountId);
if($response['returnCode'] == 200) {

$fetchedAccount = $response['data']->account;
}
else {

// The call was unsuccessful 
print "Return code: " . $response['returnCode'] . "\n";
print "Return string " . $response['returnString'] . "\n";

}

Return Code Return String

400 One of the following:

• Unable to load account by VID input-merchantAccountId: 
No match.

• Unable to load account by VID input-merchantAccountId: 
Vindicia internal error.

• Must specify merchantAccountId to load by!
© 2014 Vindicia, Inc. Table of Contents The Account Object 27



CashBox 5.0: API Reference Guide fetchByPaymentMethod
fetchByPaymentMethod

The fetchByPaymentMethod method returns all Account objects with a payment method 
that matches the input. Use this method to conduct global searches, such as “all the 
accounts that use a certain credit card as the payment method.”

This method supports paging to limit the number of records returned per call. Occasionally, 
returning a large number of records in one call swamps buffers and might cause a failure. 
Vindicia recommends that you call this method in a loop, incrementing the page for each 
loop iteration with an optimal page size (number of records returned in one call) until the 
page contains a number of records that is less than the given page size.

Input paymentMethod: an object of type PaymentMethod, which serves as the search criterion. 
Identify the payment method with its VID, your payment method ID 
(merchantPaymentMethodId), or one of the following, depending on the payment method 
type:

• The account number for a credit card.

• The account number-bank routing number combination for ACH and ECP.

• The fiscal number for a Boleto.

• The PaypalEmail for PayPal.

Note: If you use SOAP releases prior to 3.5, you will not be able to search accounts using 
the PayPal payment method. If you use SOAP 3.6.0 or later, you can search accounts and 
transactions using PaypalEmail. 

page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to display per page per call. This value must be greater 
than 0.

Output return: an object of type Return that indicates the success or failure of the call.

accounts: one or more Account objects whose payment method matches the input.
© 2014 Vindicia, Inc. Table of Contents The Account Object 28



CashBox 5.0: API Reference Guide fetchByPaymentMethod
Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $pm = new PaymentMethod();
$pm->setType('CreditCard');
$cc = new CreditCard();
$cc->setAccount('4111111111111111'); 
// this is the card number we want to search by
$cc->setExpiration('201108');
$pm->setCreditCard($cc);

$acct = new Account();
$page = 0;
$pageSize = 10; // max 10 records per page

do {
$response = $acct->fetchByPaymentMethod($pm, $page, $pageSize); 

if($response['returnCode']==200) {
$accounts = $response['data']->accounts;

foreach ($accounts as $account) {
// process each account found here
print "Found account with id: " 

. $account->getMerchantAccountId() . "\n";
}

}
$page++

} while (count($accounts) == $pageSize);

Return Code Return String

404 No matching accounts.

400 One of the following:

• Payment method type is credit card, but credit card 
information is incomplete.

• Payment method type is ECP, but ECP account and 
routing information is incomplete.

• Payment method type is Boleto, but Boleto payment 
information is incomplete.

• Payment method type is currently not supported.
• Must specify a PaymentMethod object, a non-negative 

page number, and a page size greater than 0.
© 2014 Vindicia, Inc. Table of Contents The Account Object 29



CashBox 5.0: API Reference Guide fetchByVid
fetchByVid

The fetchByVid method returns an Account object whose VID matches the input. When 
you first create an Account object with the update method, leave the VID field empty; 
CashBox automatically assigns the object a VID. For convenience, store the VID in your 
application so that you can retrieve or refer to that object with its VID later. If you do not 
assign unique account IDs (merchantAccountId) yourself, you may identify Account 
objects with their VIDs.

Input vid: the Account object’s Vindicia identifier, which serves as the search criterion.

Output return: an object of type Return that indicates the success or failure of the call.

account: the Account object whose VID matches the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $accountVid = 'MyVindiciaAccountVid';

// Create a SOAP caller object
$account = new Account();
$accountVID = "36c8de2cb74b2c2b08b259cf231ac8d90d1bb3b8";

// now load a customer account into the account object by VID
$response = $account->fetchByVid($accountVid);
if($response['returnCode'] == 200) {

$fetchedAccount = $response['data']->account;
}
else {

// The call was unsuccessful 
print "Return code: " . $response['returnCode'] . "\n";
print "Return string: " . $response['returnString'] . "\n";

}

Return Code Return String

400 One of the following:

• Unable to load account by VID input-vid: No match.
• Unable to load account by VID input-vid: Vindicia 

internal error.
• Must specify VID to load by!
© 2014 Vindicia, Inc. Table of Contents The Account Object 30



CashBox 5.0: API Reference Guide fetchByWebSessionVid
fetchByWebSessionVid

Use Vindicia’s Hosted Order Automation (HOA) feature to create CashBox objects that 
contain sensitive payment information, such as credit-card account numbers. Using HOA, 
you may have your customers submit their data through a specially designed Web order 
form, accessed from your server, which allows you to store credit card numbers directly on 
Vindicia’s servers. Because HOA completely bypasses your server at form submission, your 
PCI compliance efforts may be mitigated. See Chapter 13: Hosted Order Automation in the 
CashBox Programming Guide for details on HOA. 

Within your HOA implementation, call the fetchByWebSessionVid method to retrieve the 
Account object created by HOA on Vindicia’s servers when a customer submits an order 
form that results in a one-time or recurring bill. You must also create a WebSession object 
on Vindicia’s servers before serving the form to your customer to track the form’s 
submission to Vindicia. For details, see Section 19: The WebSession Object.

The WebSession object’s VID serves as the tracking ID for various activities, from serving 
the order form to a customer, to returning a success or failure page to that same customer. 
The success page to which HOA redirects the customer’s browser after successfully 
processing the data is the order form. On that page, the WebSession object’s VID is 
available to you because HOA passes it during the redirection. In turn, you can pass that 
VID as the input parameter to this call and retrieve the Account object created by HOA. 
Finally, you can extract the contents of the Account object and include them, as 
appropriate, in the success page to be returned to the customer.

Input vid: the WebSession object’s Vindicia unique identifier for tracking the submission of the 
order form.

Output return: an object of type Return that indicates the success or failure of the call.

account: an Account object created by HOA as a result of an order form submitted by a 
customer.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 Missing required parameter 'vid'.

404 Unable to find requested Account: No matches.
© 2014 Vindicia, Inc. Table of Contents The Account Object 31



CashBox 5.0: API Reference Guide fetchByWebSessionVid
Example // To call the fetchByWebSessionVid on a success web page:

$webSessionVid = …; //passed in by redirected page
$soap = new WebSession();
$response = $soap->fetchByVID($webSessionVid);

if ($response['returnCode'] == 200) {
$fetchedWs = $response['data']->session;
// check if the CashBox API call made by HOA was successful
$retCode = $fetchedWs->apiReturn->returnCode;

if ($retCode == 200) {

// Assuming HOA created an Account object, let's fetch it

$soapAcct = new Account($soapLogin, $soapPwd);
$resp = $soapAcct->fetchByWebSessionVid($webSessionVid);

if ($resp['returnCode'] == 200) {
$createdAccount = $resp['data']->account;

// Get Account contents here to be included in
// HTML returned to the customer.

}
else {

// Return error message to customer
}

}
else {

// return failure page to customer
}

}
else {

// Return error message to the customer 
}

© 2014 Vindicia, Inc. Table of Contents The Account Object 32



CashBox 5.0: API Reference Guide fetchCreditHistory
fetchCreditHistory

The fetchCreditHistory method returns creditEventLogs for the Account.

For more information, please see the Account object’s fetchAllCreditHistory 
method.

Input account: the (optional) Account object for which you wish to retrieve credit event history. 
You may populate only the merchantAccountId or VID in this object so that CashBox can 
locate it in its database. Leave this variable blank if you wish to fetch credit history across all 
Accounts.

timestamp: the starting timestamp (lower limit) for the range of credit event logs you wish to 
retrieve.

endTimestamp: the ending timestamp (upper limit) for the range of credit event logs you 
wish to retrieve.

page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to return per call. This value must be greater than 0.

Output return: an object of type Return that indicates the success or failure of the call.

creditEventLogs: an array of CreditEventLog objects. Each of these objects describes a 
specific credit-related event or action associated with the input Account. For more 
information, see Table 1-9: CreditEventLog Object Data Members.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 One of the following:

• Unable to load account.
• Invalid value or values of timestamp, and/or page, 

and/or page size.

404 No matching credit events found.
© 2014 Vindicia, Inc. Table of Contents The Account Object 33



CashBox 5.0: API Reference Guide fetchCreditHistory
Example // to fetch credit history for an account

$acct = new Account(); 

// account id for an existing customer whose
// credit history you want to retrieve

$acct->setMerchantAccountId('jdoe101');

$page = 0; // paging begins at 0
$pageSize = 5; // five records 
$startTime = '2010-01-01T22:34:32.265Z'; 
$endTime = '2010-01-30T22:34:32.265Z'; 

do { 
$ret = 

$acct->fetchCreditHistory($startTime, $endTime, $page, $pageSize); 
$count = 0; 
if ($ret['returnCode'] == 200) { 

$fetchedLogs = $ret['creditEventLogs']; 
$count = sizeof($fetchedLogs); 
foreach ($fetchedLogs as $log) { 

$credit = $log->getCredit();
$ts = $log->getTimeStamp();
$eventType = $log->getType();
// process retrieved credit event log
// details here.

} 
$page++; 

} 
} while ($count > 0);
© 2014 Vindicia, Inc. Table of Contents The Account Object 34



CashBox 5.0: API Reference Guide fetchFamily
fetchFamily

The fetchFamily method returns the children of the given Account. 

See the input parameters for the ways in which to specify the payment methods. Use this 
method to conduct searches for all the accounts that have a familial relationship, that is, 
parent-to-child, donor-to-recipient, or sibling-to-sibling.

• For a parent account, get all the children (and return the parent and those children).

• For a child account, get the parent and all the siblings.

Input account: the Account for which you wish to find the parent and/or sibling Accounts.

Output return: an object of type Return that indicates the success or failure of the call.

parent: the parent Account for this family.

child: the child or children Accounts in this family.

Returns This method returns the codes listed in Table 1: Standard Return Codes.

Example $soapCaller = new Account();
$childAcct1 = new Account();

// to fetch the family of this child
$childAcct1->setMerchantAccountId('son-101);

$response = $childAcct1->fetchFamily();

if ($response['returnCode'] == 200) {
$fetchedParent = $response['parent'];
print “Parent account id: “;
print $fetchedParent->getMerchantAccountId() . “\n”;

$fetchedChildren = $response['child'];

if ($fetchedChildren != null) {
foreach($fetchedChildren as $fetchedChild) {
print “Child account id: “;
print $fetchedChild->getMerchantAccountId() . “\n”;

} 
}
else {

// Error while fetching the family
print $response['returnString'] . "\n";

}

© 2014 Vindicia, Inc. Table of Contents The Account Object 35



CashBox 5.0: API Reference Guide grantCredit
grantCredit

The grantCredit method adds credit to an Account object. With credit available to an 
Account, you can conduct a one-time transaction for the Account. If the Account is 
associated with an AutoBill, and if the AutoBill has no associated credit, CashBox can 
draw credit down from the Account to sustain the AutoBill. 

Specify credit you wish to grant to the Account as a Credit object. Time-based credit 
cannot be granted to an Account. 

See the Credit Subobject, and the TimeInterval Subobject, for more information. 

See Chapter 12: Credit Grants and Gift Cards in the CashBox Programming Guide for 
more information on working with credit.

Input account: the Account object to which you wish to grant credit. Use the 
merchantAccountId or VID to identify the object.

credit: a Credit object specifying the amount and type of credit you wish to grant to the 
Account. 

note: an optional memo regarding the credit grant.

Output return: an object Account type Return that indicates the success or failure of the call.

account: the Account object to which you granted credit. This object contains the updated 
array of Credit objects.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 One of the following:

• Account not found.
• Failed to translate credit error-description.
• Failed to grant credit error-description.
• Failed to save Account after granting credit.
• Failed to reload Account after granting credit error-

description.
• Time interval credit cannot have amount 0.
© 2014 Vindicia, Inc. Table of Contents The Account Object 36



CashBox 5.0: API Reference Guide grantCredit
Example // to grant credit to an account

$acct = new Account();

// account id for an existing customer

$acct->setMerchantAccountId('jdoe101');

$tok = new Token();

// specify id of an existing token type.
// assumption here is that you have already created
// a Token object with this id

$tok->setMerchantTokenId('ANYTIME_PHONE_MINUTES_2010');

$tokAmt = new TokenAmount();
$tokAmt->setToken($tok);
$tokAmt->setAmount(100);

$cr = new Credit();
$cr->setTokenAmounts(array($tokAmt));

// Now make the SOAP API call to grant credit to the acct
$response = $acct->grantCredit($cr);

if ($response['returnCode'] == 200) {

// Credit successfully granted to the account

$updatedAcct = $response['data']->account;
$availableCredits = $updatedAcct->getCredit();
$availableTokens = $availableCredits->getTokenAmounts();

print "Available token credits: \n";
foreach($availableTokens as $tkAmt) {

print "Token type: " . $tkAmt->getMerchantTokenId() . " ";
print "Amount: " . $tkAmt->getAmount() . "\n";

}
}
else {

// Error while granting credit to the account
print $response['returnString'] . "\n";

}

© 2014 Vindicia, Inc. Table of Contents The Account Object 37



CashBox 5.0: API Reference Guide grantEntitlement
grantEntitlement

The grantEntitlement method grants entitlements to an Account.

Input account: the Account to which this grant applies.

entitlement: the Entitlement being granted.

note: an optional memo regarding the entitlement grant.

Output return: an object of type Return that indicates the success or failure of the call.

account: the Account with new entitlements.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $acct = new Account();
$acct->setMerchantAccountId('xyz123');

$entitle = new Entitlement();
$entitle->setDescription('For playing Scrabble');
$entitle->setStartTimestamp($today);
$entitle->setEndTimestamp($tomorrow);
$entitle->setMerchantEntitlementId('bac');

$response = $acct->grantEntitlement($entitle);

// check $response

Return Code Return String

400 One of the following:

• Entitlement not specified.
• Base Account not specified.
• Account not found.
• Entitlement grant failed: error-description.
• Failed to save Account after entitlement extension: 

error-description.
• Failed to reload account after entitlement extension: 

error-description.
© 2014 Vindicia, Inc. Table of Contents The Account Object 38



CashBox 5.0: API Reference Guide incrementTokens
incrementTokens

The incrementTokens method adds the specified number of tokens to the Account 
object. Call this method to grant tokens (for example, virtual currency, frequent flier miles, or 
cell-phone minutes) to an Account object without conducting a formal CashBox transaction. 
Use this method to grant Tokens which will not be used as currency within CashBox.

Input account: the Account object to which to add tokens. Use the merchantAccountId or 
VID to identify the object.

tokenAmounts: an array of one or more TokenAmount objects, each of which specifies the 
type of token to add and its quantity. The quantity must be a positive number. Token types 
must exist before being used in incrementTokens.

Output return: an object of type Return that indicates the success or failure of the call.

tokenAmounts: an array of one or more TokenAmount objects, each of which specifies a 
type of Token available to the Account after this call, and its balance (quantity) in the 
Account object, if the call succeeds. In some cases, this return might not occur, especially if 
you have not previously defined the specified token type.

The following table lists and describes the data members of the TokenAmount object. 

Returns This method returns the codes listed in Table 1: Standard Return Codes.

Table 1-11 TokenAmount Object Data Members 

Data Members Data Type Description

amount Integer The number of tokens.

Token Token The token type, which must be previously defined.
© 2014 Vindicia, Inc. Table of Contents The Account Object 39



CashBox 5.0: API Reference Guide incrementTokens
Example // to increment tokens for an account

$acct = new Account();

// Reference an existing account to which the tokens are to be granted
$acct = new Account();
$acct->setMerchantAccountId('9876-5432');

// Refer to an existing token type using its id
$tok = new Token();
$tok->setMerchantTokenId("US_FREQ_BOOK_BUYER_PT");

// create a TokenAmount object and populate it with token type and
// quantity
$tokAmt = new TokenAmount();
$tokAmt->setToken($tok);
$tokAmt->setAmount(5); // award the Account with 5 tokens of this type

// Refer to another existing token type using its id
$tok2 = new Token();
$tok2->setMerchantTokenId("US_FREQ_DVD_BUYER_PT");

// create a TokenAmount object and populate it with token type and
// quantity
$tokAmt2 = new TokenAmount();
$tokAmt2->setToken($tok2);
$tokAmt2->setAmount(2); // award the Account with 2 tokens of this type

$tokAmounts = array($tokAmt, $tokAmt2);

// make the SOAP call to increment tokens

$response = $acct->incrementTokens($tokAmounts);

if($response['returnCode']==200) {
// the call returns new token balances on the account
// print those out
$newTokBalances = $response['tokenAmounts'];
foreach ($newTokBalances as $newTokBal) {

print "Token type" . $newTokBal->token->merchantTokenId . "\n";
print "Token amount available" . $newTokBal->amount . "\n";

}
}

© 2014 Vindicia, Inc. Table of Contents The Account Object 40



CashBox 5.0: API Reference Guide isEntitled
isEntitled

The isEntitled method determines whether or not an Account has an entitlement at the 
moment the method is called. isEntitled returns a Boolean true/false, and does not 
return the length of time, past or future, for which the Account is entitled. This will check 
account entitlements, as well as entitlements associated with the Account’s AutoBills.

Input account: the Account to which this grant applies.

merchantEntitlementId: the merchant’s unique ID for this entitlement.

Output return: an object of type Return that indicates the success or failure of the call.

entitled: true if the Account is entitled; false if the Account is not.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 One of the following:

• Entitlement not specified.
• Base Account not specified.
• Account not found.
• Entitlement test failed: error-description.
© 2014 Vindicia, Inc. Table of Contents The Account Object 41



CashBox 5.0: API Reference Guide isEntitled
Example // to determine if an account is entitled

$acct = new Account();
$acct->setMerchantAccountId('xyz123');

$response = $acct->isEntitled('bac');

if ($response['returnCode'] == 200) {
if ($response['data']->entitled) {

// proceed
}

}
else {

// not entitled yet
}

$entitle = new Entitlement();
$entitle->setDescription('For playing Scrabble');
$entitle->setStartTimestamp($today);
$entitle->setEndTimestamp($tomorrow);
$entitle->setMerchantEntitlementId('bac');

$acct->grantEntitlement($entitle);

$response = $acct->isEntitled('bac');

if ($response['returnCode'] == 200) {
if ($response['data']->entitled) {

// proceed
}

}
else {

print 'Should be entitled!!';
}

© 2014 Vindicia, Inc. Table of Contents The Account Object 42



CashBox 5.0: API Reference Guide makePayment
makePayment

The makePayment method allows you to record a payment against an outstanding invoice. 
This method may be used to enter check or cash payments, payment of goods in trade, or 
payments made with active Payment Methods.

Using the makePayment method on the Account object will cause CashBox to allocate the 
payment to the oldest open invoice or AutoBill. To apply a payment directly to an outstanding 
AutoBill, use AutoBill.makePayment instead.

Whether you use a standard PaymentMethod, or a MerchantAcceptedPayment, the 
makePayment method generates a Transaction, and processes the Transaction 
through the auth/capture cycle appropriate to the input Payment Method. Credit Card, ECP, 
PayPal, and other standard Payment Methods are routed through the appropriate Payment 
Processor. The MerchantAcceptedPayment Payment Method is routed through 
Vindicia’s internal transaction process. Both Payment Method types appear as a Transaction 
in the Account’s history.

Input account: the Account to which this payment applies.

paymentMethod: the PaymentMethod to be used for this payment. (Note: Assign a unique 
ID for every Account.makePayment call that uses a MerchantAcceptedPayment 
Payment Method, for tracking purposes.)

amount: the amount of the payment being made. (Required Float.)

currency: the ISO 4217 currency code for amount. This must match the currency used for 
charges on the current invoice. (If not specified, the AutoBill/Invoice currency will be used.)

invoiceId: the ID of the Invoice to make payment against. If null, the default payment 
order will be used. (Array of InvoiceIds.)

For more information, see Section 9.3: Working with Invoices in the CashBox 
Programming Guide.

overageDisposition: defines how to allocate payments in excess of a required AutoBill 
payment amount. Defaults to applyToOldestInvoice if not specified.

overageDisposition: an object of type PaymentOverageDisposition, with values 
applyToThisAutoBill, applyToOldestInvoice, and applyToCredit.

note: an optional memo regarding the payment made.

Output return: an object of type Return that indicates the success or failure of the call.

transaction: the Transaction object reflecting the payment. 

summary: an object of type TransactionAttemptSummary that includes the summary of 
the payment attempt.
© 2014 Vindicia, Inc. Table of Contents The Account Object 43



CashBox 5.0: API Reference Guide makePayment
Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $acct = new Account();
$acct->setMerchantAccountId('xyz123');

$paymentMethod = new PaymentMethod();
$paymentMethod->setType('CreditCard');
$paymentMethod->setAccountHolderName('Jane Doe');
$paymentMethod->setCustomerSpecifiedType('Visa');
$paymentMethod->setCurrency('USD');
$paymentMethod->setActive(true);

$cc = new CreditCard();
$cc->setAccount('411111111111111');
$cc->setExpirationDate('201208');
$paymentMethod->setCreditCard($cc);

$response = $acct->makePayment(
$paymentMethod,
200,
'USD',
'inv-charles',
null,
'200 bucks for Charles'

);

// check $response

Return Code Return String

400 One of the following:

• Account not found.
• Failed to translate payment method.
• Failed to make payment: error-description.
• Transaction not returned from payment attempt.

405 Payment transaction failed - payment not applied.

406 Specified Account could not be found - payment not ap-
plied.

407 Specified PaymentMethod could not be found - payment 
not applied.
© 2014 Vindicia, Inc. Table of Contents The Account Object 44



CashBox 5.0: API Reference Guide redeemGiftCard
redeemGiftCard

The redeemGiftCard method redeems a gift card represented by the input GiftCard 
object, and grants the resultant amount of credit to the Account. This method should be 
called after the statusInquiry() method is called on the GiftCard object that you 
provide as input to this method. If the statusInquiry() method indicates that status of 
the GiftCard object is Active, then call this method. For more information, see the 
Credit Subobject.

For redemption of a gift card, CashBox contacts a gift card processor. (CashBox currently 
supports InComm.) If the gift card is redeemable, the processor returns an SKU or a UPC 
number. This number is unique for each type of gift card and is decided by a prior agreement 
between you and the gift card processor. CashBox uses the number to look up a Product 
object with the same merchantProductId. CashBox then grants credit to the Account as 
defined in the creditGranted attribute of the Product object. For each type of gift card 
you wish to accept, create Product objects with the appropriate amount of credit specified 
in their creditGranted attributes.

CashBox currently supports only full redemption of the credit associated with a gift card. 

See Chapter 12: Credit Grants and Gift Cards in the CashBox Programming Guide for 
more information on gift card redemption.

Input account: an Account object to which credit will be granted if redemption of the gift card is 
successful. Populate the merchantAccountId or VID in this object so that CashBox can 
locate it in its database.

giftcard: a GiftCard object encapsulating information about the gift card you wish to 
redeem. For more information, see Section 9: The GiftCard Object. Call statusInquiry() 
before calling this method, to return the VID of the GiftCard object. Populate the VID in 
this object so that CashBox can look it up in its database.

credit: a Credit object specifying the amount and type of credit you wish to redeem. (This 
input parameter is currently unsupported.)

Output return: an object of type Return that indicates the success or failure of the call.

giftcard: the GiftCard object with updated credit as granted by the gift card redemption.

account: the Account object to which credit was granted if redemption of the gift card was 
successful. 
© 2014 Vindicia, Inc. Table of Contents The Account Object 45



CashBox 5.0: API Reference Guide redeemGiftCard
Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example // to redeem a gift card

$acct = new Account();

// account id for a customer's Account object for which the gift card 
// will be redeemed, and credit added to the Account.

$acct->setMerchantAccountId('JDOE1234');

$gc = new GiftCard(); 

// set the VID of the gift card, obtained when we checked the 
// status of the gift card, and determined that it is active

$gc->setVID($gcVID); 

// Now make the SOAP API call to redeem the gift card

$response = $acct->redeemGiftCard($gc, null);

if ($response['returnCode'] == 200) {

// Redemption successful. Check if credit was added to the account
$updatedAcct = $response['data']->account;
$availableCredits = $updatedAcct->getCredit();
$availableTokens = $availableCredits->getTokenAmounts();

print "Available token credits: \n";
foreach($availableTokens as $tkAmt) {

print "Token type: " . $tkAmt->getMerchantTokenId() . " ";
print "Amount: " . $tkAmt->getAmount() . "\n";

}

// Also make sure status of the gift card is 'Redeemed'
$updatedGc = $response['data']->giftcard;

print "Status of the gift card: ";
print $updatedGc->getStatus()->getStatus() . "\n";

}
else {

// Error while granting credit to the account
print $response['returnString'] . "\n";

}

Return Code Return String

400 One of the following:

• Account not found.
• Failed to translate gift card error-description.
• Failed to redeem gift card error-description.
• Failed to retrieve gift card after redemption 

attempt.
• Failed to save Account after gift card redemption 

attempt.
• Failed to reload Account after gift card redemption 

attempt error-description.
• Redemption attempt failed for Gift Card ID gift-card-ID. 
© 2014 Vindicia, Inc. Table of Contents The Account Object 46



CashBox 5.0: API Reference Guide removeChildren
removeChildren

This method removes one or more child Accounts from the parent Account.

Input parent: the Account that should be parent to these children.

child: the child or children that should be removed from this parent account.

payerReplacementBehavior: an object of type AccountPayerReplacementBehavior, 
that controls how existing AutoBills of the children are affected.

AccountPayerReplacementBehavior may contain the following strings:

Output return: an object of type Return that indicates the success or failure of the call.

Returns This method returns the codes listed in Table 1: Standard Return Codes.

ReplaceOnAllAutoBills This option will replace the Payment Method on each 
of the child’s AutoBills with the child’s default 
(index_number = 0) Payment Method. 

If the child does not have any Payment Methods, 
CashBox will set the Payment Method ID on the 
child's AutoBills to null. When CashBox later tries to 
process a Transaction for one of these AutoBills, it 
will detect the absence of a Payment Method, and 
send an email to the (child) account. 

ReplaceOnlyFutureAutoBills This option will simply break the link between the 
parent and child Accounts, leaving the parent's Pay-
ment Methods unavailable to the child when creating 
new AutoBills.

If a parent/child relationship is broken in this manner, 
and a subsequent AutoBill.update call is made 
against one of the child's AutoBills, CashBox may 
detect that the Payment Method on the child's Auto-
Bill is no longer associated with the child, and issue 
an error.
© 2014 Vindicia, Inc. Table of Contents The Account Object 47



CashBox 5.0: API Reference Guide removeChildren
Example $parentAcct = new Account();

// account id for an existing account that is the parent
$parentAcct->setMerchantAccountId('dad-101);
$childAcct2 = new Account();

// account id of an existing child
$childAcct2->setMerchantAccountId('son-102);

// On each of the children that were deleted, correct 
// the existing autobills to use the child's payment 
// method instead of the parent's for any of the old 
// parent's payment methods.
$payerReplacementBehavior = 'ReplaceOnAllAutoBills';
$response = $parentAcct->removeChildren (array($childAcct2),$payerReplace);

if ($response['returnCode'] == 200) {
// child successfully removed

}
else {

// Error while removing the child
print $response['returnString'] . "\n";

}

© 2014 Vindicia, Inc. Table of Contents The Account Object 48



CashBox 5.0: API Reference Guide reversePayment
reversePayment

The reversePayment method allows merchants to reverse payments made using the 
makePayment method. This method may only be used against payments made using the 
MerchantAcceptedPayment payment method.

Input account: the Account to which this reversal applies.

timestamp: the time that payment reversal occurred. Set the timestamp for record 
keeping purposes, to record when the payment reversal was accepted, rather than when it 
was recorded in CashBox. CashBox will reverse payments immediately, regardless of when 
the timestamp is set.

paymentId: the paymentId of the MerchantAcceptedPayment used for this Payment. 
Either the paymentId, or the invoiceId (and optional indexNumber) must be specified.

The paymentId is automatically set by CashBox when a payment is made to an 
Invoice, AutoBill, or Account. In reversing a payment, you must reference the 
appropriate paymentId.

invoiceId: the ID of the Invoice associated with the payment reversal. Either the 
paymentId, or the invoiceId (and optional indexNumber) must be specified.

indexNumber: the indexNumber of the payment item (on the invoiceId invoice) that is 
being reversed. 

note: an optional memo regarding the payment reversal.

Output return: an object of type Return that indicates the success or failure of the call.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 One of the following:

• Account not found.
• Neither paymentId nor invoiceId: indexNumber provided 

for reversal attempt.
• Failed to add reverse payment: error-description.
© 2014 Vindicia, Inc. Table of Contents The Account Object 49



CashBox 5.0: API Reference Guide reversePayment
Example // to reverse a payment made using the makePayment method

$acct = new Account();
$acct->setMerchantAccountId('xyz123');

$paymentMethod = new PaymentMethod();
$paymentMethod->setMerchantPaymentMethodId($pmId); // for some $pmId
$paymentId = $paymentMethod->merchantAcceptedPayment->paymentId;

$response = $acct->reversePayment(
$now,
$paymentId,
undef,
undef,
'Changed my mind.'

);

// check $response
© 2014 Vindicia, Inc. Table of Contents The Account Object 50



CashBox 5.0: API Reference Guide revokeCredit
revokeCredit

The revokeCredit method deducts credit from an Account object. If the deduction 
results in a negative amount for a certain type of credit, CashBox sets its balance to 0. This 
method returns the Account object with resultant credit balance.

Specify the amount and type of Credit you wish to revoke from the Account as a Credit 
object. 

To revoke a specific credit grant, specify the VID of the Credit object you wish to revoke. If 
you do not specify a VID, CashBox will revoke credit in the order in which it would redeem 
Credits to fulfill an AutoBill Transaction, until the total amount specified is revoked. This 
process might revoke a partial Credit, a single Credit, or multiple Credits.

For more information on working with credit, see Chapter 12: Credit Grants and Gift Cards in 
the CashBox Programming Guide. 

Input account: the Account object from which you wish to revoke credit. Use the 
merchantAccountId or VID to identify the object. 

credit: a Credit object specifying the amount and type of credit you wish to deduct from 
the Account. For more information, see the Credit Subobject.

note: an optional memo regarding the credit revocation.

Output return: an object of type Return that indicates the success or failure of the call.

account: the Account object from which you revoked credit. This object contains the 
updated array of Credit objects.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 One of the following:

• Account not found.
• Failed to translate credit error-description.
• Failed to revoke credit error-description.
• Failed to save Account after revoking credit.
• Failed to reload Account after revoking credit error-

description.
• Data validation error: Missing required parameter 

credit.
© 2014 Vindicia, Inc. Table of Contents The Account Object 51



CashBox 5.0: API Reference Guide revokeCredit
Example // to revoke credit from an account

$acct = new Account();

// account id for an existing customer

$acct->setMerchantAccountId('ff_flier_101');

$tok = new Token();

// specify id of an existing token type.
// assumption here is that you have already created
// a Token object with this id

$tok->setMerchantTokenId('UA_FF_MILES');

$tokAmt = new TokenAmount();
$tokAmt->setToken($tok);
$tokAmt->setAmount(25000);

$cr = new Credit();
$cr->setTokenAmounts(array($tokAmt));

// Now make the SOAP API call to deduct miles
$response = $acct->revokeCredit($cr);

if ($response['returnCode'] == 200) {

// Credit successfully revoked from the account
$updatedAcct = $response['data']->account;
$availableCredits = $updatedAcct->getCredit();
$availableTokens = $availableCredits->getTokenAmounts();

print "Available token credits: \n";
foreach($availableTokens as $tkAmt) {

print "Token type: " . $tkAmt->getMerchantTokenId() . " ";
print "Amount: " . $tkAmt->getAmount() . "\n";

}
}
else {

// Error while revoking credit from the account
print $response['returnString'] . "\n";

}

© 2014 Vindicia, Inc. Table of Contents The Account Object 52



CashBox 5.0: API Reference Guide revokeEntitlement
revokeEntitlement

The revokeEntitlement method revokes entitlement from an Account. 

Input account: the Account to which this revocation applies.

entitlement: the Entitlement object to be revoked.

merchantEntitlementId: the merchant's unique ID for this entitlement. This may be 
specified in lieu of the full Entitlement object. Note that either the Entitlement or the 
merchantEntitlementId must be specified.

note: an optional memo regarding the entitlement revocation.

Output account: the Account with entitlements revoked.

return: an object of type Return that indicates the success or failure of the call.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Note: This method will revoke only those Entitlements granted using 
the grantEntitlement method; it will not revoke entitlements 
acquired through an AutoBill.

Return Code Return String

400 One of the following:

• Entitlement not specified.
• Base Account not specified.
• Account not found.
• Entitlement revocation failed: Could not find active 

entitlement for revocation.
• Entitlement revocation failed: error-description.
• Failed to save Account after revoking entitlement: 

error-description.
• Failed to reload account after entitlement 

revocation: error-description.
© 2014 Vindicia, Inc. Table of Contents The Account Object 53



CashBox 5.0: API Reference Guide revokeEntitlement
Example // to revoke an entitlement from an account

$acct = new Account();
$acct->setMerchantAccountId('xyz123');

$response = $acct->revokeEntitlement(
null,
'bac',      // the Id for playing Scrabble
'You can play no more'

);

if ($response['returnCode'] == 200) {
$entitlements = $response['data']->account->entitlements;
foreach ($entitlements as $ent) {

if ($ent->merchantEntitlementId == 'bac') {
if ($ent->endTimeStamp < $now) {

// yes, properly revoked
}
else {

print "Failed to revoke 'bac' after $now\n";
}

}
}

}
else {

print "Failed to revoke 'bac'\n";
}

© 2014 Vindicia, Inc. Table of Contents The Account Object 54



CashBox 5.0: API Reference Guide stopAutoBilling
stopAutoBilling

The stopAutoBilling method cancels one or more AutoBill objects (subscriptions) 
associated with this Account object. Rather than making separate cancel calls, cancel the 
AutoBill objects in a single call with this method.

Input account: the Account object for which one or more AutoBill objects will be stopped. Use 
the merchantAccountId or VID to identify the object. 

autobills: an array of one or more AutoBill objects to cancel. If you do not specify this 
parameter, this method cancels all AutoBill objects associated with the Account.

disentitle: a Boolean flag that specifies whether or not the customer is immediately denied 
further access to a product or service. Set disentitle to true to cancel the customer’s 
subscription access immediately, and to false to allow the customer continued access until 
the currently paid subscription expires.

force: a Boolean flag that, if set to true, stops the AutoBill even if the subscription has 
not yet expired. (This parameter is a placeholder, and is not in use.) 

Output return: an object of type Return that indicates the success or failure of the call.

account: the Account object for which this method stopped one or more AutoBills.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 Base Account not specified.
© 2014 Vindicia, Inc. Table of Contents The Account Object 55



CashBox 5.0: API Reference Guide stopAutoBilling
Example // to stop all auto billing for an account

$customerID = '1234-5678-9000';

// Create an account object
$account = new Account();

// Set merchant account id in it so CashBox knows which account
// the autobills are to be cancelled
$account->setMerchantAccountId($customerID);

// To specify the autobills to cancel, construct AutoBill objects
$autobill1 = new AutoBill();
$autobill1->setMerchantAutoBillId('xyz-111');

$autobill2 = new AutoBill();
$autobill2->setMerchantAutoBillId('abc-222');

$autobillsToCancel = array($autobill1, $autobill2);
$immediateDisentitlement = true;

$response = 
$account->stopAutoBilling($autobillsToCancel, 
$immediateDisentitlement, false); 

if($response['returnCode'] == 200) {
print "Ok\n"; 

}
else if ($response['returnCode'] == 400) {

print "Could not find account to cancel autobills for \n"; 
}

© 2014 Vindicia, Inc. Table of Contents The Account Object 56



CashBox 5.0: API Reference Guide tokenBalance
tokenBalance

The tokenBalance method returns the balance of tokens of the specified type in the 
Account object. If you do not specify the token type, the call returns the balance of all the 
tokens currently available to the account. 

Input account: the Account object whose token balance you wish to return. Use the 
merchantAccountId or VID to identify the object. 

tokens: an array of one or more token types, whose balance you wish to return. If you do 
not specify a type, tokenBalance returns the balance for all the types available to the 
Account object.

Output return: an object of type Return that indicates the success or failure of the call.

tokenAmounts: an array of one or more TokenAmount objects, each of which specifies the 
type of token, its quantity, and the balance of the tokens that are available to the Account 
object. If you do not specify a token type in the input, this array contains the balance of all 
token types available to the Account. Otherwise, this array contains the balances of only 
the specified token types.

Returns This method returns the codes listed in Table 1: Standard Return Codes.

Example $acct = new Account();

// Reference an existing account from which tokens are to be deducted
$acct = new Account();
$acct->setMerchantAccountId('9876-5432');

// make the SOAP call to retrieve tokens
$response = $acct->tokenBalances(null); 

// return balances for all token types
if($response['returnCode']==200) {

// the call returns new token balances on the account
// print those out
$tokBalances = $response['tokenAmounts'];
foreach ($tokBalances as $tokBal) {

print "Token type" . $tokBal->token->merchantTokenId . "\n";
print "Token amount available" . $tokBal->amount . "\n";

}
}

© 2014 Vindicia, Inc. Table of Contents The Account Object 57



CashBox 5.0: API Reference Guide tokenTransaction
tokenTransaction

The tokenTransaction method performs one or more token transactions, of multiple 
token types, on an Account object. The transactions may be positive, increasing the token 
balance; or negative, reducing the token balance.

Calling tokenTransaction() enables you to conduct a lightweight transaction with only 
tokens. Although Vindicia’s internal token system tracks this type of transaction for audit 
logging, they are not a part of Vindicia’s standard transaction framework for money-based 
transactions.

Input account: the Account object for which to perform the transaction. Use the 
merchantAccountId or VID to identify the object.

transactions: an array of one or more TokenTransaction objects to perform against the 
Account object. Each TokenTransaction object specifies the type of token and the 
quantity to increment or decrement from the object.

The following table lists and describes the data members of the TokenTransaction 
object. 

Output return: an object of type Return that indicates the success or failure of the call.

tokenAmounts: an array of TokenAmount objects, each of which contains the new 
balance and the token type available to the Account object after this call succeeds.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Table 1-12 TokenTransaction Object Data Members

Data Members Data Type Data Members

authTimestamp dateTime A timestamp that specifies the date and time of when 
you processed the transaction. Insert this data with 
your code.

clearedTime-
stamp

dateTime A timestamp that specifies the date and time of when 
Vindicia processed the transaction. CashBox inserts 
this data.

description string Optional. A memo for the transaction.

tokenAmount TokenAmount Required. An enumerated string value that categoriz-
es the type of account activity you are recording.

Return Code Return String

401 Balance too low. 

Returned if one or more transactions requested would drop the user's 
balance below 0.

404 Token not found. 

Returned if one or more tokens specified are not a saved type; however, 
the tokens available on the account are still returned,
© 2014 Vindicia, Inc. Table of Contents The Account Object 58



CashBox 5.0: API Reference Guide tokenTransaction
Example $tokTxn1 = new TokenTransaction();

// Reference an existing account to which this transaction is to be
// applied
$acct = new Account();
$acct->setMerchantAccountId('9876-5432');

$tokTxn1->setAccount($acct);

// Specify information about the tokens for this transaction
$tok1 = new Token();
$tok1->setMerchantTokenId("US_FREQ_BOOK_BUYER_PT");
$tokAmt1 = new TokenAmount();
$tokAmt1->setToken($tok1);
$tokAmt1->setAmount(4); // Number of tokens spent with this transaction

$tokTxn1->setTokenAmount($tokAmt1);

$tokTxn1->setDescription("Purchase: Stranger in a Strange Land");

$tokTxn2 = new TokenTransaction();

$tokTxn2->setAccount($acct);
// Information about the tokens that will pay for the transaction
$tok2 = new Token();
$tok2->setMerchantTokenId("US_FREQ_BOOK_BUYER_PT");
$tokAmt2 = new TokenAmount();
$tokAmt2->setToken($tok2);
$tokAmt2->setAmount(3); // Number of tokens for the transaction

$tokTxn2->setTokenAmount($tokAmt2);

$tokTxn2->setDescription("Purchase: Infinite Jest");

$tokTxns = array($tokTxn1, $tokTxn2);

// Make the SOAP call to perform the token transactions
// Ensure that account set in each TokenTransaction object is 
// the same Account object on which you make the following SOAP call

$response = $acct->tokenTransaction($tokTxns); 

if($response['returnCode']==200) {
// print the new token balances on the account
$newTokBalances = $response['tokenAmounts'];

print "New token balances for account with id " 
. $acct>merchantAccountId . "\n";

foreach ($newTokBalances as $newTokBal) {
print "Token type" 

. $newTokenBal->token->merchantTokenId; . "\n";
print "Token amount available" . $newTokenBal->amount; . "\n";

}

}

© 2014 Vindicia, Inc. Table of Contents The Account Object 59



CashBox 5.0: API Reference Guide transfer
transfer

Customers often create multiple accounts on merchant sites. Because these accounts are 
essentially duplicates, you might receive a request from a customer to consolidate the billing 
for two accounts that customer has with you. Use the transfer method to consolidate billing 
for two accounts held by a single customer. 

The transfer call merges the contents and related objects of two Account objects, and 
returns the target account with the merged content. 

The transfer method:

• Transfers the payment methods, chargebacks, tax exemptions, AutoBill objects, 
activities, token grants and deductions, transactions, and name–value pairs associated 
with the source account into the target account.

• Strips all of the above contents from the source account, which will, however, continue 
to exist in CashBox with some basic attributes.

• Creates two name–value pairs with the names 
VIN_MERCHANT_CUSTOMER_ID_UPDATED_FROM and 
VIN_MERCHANT_CUSTOMER_ID_UPDATED_DATE in each of the AutoBill objects 
transferred, thus specifying the original merchantAccountId value associated with 
the AutoBill object and the date on which the ID was transferred. 

The two Accounts specified as input must exist prior to the transfer call, or an error will 
be returned.

Input targetAccount: the Account object into which you wish to transfer all content from the 
source account.

sourceAccount: the Account object whose content you wish to transfer to the target 
account.

Output return: an object of type Return that indicates the success or failure of the call.

mergedAccount: the account that contains the merged content of the target and source 
accounts.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 One of the following:

• No match found for target account.
• No match found for source account.
• Unable to transfer account.
© 2014 Vindicia, Inc. Table of Contents The Account Object 60



CashBox 5.0: API Reference Guide transfer
Example $targetAcct = new Account();

// Reference an existing account into which the contents will be
// merged

$targetAcct->setMerchantAccountId('9876-5432');

$sourceAcct = new Account();

// Reference an existing account from which we want to transfer
// contents

$sourceAcct->setMerchantAccountId('4932-5301');

// make the SOAP call to retrieve tokens
$response = $targetAcct->transfer($sourceAcct); 

if($response['returnCode']==200) {
$mergedAcct = $response['mergedAccount'];
// process or verify contents of the merged account here

}

© 2014 Vindicia, Inc. Table of Contents The Account Object 61



CashBox 5.0: API Reference Guide transferCredit
transferCredit

The transferCredit method transfers credits from a parent Account to a child 
Account, or from one child in a family to another.

Input fromAccount: the Account from which credits will be transferred. 

toAccount: the child account to which credits will be transferred.

credit: the credits to be transferred.

Output return: an object of type Return that indicates the success or failure of the call.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 One of the following:

• No match found for toAccount.
• No match found for fromAccount.

500 Unable to transfer account.
© 2014 Vindicia, Inc. Table of Contents The Account Object 62



CashBox 5.0: API Reference Guide transferCredit
Example // to transfer credits from a parent to a child account
// Create a new Account object for parent
$parent = new Account();

// Provide basic account information
$parent->setName('Somebody Q. Customer'); // Customer name
$parent->setMerchantAccountId('IN9430-8421'); // Unique customer id

// Create a new Account object for child
$child = new Account();
$child->setName('Somebody Q. Customer Jr.'); // Customer name
$child->setMerchantAccountId('IN9430-8421JR'); // Unique customer id

// Establish a parent->child relationship between $parent and $child
$childrenAdded = $anyOldAccountYouveGot->addChildren

($parent, array($child))

//Grant credit to the parent
$curAmt = new CurrencyAmount ;
$curAmt->setCurrency('USD');
$curAmt->setAmount(100.00);

$cr = new Credit();
$cr->setCurrencyAmounts(array($curAmt));
// Now make the SOAP API call to grant credit to the acct
$response = $acct->grantCredit($cr);
if ($response['returnCode'] == 200) {

// Credit successfully granted to the account
$updatedAcct = $response->['account'];

}
else {

// Error while granting credit to the account
print $response['returnString'] . "\n";

}

//Define credits to be transferred from parent to child
$curTranAmt = new CurrencyAmount ;
$curTranAmt->setCurrency('USD');
$curTranAmt->setAmount(12.34);

$crTran = new Credit();
$crTran->setCurrencyAmounts(array($curTranAmt));

//Transfer specified credits from parent to child account
$response = $parent->transferCredit($child, $crTran);
if ($response['returnCode'] == 200) {

// Credit successfully granted to the account
}
else {

// Error while transferring credit between accounts
print $response['returnString'] . "\n";

}

© 2014 Vindicia, Inc. Table of Contents The Account Object 63



CashBox 5.0: API Reference Guide update
update

The update method creates an Account object, or updates an existing one. Use the 
update method when a new customer record is created.

To create an Account object, initialize it and set the values for its data members as 
appropriate, and then call the update method to store the changes. When creating a new 
Account object, do not set a value for VID; CashBox will automatically generate a VID for 
the object when you call update. When updating an existing Account object, identify it with 
its VID or your account ID (merchantAccountId). 

Input account: the Account object to create or update. Use the merchantAccountId or VID to 
identify the object.

Output return: an object of type Return that indicates the success or failure of the call.

account: the Account object you created or updated.

created: a Boolean flag that, if set to true, indicates that update has created a new 
Account object. A false setting means that update has updated an existing Account 
object. 

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Note Do not call update() to add or change a payment method for 
Account. Call Account.updatePaymentMethod() instead. 
(See the updatePaymentMethod method.)

Return Code Return String

400 One of the following:

• Data validation error. Failed to create Payment-Type-
Specific Payment Record: Credit Card conversion 
failed: Credit Card failed Luhn check.

• Failed to save account.
© 2014 Vindicia, Inc. Table of Contents The Account Object 64



CashBox 5.0: API Reference Guide update
Example // Create a new Account object
$account = new Account();

// Provide basic account information
$account->setName('Somebody Q. Customer'); // Customer name
$account->setMerchantAccountId('IN9430-8421'); // Unique customer id

// To create address information, create an address object
$address = new Address();
$address->setAddr1('123 Main Street');
$address->setAddr2('Apt. 4');
$address->setCity('San Carlos');
$address->setDistrict('CA');
$address->setPostalCode('94070');
$address->setCountry('US');
$address->setPhone('123-456-7890');

// Associate the Address object with the account

$account->setShippingAddress($address);

// Emails
$account->setEmailAddress('John.Doe@gmail.com');
$account->setEmailTypePreference('html');
$account->setWarnBeforeAutoBilling(true);

// Okay, basic information is entered, so save the account
$response = $account->update();

// Check to see that the account was created
if($response['returnCode'] == 200) {

// You can save the VID (Vindicia ID) for later use
$accountVid = $account->getVid();

}

© 2014 Vindicia, Inc. Table of Contents The Account Object 65



CashBox 5.0: API Reference Guide updatePaymentMethod
updatePaymentMethod

The updatePaymentMethod method updates the Account object with the information for 
a payment method, such as a credit card that is on record. For example, call this method to 
change a credit card’s expiration date. This method is especially useful if the Account 
object has associated active AutoBill objects and you would like to replace their payment 
methods with another one to apply to the next billing.

Call this method to catch up on the billing of an AutoBill object that has stalled due to a 
failed billing. For example, when your customers receive an email notification about a hard 
failure of a subscription (AutoBill), they are usually directed to your site to take remedial 
action (for example, to update the payment method), which, in turn, should invoke this 
method to send the updated payment method information to Vindicia.

If both ignoreAvsPolicy and ignoreCvnPolicy are true, no policy evaluation will be done. 
If only one of those flags is set to true, policy evaluation will not be considered for that 
element (AVS or CVN). If no value is passed in for either parameter, they will default to 
false, and the AVS and CVN policy evaluations will be used to determine PaymentMethod 
validation status.

For more detail on AVS and CVN Return Codes, please work with your Vindicia Client 
Services representative.

Input account: the Account object whose payment method you would like to change. Use the 
merchantAccountId or VID to identify the object.

paymentMethod: the required PaymentMethod object that contains the new data to apply 
to the Account object’s payment method. (For more information, see Section 11: The 
PaymentMethod Object.)

If you specify a VID or merchantPaymentMethodId to identify paymentMethod, this 
method updates the payment method in question. If you do not specify a VID or 
merchantPaymentMethodId, this method creates a new payment method, and 
attaches it to the Account object. 

If you specify an existing sort order for the payment method (for example, 0, which is the 
default), updatePaymentMethod pushes down the payment method with the same sort 
order to the next increment (for example, 1), and increments the sort order of the 
subsequent payment methods accordingly. 

replaceOnAllAutoBills: a Boolean flag that, if set to true, replaces the payment method 
on all the AutoBill objects for this Account object. If you set the flag to false, 
updatePaymentMethod attaches the payment method to the Account object and saves 
it.
© 2014 Vindicia, Inc. Table of Contents The Account Object 66



CashBox 5.0: API Reference Guide updatePaymentMethod
updateBehavior: specifies whether to just update (Update) without validation, validate first 
(Validate), or catch up with billing first (CatchUp). 

If you set the value to CatchUp, the call first finds the latest AutoBill object associated 
with the Account object. Depending on whether that AutoBill object’s end date has 
passed, the call proceeds:

• If the latest AutoBill object is in Hard Error state, and its end date is in the future 
(that is, the retry period for that object’s failed billing transaction is not yet over), the call 
reprocesses the failed transaction that caused the AutoBill object to enter Hard 
Error state with the newly input payment method. If successful, the call then: 

1. Updates the AutoBill object’s payment method for future billings. If you have 
enabled the replaceOnAllAutoBills flag, then the call also updates the payment 
method for all other AutoBill objects associated with the Account object, but 
does not reactivate them or reprocess their failed billings if any of them are in Hard 
Error state. 

2. Reactivates the latest AutoBill object so that it is in Good Standing state, 
resulting in normal scheduling of future billings. 

3. Returns 200 as the SOAP call’s return code, indicating success.

• If the latest AutoBill object is in Hard Error state, but the object’s end date has 
passed (that is, the retry period is already over), the call validates the payment method 
and, if successful, updates the input payment method on the latest AutoBill object. If 
you have enabled the replaceOnAllAutoBills flag, then the call also updates the other 
AutoBill objects, if any, that are associated with the Account object. In this case, the 
call does not reactivate any AutoBill objects in Hard Error state that are 
associated with the Account object or process their failed billings. However, the call still 
returns the SOAP return code 200.

After calling updatePaymentMethod, always check the relevant AutoBill object’s 
status by fetching it with one of the fetch methods, such as fetchByAccount(), to 
verify if the AutoBill object has been reactivated. If not, create a new AutoBill 
object with the new payment method and start a new subscription for the customer.

ignoreAvsPolicy: a Boolean flag that, if set to true, will override the AVS policy, and 
update the paymentMethod, regardless of the AVS return code. If set to false or null, 
(and if validatePaymentMethod is set to true) the AVS return code will be used to 
determine whether to update the paymentMethod.

ignoreCvnPolicy: an optional Boolean flag that, if set to true will override the CVN policy, 
and update the paymentMethod, regardless of the CVN return code. If set to false or 
null, (and if validatePaymentMethod is set to true) the CVN return code will be used to 
determine whether to update the paymentMethod.
© 2014 Vindicia, Inc. Table of Contents The Account Object 67



CashBox 5.0: API Reference Guide updatePaymentMethod
Output return: an object of type Return that indicates the success or failure of the call.

account: the Account object whose payment method was changed.

validated: a Boolean flag that, if set to true, indicates that this method has successfully 
validated the PaymentMethod object.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

261 All active AutoBills were updated. AutoBills which are 
both expired and Suspended cannot be updated.

400 One of the following:

• Invalid Payment Method Type. (You cannot change the 
Payment Method Type on an existing Payment Method.)

• No PaymentMethod specified in arguments.
• Data validation error Failed to create Payment-Type-

Specific Payment Record: Credit Card conversion 
failed: Credit Card failed Luhn check.

402 One of the following:

• PaymentMethod failed validation. 
• Error attempting to authorize card.
• Unable to authorize card.

404 No match found error-description.
Returned if CashBox cannot find an account that matches the input in the 
Vindicia database.

407 AVS policy evaluation failed.

408 CVN policy evaluation failed.

409 AVS and CVN policy evaluations failed.

410 AVS and CVN policy evaluations could not be performed.
© 2014 Vindicia, Inc. Table of Contents The Account Object 68



CashBox 5.0: API Reference Guide updatePaymentMethod
Example // to update a payment method

$accountId = "CUST219";

// Create an account object
$account = new Account();

$account->setMerchantAccountId($accountId);

$paymentMethod = new PaymentMethod();

// update an existing payment method to a new expiration 
// date and a new billing address. The code here assumes that you know 
// the merchantPaymentMethodId of the payment method

$paymentMethod->setMerchantPaymentMethodId("345abc678");
$newBillAddress = new Address(); 
$newBillAddress->setAddr1("123 Maple St");

// Populate rest of the address object here

// Set the new billing address in the payment method
$paymentMethod->setBillingAddress($newBillAddress);

// Create a new credit card object and populate it with updated
// information
$cc = new CreditCard();
$cc->setAccount("4343121267679193");
$cc->setExpirationDate("201211");

// Set the credit card information in the payment method
$paymentMethod->setType('CreditCard');
$paymentMethod->setCreditCard($cc);

// Now make the updatePaymentMethod call with validation and 
// replacement on all autobills enabled

$replaceOnAutoBills = true;
$response = 

$account->updatePaymentMethod($paymentMethod, $replaceOnAutoBills, 
"Validate", 0);

if($response['returnCode'] == 200) {
print "Call succeeded\n"; 

}
else if($response['returnCode'] == 402) {

print "Payment method validation failed\n";
}
else {

// Handle other error situations here
}

© 2014 Vindicia, Inc. Table of Contents The Account Object 69



CashBox 5.0: API Reference Guide updatePaymentMethod
2 The Activity Object

The Activity object enables you to record activities (events) on your site that are not 
direct purchase transactions, such as when customers access for-pay content like song 
downloads. That information can serve as evidence for chargeback disputes should they 
occur.

You make calls available for the Activity object to submit the activity data once per event. 
Alternatively, queue and submit the data periodically in a batch process. Usually, you collect 
events of interest only. For example, you need not record every page view by a customer, 
only those page views that contain for-pay content that the customer accessed or 
downloaded.

To use the Activity object in your application, first create the Activity object, then 
populate its data members with the appropriate information, and submit the event to Vindicia 
with the record() method.
© 2014 Vindicia, Inc. Table of Contents The Activity Object 70



CashBox 5.0: API Reference Guide Activity Data Members
2.1 Activity Data Members

To record an activity, fill in as many of the data-member fields of the Activity object as 
possible. The more information you collect, the more useful it will be for Vindicia to dispute 
chargebacks on your behalf should they occur.

The following table lists and describes the data members of the Activity object. 

Table 2-1 Activity Object Data Members

Data Members Data Type Description

account Account Required. The customer account for which you are re-
cording this activity. This information serves as evidence 
of the customer’s connection to the activity. Populating 
this object with either the VID or merchantAccountId 
suffices.

See Section 1.2: Account Data Members.

activityArgs ActivityTypeArg Required. An object that details the activity you are re-
cording. The content varies, depending on the activity 
type specified. 

See the ActivityTypeArg Subobject.

activityType ActivityType Required. An enumerated string value that categorizes 
the type of activity you are recording. For example, if a 
customer calls you, set this value to Phone. Be sure to set 
this value before calling record(). 

See the ActivityType Subobject. 

timestamp dateTime Required. A timestamp that specifies the date and time of 
when the event you are recording took place. Be sure to 
set this value before calling record(). 
© 2014 Vindicia, Inc. Table of Contents The Activity Object 71



CashBox 5.0: API Reference Guide Activity Subobjects
2.2 Activity Subobjects

The Activity object has several subobjects:

• ActivityCallType Subobject

• ActivityCancelInitType Subobject

• ActivityCancellation Subobject

• ActivityEmailContact Subobject

• ActivityFulfillment Subobject

• ActivityLogin Subobject

• ActivityLogout Subobject

• ActivityNamedValue Subobject

• ActivityNote Subobject

• ActivityPhoneContact Subobject

• ActivityType Subobject

• ActivityTypeArg Subobject

• ActivityURIView Subobject

• ActivityUsage Subobject

ActivityCallType Subobject

Supplies the type of phone contact made. 

Table 2-2 ActivityCallType Object Data Members

Data Members Data Type Description

fromCustomer-
ToMerchant

string The customer called you or your agent, for example, 
Technical Support.

fromCustomer-
ToOther

string The customer called someone other than you.

fromMerchant-
ToCustomer

string You called the customer.

fromMerchant-
ToOther

string You called someone other than the customer.

fromOtherTo-
Customer

string Someone other than you called the customer.

fromOtherTo-
Merchant

string Someone other than the customer called you.
© 2014 Vindicia, Inc. Table of Contents The Activity Object 72



CashBox 5.0: API Reference Guide Activity Subobjects
ActivityCancelInitType Subobject

A list of known types if initiators for cancellation activities. 

ActivityCancellation Subobject

Supplies information about a customer cancellation. 

ActivityEmailContact Subobject

Supplies information about an email contact with a customer.

Table 2-3 ActivityCancelInitType Object Data Members

Data Members Data Type Description

Chargeback string The service was cancelled due to a chargeback.

Customer string The customer initiated the cancellation.

Merchant string You initiated the cancellation.

Table 2-4 ActivityCancellation Object Data Members

Data Members Data Type Description

confirmation-
Code

int The confirmation code for the cancellation.

initiator ActivityCan-
celInitType

The type of initiator for cancellation. 

See the ActivityCancelInitType Subobject.

reason string The reason for cancellation.

Table 2-5 ActivityEmailContact Object Data Members

Data Members Data Type Description

destEmail string The recipient’s email address.

note string A note on the content of the email message.

srcEmail string The sender’s email address.
© 2014 Vindicia, Inc. Table of Contents The Activity Object 73



CashBox 5.0: API Reference Guide Activity Subobjects
ActivityFulfillment Subobject

Supplies information about physical fulfillment of an order. 

ActivityLogin Subobject

Supplies information about an Account login. 

ActivityLogout Subobject

Supplies information about an Account logout. 

Table 2-6 ActivityFulfillment Object Data Members

Data Members Data Type Description

delivered Boolean A Boolean flag that, if set to true, indicates that the 
merchandise delivery is complete.

merchantTrans-
actionId

string Your unique identifier for the transaction.

receiptName string The recipient’s name as reported by the shipping 
agent.

receivedTs dateTime A timestamp that corresponds to the date and time 
reported by the shipping agent of when the merchan-
dise delivery was completed.

shipper string The identifier of the shipping agent (such as UPS or 
FedEx) if any.

shippingAd-
dress

Address The shipping address for the product. This data mem-
ber encapsulates the customer’s mailing address, 
billing address, or both. 

See Section 3.1: Address Data Members.

trackingString string The tracking information on the physical package.

Table 2-7 ActivityLogin Object Data Member

Data Members Data Type Description

ip string The IP address from which a login originated.

Table 2-8 ActivityLogout Object Data Member

Data Members Data Type Description

ip string The IP address from which a logout originated. Set 
ip to null if the logout is implicit due to, for example, a 
server timeout.
© 2014 Vindicia, Inc. Table of Contents The Activity Object 74



CashBox 5.0: API Reference Guide Activity Subobjects
ActivityNamedValue Subobject

A generic activity type. This object should not be used permanently; it provides a temporary 
means to bridge to new activities without a SOAP release. Contact Vindicia before 
submitting data of this type. 

ActivityNote Subobject

Supplies a note or memo. 

Table 2-9 ActivityNamedValue Object Data Members

Data Members Data Type Description

Note: You must enter a value for all three data members.

name string The Activity name. For example, if you sell music 
online, set the value to musicDownload.

type string The Activity type. For example, if you sell different 
types of music online, specify in this field the type, 
such as Rock.

value string The Activity value. For example, fill in this field 
with the name of the artist or song for the download.

Table 2-10 ActivityNote Object Data Member

Data Members Data Type Description

note string Notes (maximum of 1,024 characters) on the Activ-
ity object.
© 2014 Vindicia, Inc. Table of Contents The Activity Object 75



CashBox 5.0: API Reference Guide Activity Subobjects
ActivityPhoneContact Subobject

Supplies information about a phone contact with a customer. 

Table 2-11 ActivityPhoneContact Object Data Members

Data Members Data Type Description

aniPhoneNumber string The Automatic Number Identification (ANI) for the 
phone number from which the call originated.

cidPhoneNumber string The caller ID (CID) for the phone number from which 
the call originated.

destPhoneNum-
ber

string The phone number of the person who received the 
call.

durationSec-
onds

int The length of the phone conversation in seconds.

note string Optional. Notes on the phone call.

srcPhoneNumber string The phone number from which the call originated.

type ActivityCall-
Type

Required. An enumerated value that specifies who 
originated and who received the call. 

See the ActivityCallType Subobject.
© 2014 Vindicia, Inc. Table of Contents The Activity Object 76



CashBox 5.0: API Reference Guide Activity Subobjects
ActivityType Subobject

Describes a list of known types of Activities. 

Table 2-12 ActivityType Object Data Members

Data Members Data Type Description

Cancellation string A cancellation of a product or service offered by you.

Email string An email interaction related to the account.

Fulfillment string An order fulfillment.

Login string A customer login on your site.

Logout string A customer logout from your site.

NamedValue string An activity that differs from the predefined activities 
specified by other ActivityType values. Setting 
this value means that you are defining a custom ac-
tivity type for your product or service.

Note string An optional memo regarding the activity.

Phone string A phone interaction related to the account.

URIView string A viewing of a particular Web resource.

Usage string The amount of use of the resources provided by you, 
such as electronic downloads, or website access.
© 2014 Vindicia, Inc. Table of Contents The Activity Object 77



CashBox 5.0: API Reference Guide Activity Subobjects
ActivityTypeArg Subobject

A "master class" for activity subclasses. While WSDL does not appear to allow for the 
definition of literal subclasses, this provides similar results. methodLink=report takes an 
argument of this class. Simply fill only the field necessary for the type of activity being 
recorded. Note that some activities may not require additional information. For example, if 
submitting a uriView, set uriviewArgs to a previously filled ActivityURIView. 

When constructing an Activity object, fill in the ActivityTypeArg object with a 
subobject, as appropriate, for activityType. For example:

• If activityType is phone, create an ActivityTypeArg object and fill phoneArgs 
with data in the form of an ActivityPhoneContact data structure.

• If activityType is email, create an ActivityTypeArg object and fill emailArgs 
with data in the form of an ActivityEmailContact data structure. 

Table 2-13 ActivityTypeArg Object Data Members

Data Members Data Type Description

cancellation-
Args

ActivityCan-
cellation

The customer’s cancellation of a service or product. 

See the ActivityCancellation Subobject.

emailArgs ActivityEmail-
Contact

An email event. 

See the ActivityEmailContact Subobject.

fulfillmen-
tArgs

ActivityFul-
fillment

The status of your fulfillment of a customer order.

See the ActivityFulfillment Subobject.

loginArgs ActivityLogin The IP address from which a login originated. 

See the ActivityLogin Subobject.

logoutArgs ActivityLogout The IP address from which a logout originated. 

See the ActivityLogout Subobject.

namedValueArgs ActivityNamed-
Value

An activity defined by you. With this data structure, 
you create Activity objects that are unique to your 
business, and that are not described by the pre-
defined Activity events in ActivityTypeArg. 
Creating such an activity implies that it will likely oc-
cur regularly with your customers. 

See the ActivityNamedValue Subobject.

noteArgs ActivityNote An optional memo on the Activity object. 

See the ActivityNote Subobject.

phoneArgs ActivityPhone-
Contact

A phone contact that relates to the Activity object. 

See the ActivityPhoneContact Subobject.

uriviewArgs ActivityURIV-
iew

A customer’s visit to a Web page, and possible down-
load activity. 

See the ActivityURIView Subobject.

usageArgs ActivityUsage The amount of use of a resource (such as the number 
of downloads) you provide to the customer. 

See the ActivityUsage Subobject.
© 2014 Vindicia, Inc. Table of Contents The Activity Object 78



CashBox 5.0: API Reference Guide Activity Subobjects
ActivityURIView Subobject

Supplies information about a user viewing a document. 

ActivityUsage Subobject

Supplies information on the use of a service by a customer. 

Note: Please convert all durations to seconds. 

Table 2-14 ActivityURIView Object Data Members

Data Members Data Type Description

bytesTrans-
ferred

int The number of bytes actually transferred to the cus-
tomer.

description string A description of the bytes transferred.

ip string The IP address to which the data was transferred.

size int The size of the download.

transferTime int The length of the data transfer in seconds.

uri string Required. The URI of the page.

Table 2-15 ActivityUsage Object Data Members

Data Members Data Type Description

description string The amount of use.

lastDay int The amount of use on the last day.

lastMonth int The amount of use in the last month.

lastUsageDate dateTime The last date of use.

lastWeek int The amount of use in the last week.

lastYear int The amount of use in the last year.

total int The duration of use.
© 2014 Vindicia, Inc. Table of Contents The Activity Object 79



CashBox 5.0: API Reference Guide Activity Method
2.3 Activity Method

The method for Activity is record(), which posts one or more Activity objects to the 
CashBox database.
© 2014 Vindicia, Inc. Table of Contents The Activity Object 80



CashBox 5.0: API Reference Guide record
record

To report one or more non-transaction activities to Vindicia, create an Activity object for 
each activity, insert the object into an array, and pass the array as an argument to 
record(). Every Activity object requires that you specify the associated Account 
object. For that purpose, you can create an Account object and populate it with only its VID 
or merchantAccountId.

Input activities: an array of Activity objects to report to Vindicia.

Output return: an object of type Return that indicates the success or failure of the call.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example // To report a phone call as an Activity, create an account object
$account = new Account();

// Specify account by the customer id
$account->setMerchantAccountId('9876-5432');

// Create Activity to report customer's phone call
// and corresponding ActivityTypeArgs objects

$activity = new Activity();
$typeArgs = new ActivityTypeArgs();

// fill in the relevant info for this activity record
$activity->setAccount($account); //associate the activity and account
$activity->setActivityType('Phone');
$activity->setTimestamp(getdate()); 

$phoneArgs = new ActivityPhoneContact();
$phoneArgs->setCidPhoneNumber('1234567890');
$phoneArgs->setDurationSeconds(367)
$phoneArgs->setType('FromCustomerToMerchant');
$phoneArgs=>setNote('Customer agreed to be rebilled for services');

$typeArgs->setPhoneArgs($phoneArgs);

// associate typeArgs to the Activity object
$activity->setActivityArgs($typeArgs);

// now record the data
$response = $activity->record(array($activity));

if($response['returnCode'] == 200) {
print "ok\n"; # 200 is HTTP status code for success

}

Return Code Return String

400 One of the following:

• Unknown activity type input-type. Must be one of list-of-
allowed-types.

• Required field 'timestamp' missing!
• Required field 'account' missing!
© 2014 Vindicia, Inc. Table of Contents The Activity Object 81



CashBox 5.0: API Reference Guide record
3 The Address Object

The Address object encapsulates the contact information for a customer, including the full 
name, postal address, and fax and phone numbers. Save a customer’s billing and shipping 
addresses with the Address object. For example, the Account object includes the 
shippingAddress data member, which in turn contains an Address object.
© 2014 Vindicia, Inc. Table of Contents The Address Object 82



CashBox 5.0: API Reference Guide Address Data Members
3.1 Address Data Members

The following table lists and describes the data members of the Address object. 

When creating a new Address object, do not specify a VID when you call the update() 
method for Address. CashBox will generate a VID, and return it in the resultant Address 
object.

To link an Address object to an Account object, call the 
Account.setShippingAddress() method. You can also construct an Address object 
without an explicit update() call. For example, if you create an Account object with its 
update() method, and specify the shippingAddress attribute without specifying a VID, 
the call will automatically create a new Address object.

Table 3-1 Address Object Data Members

Data Members Data Type Description

addr1 string The first address line.

addr2 string The second, auxiliary address line.

addr3 string The third, auxiliary address line.

city string The city of the customer’s address.

country string Specifies the geographical region for the customer’s ad-
dress. country is the ISO-3166-1 two-letter code for the 
country (for example, US, GB, or FR), for which CashBox 
computes sales tax.

county string The county of the customer’s address if known.

district string The state, province, or district of the customer’s address.

fax string The customer’s fax number.

latitude decimal The customer’s latitude as a signed decimal. In some cas-
es, Vindicia fills in this field.

longitude decimal The customer’s longitude as a signed decimal. In some 
cases, Vindicia fills in this field.

name string The customer’s full name. (256 character limit.)

phone string The customer’s preferred phone number.

postalCode string The postal code of the customer’s address.

Note: Your payment processor may limit this field to 9 
characters.

VID string Vindicia's Globally Unique Identifier (GUID) for this object. 
When creating a new Address object, leave this field 
blank; it will be automatically populated by CashBox.
© 2014 Vindicia, Inc. Table of Contents The Address Object 83



CashBox 5.0: API Reference Guide Address Methods
3.2 Address Methods

The following table summarizes the methods for the Address object. 

Table 3-2 Address Object Methods

Method Description

fetchByVid Returns an Address object whose VID matches the input.

update Creates or updates an Address object.
© 2014 Vindicia, Inc. Table of Contents The Address Object 84



CashBox 5.0: API Reference Guide fetchByVid
fetchByVid

The fetchByVid method returns an Address object whose VID matches the input. To 
update a stored customer address, first load it into your application with this method. The 
VID you specify as an argument is usually the one you obtain from an Account object.

Input vid: the Address object’s Vindicia identifier, which serves as the search criterion.

Output return: an object of type Return that indicates the success or failure of the call.

address: the Address object whose VID matches the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $accountVid = 'MyVindiciaAccountVID';

// Create a SOAP caller object
$addr = new Address();
$addrVID = "14e1dce6f48e901464fce22145982a59642aa9f4";

// now load an address object by VID
$response = $addr->fetchByVid($addrVID);
if($response['returnCode'] == 200) {

$fetchedAddr = $response['data']->address;
}
else {

// The call was unsuccessful 
print "Return code: " . $response['returnCode'] . "\n";
print "Return string: " . $response['returnString'] . "\n";

}

Return Code Return String

400 One of the following:

• No addresses match VID input-vid.
• Unable to load VID input-vid: error-description.
• Missing required parameter vid.
© 2014 Vindicia, Inc. Table of Contents The Address Object 85



CashBox 5.0: API Reference Guide update
update

The update method creates or updates an Address object. When creating a new 
Address object, do not set a value for VID; CashBox will automatically generate a VID for 
the new object when you call update(). When updating an existing Address object, 
identify it with its VID.

Input address: the populated Address object to create or update. To update an existing object, 
be sure to specify its VID.

Output return: an object of type Return that indicates the success or failure of the call.

address: the Address object that was created or updated.

created: a Boolean flag that, if set to true, indicates that this method has created a new 
Address object. A false setting indicates that update has updated an existing Address 
object.

Returns This call returns the codes listed in Table 1: Standard Return Codes.

Example // To create address information, instantiate an Address object
$address = new Address();

// populate the address object with data
$address->setAddr1('123 Main Street');
$address->setAddr2('Apt. 4');
$address->setCity('San Carlos');
$address->setDistrict('CA'); // this is US state or province
$address->setPostalCode('94070');
$address->setCountry('US');
$address->setPhone('123-456-7890');

$response = $address->update();
if($response['returnCode'] == 200) {

$createdAddr = $response['data']->address;
print "Address create with VID " . $createdAddr->getVID() . "\n";

}

Note You can also create an Address object indirectly by specifying it 
inside other objects that you explicitly create. For example, specify 
shippingAddress when you create Account; specify 
billingAddress when you create PaymentMethod, and etc.
© 2014 Vindicia, Inc. Table of Contents The Address Object 86



CashBox 5.0: API Reference Guide update
4 The AutoBill Object

The AutoBill object defines the relationship between an Account object (the customer 
description), an AutoBillItem object (the product(s) or service(s) purchased), and a 
BillingPlan object (the frequency and amount of the bill). An AutoBill describes the 
purchase by encapsulating the data members and methods that control the purchase terms, 
frequency, and rates for recurring billing, and any additional subscription information. 

AutoBills usually encapsulate the terms of a recurring or renewable subscription. 
Although you may use AutoBill for one-time purchases (typically when an entitlement 
system is required), they are best handled with the Transaction object instead. For 
details, see Section 18: The Transaction Object.

Once created, an AutoBill object automatically generates periodic Transaction objects 
within CashBox, according to the Billing Plan. CashBox processes those transactions with 
your payment processor. The status of a transaction determines the current status of the 
associated AutoBill object, which, in turn, affects the entitlements granted by AutoBill 
to the associated Account object. Be sure to define entitlements with either BillingPlan 
or Product (or both) when creating an AutoBill object.

The constituent objects of an AutoBill object, Account, AutoBillItem, and 
BillingPlan, may be preexisting objects, in which case, you can simply refer to them by 
their IDs when constructing AutoBill. You may also create these objects along with the 
AutoBill object by specifying them inside the AutoBill object with new IDs.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 87



CashBox 5.0: API Reference Guide AutoBill Data Members
4.1 AutoBill Data Members

The following table lists and describes the data members of the AutoBill object. 

Table 4-1 AutoBill Object Data Members

Data Members Data Type Description

account Account Required. The Account object to which this AutoBill object applies. 
If you do not specify a valid VID or merchantAccountId, CashBox 
creates a new Account object.

billingDay int The day of the month on which to bill the customer, which, if unspeci-
fied, defaults to the day of the startTimestamp. The value ranges 
from 1 to 31. CashBox automatically handles calendaring anomalies. 
For example, if you set this value to 31 but the month in question con-
tains only 30 days, recurring billing automatically adjusts to day 30 for 
that month.

This attribute is useful if AutoBill has a yearly or monthly billing plan, 
and if the customer desires to be billed on a specific day of the month. If 
the billing plan is in terms of a daily or weekly cycle, the next billing day 
is determined by the duration and length of the cycle.

Note: If the Billing Plan for the AutoBill includes a Season Set, and if the 
Billing Periods are set to repeat according to Seasons, this data mem-
ber will be automatically reset by CashBox, according to the defined 
repetition cycle.

billingPlan BillingPlan The billing plan to be used for this AutoBill object. This attribute de-
termines the frequency and amount of periodic billing transactions gen-
erated by this AutoBill object.

If you do not specify this attribute, CashBox uses the default billing plan 
associated with the primary Product object in this AutoBill object. If 
you have not defined a default billing plan for Product, be sure to 
specify it here.

If the BillingPlan object already exists, simply populate it with its 
VID or merchantBillingPlanId. If the BillingPlan does not yet 
exist, CashBox creates a new BillingPlan object along with this Au-
toBill object.

See Section 5.1: BillingPlan Data Members.

billingPlanCam-
paignCode

string The Campaign code redeemed on this AutoBill against the price of the 
Billing Plan. To apply a Campaign, use this field to pass in a valid Cou-
pon or Promotion code.

Note: This data member will not be returned.

billingPlanCam-
paignId

string Read only. The unique identifier for a Campaign applied to this Auto-
Bill's BillingPlan. This is a read-only field returned by CashBox for 
informational purposes. Values sent in with a SOAP call will be ignored.

billingPlan-
History

BillingPlan-
HistoryRecord

Read Only. An array of time periods during which BillingPlans were 
associated with the AutoBill. The endDate for the current Billing Plan 
will be blank (unless the AutoBill will not be billed again (for example: af-
ter a cancel() call).

See the BillingPlanHistoryRecord Subobject.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 88



CashBox 5.0: API Reference Guide AutoBill Data Members
billingState-
mentIdentifier

string The identifier on a customer’s billing statement when the customer is 
charged for this AutoBill object. 

If GlobalCollect, MeS, Chase Paymentech or Litle is your payment pro-
cessor, see Appendix A: Custom Billing Statement Identifier Require-
ments in the CashBox Programming Guide for the rules for this string.

credit Credit This data member encapsulates credit available to the AutoBill. 

Token-based credits stored in this attribute may be applied toward 
Transactions generated by this AutoBill for Billing Plans which are de-
fined with a Payment Method of the same Token Type.

Currency-based credits must be of the same Currency type listed in the 
Billing Plan associated with this AutoBill, to be used toward Transac-
tions generated by the AutoBill.

Time-based credits are stored in this attribute only until the next Billing 
Period, at which point they are immediately and fully applied toward the 
AutoBill.

Do not manipulate this attribute directly. Instead, use methods such as 
grantCredit or revokeCredit to manipulate the amount of credit 
available to the AutoBill object. 

See the Credit Subobject.

currency string The ISO 4217 currency code (see www.xe.com/iso4217.htm) for this 
AutoBill object. The default is USD.

customerAuto-
BillName

string Optional. A name you specify (on your customer’s behalf) for this Au-
toBill object, such as 'Home Subscription.'

endTimestamp dateTime This is a read-only attribute in fetched AutoBill objects. 

CashBox will automatically set this timeStamp based on the AutoBill’s 
last successful billing date, plus the length of the next Billing Period, 
plus any grace period you may have defined. This value is reset with ev-
ery successful billing.

Note: Do not set this value when creating or updating an AutoBill.

invoiceTerms int The number of days after the invoice date that a bill is considered delin-
quent, if the AutoBill payment method is MerchantAcceptedPay-
ment. This value will be ignored for all other AutoBill payment 
methods.

items AutoBillItem An array of AutoBillItems to be included in the AutoBill.

See the AutoBillItem Subobject.

merchantAffili-
ateId

string Your ID (a free-form string of 128 characters or less) for the affiliate that 
submitted this AutoBill object, if any.

merchantAffili-
ateSubId

string Your ID (a free-form string of 128 characters or less) for the subaffiliate 
that submitted this AutoBill object. This ID enables more detailed 
tracking of affiliate programs, such as promotional campaigns.

merchantAuto-
BillId

string Your unique identifier for this AutoBill object. 

Table 4-1 AutoBill Object Data Members  (Continued)

Data Members Data Type Description
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 89



CashBox 5.0: API Reference Guide AutoBill Data Members
minimumCommit-
ment

int The number of billing cycles the customer is contractually obligated to 
complete before cancelling the subscription. For example, if you offer 
special pricing for a certain number of automatic billing renewals, you 
can track a customer’s initial agreement to those terms with this data 
member.

When you make a call to cancel an AutoBill object, CashBox checks 
this attribute. If AutoBill has not completed the minimum commitment 
period, CashBox performs the cancellation only if the force parameter in 
the cancel() call is set to true.

nameValues NameValuePair An (optional) array of name–value pair items for this AutoBill object. 
Some names are reserved for specific purposes. 

Use vin:Division to route this AutoBill’s transactions to your 
payment processor as part of a business division, unit, or group you 
have registered with the processor.

CashBox provides four name-value pairs for use with European Direct 
Debit (EDD) payment methods:

Use name vin:MandateFlag and value 1 to associate the EDD 
Payment Method with the AutoBill. 

Use name vin:MandateVersion and value 1.0.1, to associate a 
mandate document of version 1.0.1 with the object. 

Use name vin:MandateID to pass the Mandate ID field of the 
EDD Extension record to Chase Paymentech.

Use name vin:MandateApprovalDate to pass the Signature 
Date field of the EDD Extension Record to Chase Paymentech.

Note: All name-value pairs included with an AutoBill object will be auto-
matically copied to any resultant Transactions.

See Section 10: The NameValuePair Object.

nextBilling Transaction An object of type Transaction that represents the next projected bill-
ing for this AutoBill, if any.

See Section 18.1: Transaction Data Members.

paymentMethod PaymentMethod Vindicia’s identifier (VID) for the PaymentMethod object for this Auto-
Bill. If you do not specify an existing VID or merchantPayment-
MethodId, CashBox creates a new PaymentMethod object with this 
AutoBill object, and adds it to this AutoBill object’s account.

If you do not specify this attribute, the AutoBill will automatically use 
the preferred PaymentMethod object associated with the Account.

See Section 11.1: PaymentMethod Data Members.

sourceIp string The IP address of the machine from which the customer requested the 
creation of this AutoBill object. This attribute is required if you wish to 
score a transaction associated with the AutoBill for risk screening. 
Some payment methods, such as European Direct Debit, also require 
this attribute.

startTimestamp dateTime A timestamp that specifies the start date and time for this AutoBill 
object. If unspecified, the value defaults to today and the current time.

Table 4-1 AutoBill Object Data Members  (Continued)

Data Members Data Type Description
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 90



CashBox 5.0: API Reference Guide AutoBill Data Members
statementFormat StatementFormat Defines the billing format used to send statements to a customer. De-
faults to DoNotSend if not specified.

Valid input:

• DoNotSend
• Inline
• Attachment

statementOffset int Days prior to billing that a statement will be sent. This value must be 
"null" or "0" if the AutoBill’s PaymentMethodType is MerchantAc-
ceptedPayment. For conventionally-funded AutoBills, this value must 
be less than the prebilling notification days (if specified). The value will 
be ignored if statementFormat is DoNotSend.

statementTem-
plateId

string Your identifier for a pre-defined statement template. If this value is null 
(or does not match any pre-defined statement templates), the CashBox-
default template will be used.

status AutoBillStatus This AutoBill object’s current status. CashBox automatically sets the 
status of an AutoBill object, depending on the success or failure of 
the latest billing transaction. Therefore, do not set this status with an 
API call to CashBox.

See the AutoBillStatus Subobject.

VID string Vindicia's Globally Unique Identifier (GUID) for this object. When creat-
ing a new AutoBill object, leave this field blank; it will be automatical-
ly populated by CashBox.

warnOnExpira-
tion

Boolean A flag that, if set to true, specifies that the customer be warned by 
email of an upcoming expiration of a trial period or subscription. The de-
fault is false. For more information, see the expireWarningDays at-
tribute in the BillingPlanPeriod object.

Table 4-1 AutoBill Object Data Members  (Continued)

Data Members Data Type Description
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 91



CashBox 5.0: API Reference Guide AutoBill Subobjects
4.2 AutoBill Subobjects

The AutoBill object has three subobjects:

• AutoBillItem Subobject

• AutoBillItemModification Subobject

• AutoBillStatus Subobject

• BillingPlanHistoryRecord Subobject

• PaymentDetails Subobject

AutoBillItem Subobject

The AutoBillItem object allows you to add multiple items to an AutoBill, and define the 
duration of their inclusion.

The following table lists and describes the data members of the AutoBillItem object. 

Table 4-2 AutoBillItem Object Data Members

Data Members Data Type Description

addedDate dateTime Read Only. Specifies the dateTime when the Auto-
BillItem was added to the AutoBill.

amount decimal The amount to bill. If non-null, this field will override 
the Product’s price. Value cannot be negative.

This field is populated only if the you wish to override 
the default (product-based) price for the item. Other-
wise, it is blank.

Note: AutoBillItems may have an amount, or a 
ratePlan, but not both.

campaignCode string The Campaign code redeemed on this AutoBillI-
tem. To apply a Campaign, use this field to pass in a 
valid Coupon or Promotion code.

Note: This data member will not be returned.

campaignId string Read only. The unique identifier for a Campaign ap-
plied to this AutoBillItem. This is a read-only field 
returned by CashBox for informational purposes. Val-
ues sent in with a SOAP call will be ignored.

currency string The ISO 4217 currency code to be used for the over-
ride amount. This value will be ignored if amount is 
null.

cycles int The number of billing cycles this item will be active. If 
null, the item will remain active until explicitly re-
moved.

cyclesRemain-
ing

int A read-only field indicating how many billing cycles 
remain for this item.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 92



CashBox 5.0: API Reference Guide AutoBill Subobjects
event-
Initializer

Event The initial number of Rated Units associated with this 
item, if it is rated, and if it is License-based.

See the Event Subobject.

index int The index number of the item in the items field of an 
AutoBill. (Should be unique in array. First item 
should have index 0.)

merchantAuto-
BillItemId

string Your unique identifier for this AutoBillItem object. 

product Product The Product to be AutoBilled. When creating a new 
AutoBillItem, an existing VID or SKU must be 
specified or a new Product will be created. It is gen-
erally recommended that Products be created ex-
plicitly in advance, rather than implicitly.

See Section 13.1: Product Data Members.

ratePlan RatePlan The Rate Plan associated with this Item.

Note: AutoBillItems may have an amount, or a 
ratePlan, but not both.

See Section 14.1: RatePlan Data Members.

removedDate dateTime A read-only attribute indicating the time this item was 
removed.

startDate string Specifies when the AutoBill will begin billing for the 
AutoBillItem, and when the item’s entitlements 
will become Active.

Valid input includes null (for which the startDate 
will be today), yyyy-mm-dd, or a time interval, such 
as 3 days, 1 year, or 2 seasons.

token Token The token associated with amount (if this is a Token-
based AutoBill). This value will be ignored if amount 
is null.

transitioned-
FromAutoBillI-
temVid

string Read Only. The unique Vindicia identifier of the Au-
toBillItem this item replaced as the result of an 
AutoBill.modify call.

transitioned-
FromMerchant-
AutoBillItemId

string Read Only. Your identifier for the AutoBillItem 
this item replaced as the result of an Auto-
Bill.modify call.

transitioned-
ToAutoBillI-
temVid

string Read Only. The unique Vindicia identifier of the Au-
toBillItem that replaced this item as a result of an 
AutoBill.modify call.

Table 4-2 AutoBillItem Object Data Members  (Continued)

Data Members Data Type Description
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 93



CashBox 5.0: API Reference Guide AutoBill Subobjects
transitioned-
ToMerchantAu-
toBillItemId

string Read Only. Your identifier for the AutoBillItem 
that replaced this item as a result of an Auto-
Bill.modify call.

VID string Vindicia's Globally Unique Identifier (GUID) for this 
object. When creating a new AutoBillItem object, 
leave this field blank; it will be automatically populat-
ed by CashBox. 

Table 4-2 AutoBillItem Object Data Members  (Continued)

Data Members Data Type Description
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 94



CashBox 5.0: API Reference Guide AutoBill Subobjects
AutoBillItemModification Subobject

This object is used with the AutoBill.modify call, and lists the AutoBillItems to add 
to or remove from an AutoBill. This object must uniquely identify an AutoBillItem, and 
may include the Item’s VID, index, merchantAutoBillItemId, or Product.

The following table lists and describes the data members of the 
AutoBillItemModification subobject. 

Table 4-3 AutoBillItemModification Object Data Members

Data Members Data Type Description

removeAutoBil-
lItem

AutoBillItem An AutoBillItem to remove from the AutoBill. 

addAutoBillI-
tem

AutoBillItem An AutoBillItem to add to the AutoBill.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 95



CashBox 5.0: API Reference Guide AutoBill Subobjects
AutoBillStatus Subobject

The AutoBillStatus object describes the status of the AutoBill object. Please note 
that the Status displayed in the Portal differs from that available through the API. Please use 
the CashBox Portal to view a more granular status for Active AutoBills. 

Table 4-4 AutoBillStatus Object Data Members

Data Members Description Status 
(CashBox GUI)

Active The AutoBill object was recently created and CashBox has 
not yet completed its first billing transaction. This status is also 
used for a new AutoBill object that is due to start at a future 
date.

New

The AutoBill is currently in force. This status is superseded by 
the end-date on the AutoBill object. After that date, the sta-
tus remains Active, but billing by AutoBill stops unless the 
date is extended by the next billing.

Good Standing

This status is used if the AutoBill is paid with payment methods 
such as ECP or PayPal. If the AutoBill object’s status was 
New and the first transaction processed by CashBox reached 
an AuthorizedPending status (meaning that the payment 
processor has accepted the transaction but further action by 
the customer or a bank is necessary), CashBox sets the Auto-
Bill’s status to Pending.

Pending

If CashBox processes a transaction for an AutoBill, but the 
payment processor declines it with a return code that suggests 
that the transaction might succeed on a retry, CashBox sets 
the AutoBill’s status to Soft Error. That means CashBox will 
attempt to reprocess the transaction on a date determined by 
your retry schedule.

Soft Error

Cancelled The customer has opted out of recurring billing, or has can-
celled the service. This status is reached if you call cancel on 
the AutoBill object or stopAutoBilling on the Account 
object, or if a chargeback is received against a transaction 
generated by the AutoBill object. Note that the customer 
who owns the AutoBill object is entitled until the AutoBill’s 
end-date.

Stopped
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 96



CashBox 5.0: API Reference Guide AutoBill Subobjects
PendingCus-
tomerAction

The AutoBill object has been created but active billing will 
not start until the customer has completed a step that validates 
the AutoBill object’s payment method. This status is 
reached if an AutoBill is paid through a payment method 
such as PayPal. Be sure to create such an AutoBill object 
with payment method validation turned on, so that the custom-
er must complete the validation and confirm a recurring billing 
agreement on the PayPal site. 

The AutoBill object will remain in this status until the cus-
tomer has completed validation. If your customer does not val-
idate the Transaction within 3 hours of initiation, CashBox 
will automatically cancel the Transaction, which will cause 
the AutoBill to move into a status of Hard Error.

Pending 

Customer Action

Suspended The AutoBill object is no longer active because of a hard 
fail of the last transaction billing. That means the payment pro-
cessor rejected the transaction with a return code that indi-
cates that the transaction will not be approved even on a retry.

Hard Error

Upgraded The AutoBill has been upgraded. You must explicitly set 
this status by calling update() on the AutoBill object. 

Upgraded

Table 4-4 AutoBillStatus Object Data Members  (Continued)

Data Members Description Status 
(CashBox GUI)
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 97



CashBox 5.0: API Reference Guide AutoBill Subobjects
BillingPlanHistoryRecord Subobject

This object is returned by the AutoBill.modify call, and lists a record of the period 
during which a BillingPlan was associated with the AutoBill.

The following table lists and describes the data members of the 
BillingPlanHistoryRecord subobject. 

Table 4-5 BillingPlanHistoryRecord Object Data Members

Data Members Data Type Description

merchantBill-
ingPlanId

string Identifier for the BillingPlan

startDate dateTime The date the BillingPlan was first associated with 
the AutoBill.

endDate dateTime The Date the BillingPlan was removed from the Auto-
Bill.

Note: The endDate will be blank for the current Bill-
ingPlan.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 98



CashBox 5.0: API Reference Guide AutoBill Subobjects
PaymentDetails Subobject

This object is returned by the AutoBill.fetchRemainingPaymentDetails call, and 
lists payment details for the AutoBillItem.

The following table lists and describes the data members of the PaymentDetails object. 

Table 4-6 PaymentDetails Object Data Members

Data Members Data Type Description

autobillItemV-
id

string Vindicia's unique name (VID) for the AutoBillItem.

merchantAuto-
BillItemId

string Your unique identifier for this AutoBillItem object. 

merchantPro-
ductId

string Your unique identifier for the product. If you track your 
products internally by SKU, use the SKU as your 
merchantProductId, to allow you to map your lo-
cal records to CashBox Transactions that have this 
AutoBillItem as a line item.

productVid string Vindicia's unique name (VID) for the Product.

remainingBal-
anceInSet

decimal The balance remaining in the AutoBill for the Auto-
BillItem.

remainingPay-
mentsInSet

int The number of payments remaining in the AutoBill for 
the AutoBillItem.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 99



CashBox 5.0: API Reference Guide AutoBill Methods
4.3 AutoBill Methods

The following table summarizes the methods for the AutoBill object. 

Table 4-7 AutoBill Object Methods

Method Description

addCampaign Adds a Campaign to an existing AutoBill.

addCharge Adds a non-recurring charge to an AutoBill.

cancel Cancels an AutoBill object.

changeBillingDayOfMonth Updates the monthly billing day.

delayBillingByDays Delays the next billing by the specified number of days.

delayBillingToDate Delays the next billing until the specified date.

fetchAllCreditHistory Returns credit history for all AutoBills.

fetchAllInSeason Returns an array of all in season AutoBills.

fetchAllOffSeason Returns an array of all off-season AutoBills.

fetchByAccount Returns one or more AutoBill objects whose Account object 
matches the input.

fetchByAccountAndProduct Returns all AutoBill objects whose Account and Product ob-
jects match the input.

fetchByEmail Returns one or more AutoBill objects whose email address 
matches the input.

fetchByMerchantAutoBillId Returns an AutoBill object whose ID assigned by you (mer-
chantAutoBillId) matches the input.

fetchByVid Returns an AutoBill object whose VID matches the input.

fetchByWebSessionVid Returns an AutoBill object whose WebSession VID matches the 
input.

fetchCreditHistory Returns an audit log of credit-related events for the specified Au-
toBill, or for all AutoBills.

fetchDailyInvoiceBillings Returns an array of Transaction objects, with MerchantAccepted-
Payment Payment Methods, that must be billed for the day.

fetchDeltaSince Returns one or more AutoBill objects whose status has changed 
since the specified timestamp.

fetchFutureRebills Returns an array of planned future billing Transactions, that do not 
yet exist in CashBox, for the specified AutoBill object. 

fetchInvoice Returns an Invoice for the given invoice ID as plain text or a PDF.

fetchInvoiceNumbers Fetches the list of invoice numbers of invoices in the given state, 
for the given AutoBill.

fetchRemainingPaymentDe-
tails

Returns information on an AutoBill’s remaining payments after the 
most recent payment.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 100



CashBox 5.0: API Reference Guide AutoBill Methods
fetchUpgradeHistoryByMer-
chantAutoBillId

Returns an AutoBill’s upgrade history, given the merchantAuto-
BillId.

fetchUpgradeHistoryByVid Returns an AutoBill’s upgrade history, given the VID.

finalizeCustomerAction Completes processing of a Transaction after the customer finishes 
payment activities at the payment provider-hosted web pages, and 
is redirected to your site. 

finalizePayPalAuth Informs CashBox about the final authorization status of a validation 
transaction generated when you create an AutoBill paid for with 
a PayPal-based payment method.

grantCredit Adds credit to an AutoBill. Token- and currency-based credit 
thus added are stored in the AutoBill’s credit data member. 
Time-based credit thus granted to the AutoBill is immediately 
applied to the AutoBill by extending it.

makePayment Enters a payment against an AutoBill.

migrate Allows you to import data to CashBox for billing cycles completed 
through a different system.

modify Allows you to change an AutoBill, while maintaining its history.

redeemGiftCard Redeems a specified gift card, and adds equivalent credit to the 
AutoBill.

reversePayment Reverses an AutoBill payment made using makePayment. This 
method may only be used with payments using MerchantAc-
ceptedPayment payment methods.

revokeCredit Deducts from credit available to an AutoBill. Time-based credit 
cannot be revoked.

update Creates a new AutoBill object, or updates an existing one.

writeOffInvoice Marks an Invoice object as writtenOff, the debt unable to be 
collected.

Table 4-7 AutoBill Object Methods  (Continued)

Method Description
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 101



CashBox 5.0: API Reference Guide addCampaign
addCampaign

The addCampaign method allows you to add a Campaign to an existing AutoBill.

This method will automatically validate the Campaign, and its eligibility, before adding the 
Campaign, and updating the AutoBill, and will not change the billing date for the AutoBill.

Input autobill: the object of type AutoBill to which this Campaign should be added.

product: an array of Products to which the Campaign discount should be applied. (This 
product must already exist in CashBox.) The discount will be applied to any AutoBillItem 
on the specified AutoBill that includes this product. Specify either item or product; but not 
both. (Optional.)

item: the AutoBillItem to which the Campaign discount should be applied. This item 
must already exist in CashBox and be associated with the specified AutoBill. Specify either 
item or product; but not both. (Optional.)

applyToBillingPlan: a Boolean flag that, if set to true, will apply the Campaign to the 
BillingPlan on the AutoBill. (May be combined with a discounted AutoBillItem.) 
Default is false. 

campaignCode: the Coupon or Promotion Code used to obtain a discount on the 
AutoBill. (Required.)

dryrun: a Boolean flag that, if set to true, will return the updated AutoBill, without 
recording the result in the CashBox database. Use this method to compute the cost of an 
AutoBill without committing the change. (The projected billing amount will be returned in 
the Transaction object of the nextBilling data member of the returned AutoBill.)

If the AutoBill did not exist before, it will not exist afterward; if it did exist before, it will 
not change. (No payment method validations, authorizations or charges will be performed 
if dryrun is true.)

Output return: an object of type Return that indicates the success or failure of the call.

autobill: the updated AutoBill.

Note: If neither product nor item is passed in with this call, CashBox will 
apply the Campaign discount to all eligible items on the AutoBill.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 102



CashBox 5.0: API Reference Guide addCampaign
Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $autobill = new AutoBill();
$autobill->setMerchantAutoBillId($abID);// for some $abID
$response = $autobill->addCampaign(

'promoABC',
);

// check $response

Return Code Return String

400 One of the following:

• AutoBill not found.
• Campaign code input-campaignCode is not usable.
• Must specify a campaignCode with addCampaign.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 103



CashBox 5.0: API Reference Guide addCharge
addCharge

The addCharge method allows you to add a non-recurring charge to an AutoBill.

Input autobill: the object of type AutoBill to which this addition applies.

sku: the SKU for the charge added to AutoBill. If SKU is specified, and matches a 
Product merchantProductId, and amount is null, an attempt will be made to determine 
the charge amount from the Product.

description: a text string description of the charge. (256 or fewer characters.)

amount: the amount to charge. Required, unless the price is based on the SKU.

currency: the ISO 4217 currency code for the amount. Either token, or currency must be 
specified.

token: the Token associated with the amount (if this is a Token-based AutoBill). Either 
token or currency must be specified.

quantity: the value to be included in charge. Defaults to 1, if not specified. 

campaignCode: Optional Coupon or Promotion Code, used to obtain a discount on this 
charge.

dryrun: a Boolean flag that, if set to true, will return the updated AutoBill, without 
recording the result in the CashBox database.

Output return: an object of type Return that indicates the success or failure of the call.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $autobill = new AutoBill();
$autobill->setMerchantAutoBillId($abID); // for some $abID

$response = $autobill->addCharge(
'prod-bac',// product Id
'fee for swapping tiles',
null, // will get tax class from Product
1.50,
'USD',
null, // not a token
1 // just once

);
// check $response

Return Code Return String

400 One of the following:

• AutoBill not found.
• Failed to load token: error-description.
• Failed to add charge to AutoBill: error-description.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 104



CashBox 5.0: API Reference Guide cancel
cancel

The cancel method cancels a subscription (AutoBill).

A cancelled AutoBill object no longer generates periodic billing transactions. However, if 
CashBox has already picked up a current billing transaction to send to your payment 
processor, this call does not cancel the transaction, and you might choose to refund it later.

With this method, you may cancel an AutoBill object within the minimum commitment 
period by enabling the force option. 

Cancelling an AutoBill does not automatically disentitle the customer immediately. Calling 
cancel on an AutoBill allows entitlement to continue, as determined by the last 
successful billing. If you wish to disentitle immediately upon cancellation of the AutoBill, 
set the disentitle flag to true.

Cancelling an AutoBill before the minimum commitment period is over, will stop the 
AutoBill, but allow the customer to continue to access the service. To immediately 
disentitle the customer, set the disentitle flag to true when making this call.

Input autobill: the AutoBill object to cancel. You can identify this object with either its VID or 
your AutoBill ID (merchantAutoBillId).

disentitle: a Boolean flag that, if set to true, cancels the related entitlements immediately. 
Otherwise, the entitlements will last till the end-date, as determined by the last successful 
billing for this AutoBill object.

force: a Boolean flag that, if set to true, cancels the subscription even if the minimum 
commitment period for this AutoBill object is not over yet.

settle: a Boolean flag that specifies whether to settle the AutoBill when it is cancelled. If 
true, an attempt will be made to settle the AutoBill by either refunding the customer for a 
portion of the pre-paid use that will not be available, or by charging the customer for non-
recurring-charges that the customer has not yet paid. If false or not specified, the charges 
or credits remaining on the AutoBill will not be changed, and will be carried forward in the 
balance for the AutoBill. How the AutoBill is settled will be reflected by the 
transactions/refunds included in the output. 

Output return: an object of type Return that indicates the success or failure of the call.

autobill: the AutoBill object that was cancelled.

transactions: an array of Transaction objects that may be refunded if the settle input 
field is set to true.

refunds: an array of Refund objects that may be refunded if the settle input field is set to 
true.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 105



CashBox 5.0: API Reference Guide cancel
Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $autobillVid = '14e1dce6f48e901464fce22145982a59642aa9f4';

// Create an autobill object
$autobill = new AutoBill();
$autobill->setVID($autobillVid);
$immediateDisentitlement = false;
$force = true; // allowing to cancel even if min commitment 

// is not fulfilled
$response = $autobill->cancel($immediateDisentitlement, $force)
if($response['returnCode'] == 200) {

$cancelledAutoBill = $response['data']->autobill;

print "AutoBill has been successfully cancelled\n";

// If you are using CashBox API version 3.3 or greater you can
// also use the following construct

print "You are entitled to use current services till "
. $cancelledAutoBill->getEndTimestamp() . "\n";

}

Return Code Return String

400 One of the following:

• Unable to load AutoBill: No match.
• Unable to load AutoBill: error-description.
• Error saving AutoBill: error-description.

403 Minimum commitment not fulfilled for this AutoBill.

405 Unable to cancel upgraded AutoBill.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 106



CashBox 5.0: API Reference Guide changeBillingDayOfMonth
changeBillingDayOfMonth

The changeBillingDayOfMonth method updates the monthly billing day for a customer’s 
subscription, assuming that the AutoBill object that represents the subscription is in good 
standing. If the next AutoBill billing has not yet been processed, this method also adjusts 
its date.

This method is useful if monthly or yearly billing plans apply to the AutoBill object. Once 
you have updated the billing day with this method, subsequent billing will happen on the 
same day of every month or year. However, if your billing plan is in days or weeks, this 
method changes only the next billing date and CashBox will compute the subsequent billing 
dates according to the duration of your billing period.

Input autobill: the AutoBill object whose monthly billing day you would like to update. You can 
identify this object with either its VID or your AutoBill ID (merchantAutoBillId).

dayOfMonth: the numeric day of the month (1 to 31) for the new billing. This method 
automatically adjusts this day for the months in which the day is not reached. For example, if 
dayOfMonth is 31, the billing for February occurs on either the 28th or the 29th.

Output return: an object of type Return that indicates the success or failure of the call.

autobill: the AutoBill object whose monthly billing day was updated.

nextBillingDate: the date of the next billing, if available.

nextBillingAmount: the amount of the next billing, if available.

nextBillingCurrency: the currency of the next billing, if available.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example // to change the billing day of the month

$autobill = new AutoBill();
$autobill->setMerchantAutoBillId('xyz');
$response = $autobill->changeBillingDayOfMonth($productVid, 15);
if($response['returnCode'] == 200) {

$nextBillingDate = $response['nextBillingDate'];
$nextBillingAmt = $response['nextBillingAmount'];

print "Customer will be billed on " . $nextBillingDate. 
" for US $" . $nextBillingAmt . "\n";

}

Return Code Return String

400 One of the following:

• Date to delay to must be specified and have a length.
• No AutoBill specified in arguments.
• Unable to delay billing to date: internal-error.
• Unable to change billing day of month: error-description
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 107



CashBox 5.0: API Reference Guide delayBillingByDays
delayBillingByDays

The delayBillingByDays method delays the next billing and extends the AutoBill 
end-date, which corresponds to that for the entitlements granted by AutoBill, by the 
specified number of days. Call this method to credit the customer with additional 
subscription time, by postponing a customer’s next billing by a finite duration.

Input autobill: the AutoBill object whose billing to delay. Identify this object by populating it with 
its VID or merchantAutoBillId.

delayDays: the number of days by which to delay the billing. (Must be a positive integer.)

movePermanently: this parameter is not in use.

Output return: an object of type Return that indicates the success or failure of the call.

autobill: the AutoBill object whose billing was delayed by the input number of days.

nextBillingDate: the date of the next billing after the delay is in effect.

nextBillingAmount: the amount of the next billing after the delay is in effect.

nextBillingCurrency: the currency of the next billing after the delay is in effect.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $autobill = new AutoBill();
$autobill->setMerchantAutoBillId('xyz');
$response = $autobill->delayBillingByDays(25, true);

if($response['returnCode'] == 200) {
$nextBillingDate = $response['nextBillingDate'];
$nextBillingAmt = $response['nextBillingAmount'];
print "Customer will be billed on " . $nextBillingDate. 

" for US $" . $nextBillingAmt . "\n";
}

Return Code Return String

400 One of the following:

• Days to delay must be a positive integer.
• Must specify AutoBill to delay billing for.
• Unable to delay billing to date: error-description.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 108



CashBox 5.0: API Reference Guide delayBillingToDate
delayBillingToDate

The delayBillingToDate method is similar to delayBillingByDays but delays the 
next billing for an AutoBill object until the specified date. Instead of specifying the number 
of days for the delay, you specify the exact date on which you would like the next billing to 
occur.

Input autobill: the AutoBill object whose billing to delay. Identify this object by populating it with 
its VID or merchantAutoBillId.

newBillingDate: the date until which to delay billing.

movePermanently: this parameter is not in use.

Output return: an object of type Return that indicates the success or failure of the call.

autobill: the AutoBill object whose billing was delayed to the specified date.

nextBillingDate: the date of the next billing.

nextBillingAmount: the amount of the next billing.

nextBillingCurrency: the currency of the next billing.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 One of the following:

• Must specify AutoBill to delay billing for.
• Date to delay to must be specified and have a length.
• Unable to delay billing to date: internal-error.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 109



CashBox 5.0: API Reference Guide delayBillingToDate
Example // to delay billing to a specified date

$autobill = new AutoBill();
$autobill->setMerchantAutoBillId('xyz');

$darray = getdate();
$day = $darray[mday];
$year = $darray[year];
$mon = $darray[mon] + 6;
if ($mon > 12) {

$year++;
$mon -= 12;

}
$timestamp = mktime(0, 0, 0, $mon, $day, $year);

$response = $autobill->delayBillingToDate($timestamp, true);

if($response['returnCode'] == 200) {
$nextBillingDate = $response['nextBillingDate'];
$nextBillingAmt = $response['nextBillingAmount'];

print "Customer will be billed on " . $nextBillingDate. 
" for US $" . $nextBillingAmt . "\n";

}

© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 110



CashBox 5.0: API Reference Guide fetchAllCreditHistory
fetchAllCreditHistory

The fetchAllCreditHistory method returns credit history for all AutoBills.

For more information, see the Account object’s fetchAllCreditHistory method.

Input timestamp: the starting timestamp (lower limit) for the range of credit event logs you wish to 
retrieve.

endTimestamp: the ending timestamp (upper limit) for the range of credit event logs you 
wish to retrieve.

page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to display per page per call. This value must be greater 
than 0.

Output return: an object of type Return that indicates the success or failure of the call.

creditEventLogs: an array of CreditEventLog objects. Each of these objects describes a 
specific credit-related event or action associated with the input AutoBill. (See Table 1-9: 
CreditEventLog Object Data Members for details.)

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $rc = $autobill_factory->fetchAllCreditHistory("2012-12-25", 
"2013-01-01", 0, 100);

// from Christmas to New Year's, first page, limit 100 to the page
// check response in $rc

$event_log_array = $rc->{creditEventLogs};
foreach ($event_log_array as $event_log)
{

print $event_log->timeStamp,
"\t",

$event_log->type,
"\t",

$event_log->credit->currencyAmounts->amount,
"\n";

}

Note: This example assumes that the credits are in currency amounts, 
and therefore specifies a minimal number of parameters.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 111



CashBox 5.0: API Reference Guide fetchAllInSeason
fetchAllInSeason

The fetchAllInSeason method returns an array of all in season AutoBills.

Input page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to display per page per call. This value must be greater 
than 0.

nowDate: the (optional) date to query. (Defaults to today.)

Output return: an object of type Return that indicates the success or failure of the call.

autoBills: an array of in season AutoBill objects.

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $rc = $autobill_factory->fetchAllInSeason(0, 100, "2013-10-01");
// check $rc
$ab_array = $rc->{autoBills};
foreach ($ab_array as $ab)
{

print $ab->merchantAutoBillId, "\n";
}

Note: This example returns all AutoBills that were in season 2013-10-01.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 112



CashBox 5.0: API Reference Guide fetchAllOffSeason
fetchAllOffSeason

The fetchAllOffSeason method returns an array of all off-season AutoBills.

Input page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to display per page per call. This value must be greater 
than 0.

nowDate: the (optional) date to query. (Defaults to today.)

Output return: an object of type Return that indicates the success or failure of the call.

autoBills: an array of off-season AutoBill objects.

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $rc = $autobill_factory->fetchAllOffSeason(0, 100, "2013-10-01");
// check $rc
$ab_array = $rc->{autoBills};
foreach ($ab_array as $ab)
{

print $ab->merchantAutoBillId, "\n";
}

Note: This example returns all AutoBills that were not in season on 2013-
10-01.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 113



CashBox 5.0: API Reference Guide fetchByAccount
fetchByAccount

The fetchByAccount method returns one or more AutoBill objects whose Account 
object matches the input. This method is useful for looking up a customer’s subscriptions on 
your site.

Input account: the Account object that serves as the search criterion. Use the 
merchantAccountId or VID to identify the object.

includeChildren: an optional Boolean flag that, if set to true, includes any children 
associated with this Account. If this flag is omitted, CashBox will interpret it as false, and 
constructs the query without looking at any child's account.

Output return: an object of type Return that indicates the success or failure of the call.

autobills: an array of one or more AutoBill objects whose Account object matches the 
input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example // Create and populate an Account object
$account = new Account();
$account->setMerchantAccountId('abc101');

$autobill = new AutoBill();

$response = $autobill->fetchByAccount($account);
if($response['returnCode'] == 200) {

$fetchedAutoBills= $response['data']->autobills;

foreach ($fetchedAutoBills as $autobill) {

// process each autobill found here
print "Found account with id: " 

. $autobill->getMerchantAutoBillId() . "\n";

}
}

Return Code Return String

400 Data validation error: error-description.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 114



CashBox 5.0: API Reference Guide fetchByAccountAndProduct
fetchByAccountAndProduct

The fetchByAccountAndProduct method returns all AutoBill objects that have the 
passed in Account and Product. This method is useful for looking up a customer’s 
subscriptions to a specific product on your site.

Input account: the Account object that serves as one of the two search criteria. Use the 
merchantAccountId or VID to identify the object.

product: the Product object that serves as one of the two search criteria. Identify this 
object with either its VID or your product ID (merchantProductId).

includeChildren: an optional Boolean flag that, if set to true, includes all children 
associated with this Account. If false or omitted, children will not be included in the query. 

Output return: an object of type Return that indicates the success or failure of the call.

autobills: an array of one or more AutoBill objects whose Account and Product 
objects match the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example // Create and populate an Account object
$account = new Account();
$account->setMerchantAccountId('abc101');

// Create and populate an Product object
$prod = new Product();
$prod->setMerchantProductId('xyz212');

$autobill = new AutoBill();

$response = $autobill->fetchByAccountAndProduct($account, $prod);
if($response['returnCode'] == 200) {

$fetchedAutoBills= $response['data']->autobills;

foreach ($fetchedAutoBills as $autobill) {

// process each autobill found here
print "Found account with id: " 

. $autobill->getMerchantAutoBillId() . "\n";
}

}

Return Code Return String

400 Data validation error: error-description.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 115



CashBox 5.0: API Reference Guide fetchByEmail
fetchByEmail

The fetchByEmail method returns one or more AutoBill objects associated with the 
Account objects whose email address matches the input. This method is useful for 
identifying all the subscriptions for a specific email address. 

Input email: the email address (a string) that serves as the search criterion.

Output return: an object of type Return that indicates the success or failure of the call.

autobills: an array of one or more AutoBill objects whose Account objects’ email 
address matches the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $autobill = new AutoBill();

$response = $autobill->fetchByEmail('xyz@mail.com');
if($response['returnCode'] == 200) {

$fetchedAutoBills= $response['data']->autobills;

foreach ($fetchedAutoBills as $autobill) {

// process each autobill found here
print "Found account with id: " 

. $autobill->getMerchantAutoBillId() . "\n";
}

}

Return Code Return String

400 Must specify email address to load by!

404 No AutoBills found for email address input-email-address: 
No match.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 116



CashBox 5.0: API Reference Guide fetchByMerchantAutoBillId
fetchByMerchantAutoBillId

The fetchByMerchantAutoBillId method returns an AutoBill object whose ID 
assigned by you (merchantAutoBillId) matches the input. 

Input merchantAutoBillId: your AutoBill ID (merchantAutoBillId), which serves as the 
search criterion.

Output return: an object of type Return that indicates the success or failure of the call.

autobill: the AutoBill object whose ID assigned by you (merchantAutoBillId) 
matches the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example // Create a SOAP caller object
$autobill = new AutoBill();
$abId = "34583";

$response = $autobill->fetchByMerchantAutoBillId($abId);
if($response['returnCode'] == 200) {

$fetchedAutoBill = $response['data']->autobill;
}
else {

// The call was unsuccessful 
print "Return code: " . $response['returnCode'] . "\n";
print "Return string: " . $response['returnString'] . "\n";

}

Return Code Return String

400 One of the following:

• No autobill matches serial number input-
merchantAutoBillId.

• Unable to load autobill by serial number input-
merchantAutoBillId: error-description.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 117



CashBox 5.0: API Reference Guide fetchByVid
fetchByVid

The fetchByVid method returns an AutoBill object whose VID matches the input.

When you create a new AutoBill object with the update() call, CashBox assigns the 
object a unique ID (VID), which is inside the AutoBill object returned to you by the call. 
Store this VID locally to use it to retrieve or reference the AutoBill object in later calls.

Input vid: the AutoBill object’s Vindicia identifier, which serves as the search criterion.

Output return: an object of type Return that indicates the success or failure of the call.

autobill: the AutoBill object whose VID matches the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $autobillVid = '8367ae7148d071a4e25c24bef856f68f71ee03e3';

// Create an autobill object
$autobill = new AutoBill();

// now load an autobill into the autobill object by VID
$response = $autobill->fetchByVid($autobillVid);

if($response['returnCode'] == 200) {
$fetchedAutoBill = $response['data']->autobill;

// process fetched autobill here
}

Return Code Return String

400 One of the following:

• Unable to load autobill by VID input-vid: error.
• Must specify VID to load by!

404 Unable to load autobill by VID input-vid: No match.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 118



CashBox 5.0: API Reference Guide fetchByWebSessionVid
fetchByWebSessionVid

Use Vindicia’s Hosted Order Automation (HOA) feature to create CashBox objects that 
contain sensitive payment information, such as credit-card account numbers, directly on 
Vindicia’s servers, after your customers have submitted such data through a specially 
designed Web order form you serve from your server. Because HOA bypasses your server 
altogether at form submission, you need not comply with PCI requirements. See Chapter 13: 
Hosted Order Automation in the CashBox Programming Guide for details. 

Within your HOA implementation, you may call the fetchByWebSessionVid method to 
retrieve the AutoBill object, created by HOA on Vindicia’s servers when a customer 
submits an order form which results in a one-time or recurring bill. You must create a 
WebSession object on Vindicia’s servers before serving the form to your customer to track 
the form’s submission to Vindicia. For more information, see Section 19: The WebSession 
Object.

The WebSession object’s VID serves as the tracking ID for various activities, starting from 
serving the order form to a customer, and ending in returning a success or failure page to 
that same customer. This method is useful when programming the success page (see the 
returnURL attribute in Section 19.1: WebSession Data Members), to which HOA redirects 
the customer’s browser after successfully processing the data in the order form. On the 
success page, the WebSession object’s VID is available to you because HOA passes it 
during the redirection. In turn, you can pass that VID as the input parameter to this call, and 
retrieve the AutoBill object created by HOA. Finally, you can extract the contents of the 
AutoBill object and include them, as appropriate, in the success page to be returned to 
the customer.

Input vid: the WebSession object’s Vindicia unique identifier for tracking the submission of the 
order form.

Output return: an object of type Return that indicates the success or failure of the call.

autobill: an AutoBill object that was created by HOA as a result of an order form 
submitted by a customer.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 Missing required parameter 'vid'.

404 Unable to find requested AutoBill: No matches.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 119



CashBox 5.0: API Reference Guide fetchByWebSessionVid
Example // to use the fetchByWebSessionVid call on a success web page

$webSessionVid = …; //passed in by redirected page

$soap = new WebSession($soapLogin, $soapPwd);

$response = $soap->fetchByVID($webSessionVid);

if ($response['returnCode'] == 200) {

$fetchedWs = $response['data']->session;

// check if the CashBox API call made by HOA was successful

$retCode = $fetchedWs->apiReturn->returnCode;

if ($retCode == 200) {

// Assuming HOA created an AutoBill object, let's fetch it

$soapAbill = new AutoBill($soapLogin, $soapPwd);
$resp = $soapAbill->fetchByWebSessionVid($webSessionVid);

if ($resp['returnCode'] == 200) {
$createdAutoBill = $resp['data']->autobill;

// Get AutoBill contents here to be included in
// HTML returned to the customer.

}
else {

// Return error message to customer
}

}
else {

// return failure page to customer
}
}
else {

// Return error message to the customer 
}

© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 120



CashBox 5.0: API Reference Guide fetchCreditHistory
fetchCreditHistory

The fetchCreditHistory method returns an array of CreditEventLog objects.

For more information, see the Account object’s fetchAllCreditHistory method, and 
Table 1-9: CreditEventLog Object Data Members.

Input autobill: the (optional) AutoBill object for which you wish to retrieve credit event history. 
Use the AutoBill’s merchantAutoBillId or VID to identify it. Leave this variable blank 
if you wish to fetch credit history across all AutoBills.

timestamp: the starting timestamp (lower limit) for the range of credit event logs you wish to 
retrieve.

endTimestamp: the ending timestamp (upper limit) for the range of credit event logs you 
wish to retrieve.

page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to return per call. This value must be greater than 0.

Output return: an object of type Return that indicates the success or failure of the call.

creditEventLogs: an array of CreditEventLog objects. Each of these objects describes a 
specific credit-related event or action associated with the input AutoBill. See Table 1-9: 
CreditEventLog Object Data Members for details.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 One of the following:

• Unable to load autobill.
• Invalid value or values of timestamp, and/or page, 

and/or page size.

404 No matching credit events found.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 121



CashBox 5.0: API Reference Guide fetchCreditHistory
Example // to fetch credit history for an AutoBill

$abill = new AutoBill(); 

// autobill id for an existing customer whose
// credit history you want to retrieve

$abill->setMerchantAccountId('jdoe101');

$page = 0; // paging begins at 0
$pageSize = 5; // five records 
$startTime = '2010-01-01T22:34:32.265Z'; 
$endTime = '2010-01-30T22:34:32.265Z'; 

do { 
$ret = 

$abill->fetchCreditHistory($startTime, $endTime $page, $pageSize); 
$count = 0; 
if ($ret['returnCode'] == 200) { 

$fetchedLogs = $ret['creditEventLogs']; 
$count = sizeof($fetchedLogs); 
foreach ($fetchedLogs as $log) { 

$credit = $log->getCredit();
$ts = $log->getTimeStamp();
$eventType = $log->getType();
// process retrieved credit event log
// details here.

} 
$page++; 

} 
} while ($count > 0);
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 122



CashBox 5.0: API Reference Guide fetchDailyInvoiceBillings
fetchDailyInvoiceBillings

The fetchDailyInvoiceBillings method returns an array of Transaction objects, 
with MerchantAcceptedPayment Payment Methods, that must be billed for the day.

Input startTimestamp: the starting timestamp for the range of Transactions you wish to 
retrieve. If set, the fetch will return Transactions with a timestamp on or after the day of 
startTimestamp. If not set, the method will return Transactions beginning with the day 
prior to the day the method is called.

endTimestamp: the ending timestamp for the range of Transactions you wish to retrieve. 
If set, the fetch will return Transactions with a timestamp on or before the day of 
endTimestamp. If not set, the method will return Transactions with a timestamp on or 
before the startTimestamp input. 

page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to display per page per call. This value must be greater 
than 0.

Output return: an object of type Return that indicates the success or failure of the call.

transactions: an array of returned Transaction objects.

Returns This method returns the codes listed in Table 1: Standard Return Codes.

Note: If neither startTimestamp nor endTimestamp are specified, the fetch 
will return Transactions with a timestamp of the day previous to the 
day the method is called.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 123



CashBox 5.0: API Reference Guide fetchDailyInvoiceBillings
Example $ab = new AutoBill($login, $password);
$page = 0;
$pageSize = 100;
$startTime = '2012-01-01T00:00:00.000Z';
$endTime = '2012-01-01T23:59:59.000Z' ;
do {

$ret = $ab->fetchDailyInvoiceBillings($startTime, 
$endTime, $page, $pageSize);

$count = 0;
if($ret['returnCode'] == 200) {

$fetchedTransactions = $ret['transactions'];
$count = sizeof($fetchedTransactions);
foreach ($fetchedTransactions as $transaction) 
{

//process a fetched transaction here…
}
$page++;

}
else
{

//handle error condition
}

} while($count == $pageSize);
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 124



CashBox 5.0: API Reference Guide fetchDeltaSince
fetchDeltaSince

The fetchDeltaSince method returns one or more AutoBill objects whose status has 
changed since the specified timestamp. Call this method to discover which AutoBill 
objects still active, and which are not. The inactive status might be triggered by several 
events, including a “hard error” received by CashBox while processing a payment with a 
payment processor, a cancel() call that explicitly stopped an AutoBill object, or a 
chargeback against a billing transaction generated by AutoBill.

This method supports paging to limit the number of records returned per call. Occasionally, 
returning a large number of records in one call swamps buffers and might cause a failure. 
Vindicia recommends that you call this method in a loop, incrementing the page for each 
loop iteration with an optimal page size (number of records returned in one call) until the 
page contains a number of records that is less than the given page size.

Input timestamp: the date and time after which to return the AutoBill objects whose status has 
changed.

page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to display per page per call. This value must be greater 
than 0.

endTimestamp: the time window’s upper threshold by which to limit the search. If 
unspecified, this value defaults to the current time.

Output return: an object of type Return that indicates the success or failure of the call.

autobills: an array of one or more AutoBill objects.

Note Do not rely on the data returned by this method to determine a 
customer’s entitlements. Even if an AutoBill object is in Stopped 
or Hard Error status, the entitlements might still be valid. The 
entitlements are determined by the AutoBill object’s current end-
date, which, in turn, is determined by the success of the last billing 
(transaction). Thus, the end-date indicates the period for which the 
customer has already paid. The customer’s subscription 
(AutoBill) may stop before the end-date, but the entitlements 
might remain valid until that date. The correct way to determine a 
customer’s entitlements is by making calls on the Entitlement 
object.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 125



CashBox 5.0: API Reference Guide fetchDeltaSince
Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $ab = new AutoBill();
$page = 0;
$pageSize = 100;
$startTime = '2010-01-01T22:34:32.265Z';
$endTime = '2010-01-02T22:34:32.265Z';
do {

$ret = $ab->fetchDeltaSince($startTime, $page, $pageSize, $endTime);
$count = 0;
if ($ret['returnCode'] == 200) {

$fetchedAutoBills = $ret['autobills'];
$count = sizeof($fetchedAutoBills);
foreach ($fetchedAutoBills as $autobill) {

// process a fetched autobill here …
}
$page++;

}
} while ($count > 0); 

Return Code Return String

400 Invalid value or values of timestamp, and/or page, and/
or page size.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 126



CashBox 5.0: API Reference Guide fetchFutureRebills
fetchFutureRebills

The fetchFutureRebills method returns the planned future billing transactions, that do 
not yet exist in CashBox, for the specified AutoBill object. The returned Transaction 
objects are constructed on the fly in response to this call. You can then inform a customer 
how they will be billed for a subscription to your product or service with a certain billing plan.

(This method will calculate and return any discounts applied as a result of an applied 
Campaign Code.)

For this call to succeed, the AutoBill object must be in an actively billing state.

Input autobill: the AutoBill object for which to obtain the future billing transactions. Identify this 
object with either its VID or merchantAutoBillId.

quantity: the number of future rebill transactions to be returned by this call. This input must 
be a positive integer.

Output return: an object of type Return that indicates the success or failure of the call.

transactions: an array of Transaction objects, each of which corresponds to a projected 
billing for this AutoBill object. For for information, see Section 18: The Transaction 
Object. 

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $autobillVid = 'a209408014a33fec3dcd4a3339d78efc33603bfe';

// Create an autobill object
$autobill = new AutoBill();
$autobill->setVID($autobillVid);
$response = $autobill->fetchFutureRebills(5);

if($response['returnCode'] == 200) {
$futureTxns = $response['data']->transactions;

print "This subscription will be billed at the following 
dates and amounts:\n";

for ($i = 0; $i < 5; $i++) {
print "Date: " . $futureTxns[i]->getTimestamp() . " ";
print "Amount: " . $futureTxns[i]->getAmount() . "\n";

}
}

Return Code Return String

400 One of the following:

• Quantity must be a positive integer.
• No AutoBill specified in arguments.

404 No matching AutoBill found.

405 AutoBill is in an inactive state <state>.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 127



CashBox 5.0: API Reference Guide fetchInvoice
fetchInvoice

The fetchInvoice method generates and returns an Invoice, for the given invoiceId, 
as plain text or as a PDF. (It does not fetch a previously sent Invoice.)

Input autobill: the AutoBill for the requested invoice.

invoiceId: the ID of the invoice.

asPDF: a Boolean flag, which, if set to true, returns the object as a PDF. Default is false.

statementTemplateId: the Merchant Identifier for a pre-defined statement template. If 
null, the template defined by the AutoBill will be used.

dunningIndex: the index number of the requested invoice. (If the invoice was the first 
issued to the customer, its dunningIndex is 0.)

For more information, see Section 9.3: Working with Invoices in the CashBox 
Programming Guide.

language: the language of the invoice.

Output return: an object of type Return that indicates the success or failure of the call.

invoice: the specified invoice, rendered as a PDF or as plain text. This field encodes both 
plain text and PDF as xsd:base64Binary.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $autobill = new AutoBill();
$autobill->setMerchantAutoBillId($abID);      // for some $abID

$response = $autobill->fetchInvoice(
'inv-bac',
true,           // PDF, please
null,
0,
'de-AT'         // German in Austria

);

if ($response['returnCode'] == 200) {
$pdf = $response['data']->invoice;

}

Return Code Return String

400 One of the following:

• Unable to load AutoBill: No match.
• Unable to load AutoBill: error-description.
• Unable to load TransactionBilling: error-description.
• Unable to load StatementTemplate: error-description.
• Failed to render invoice: error-description.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 128



CashBox 5.0: API Reference Guide fetchInvoiceNumbers
fetchInvoiceNumbers

Returns an array of Invoices matching the search criteria. (If no input parameters are 
specified, the 12 most recent Invoice objects will be returned.)

Input autobill: an object of type AutoBill that contains the desired invoices.

invoicestate: an optional object of type InvoiceStates, which limits the returned objects 
to the specified state: Open, Due, Paid, Overdue, or WrittenOff.

Output return: an object of type Return that indicates the success or failure of the call.

invoicenum: the invoice number which uniquely identifies the fetched invoice within the 
AutoBill.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $autobill = new AutoBill();
$autobill->setMerchantAutoBillId($abID);      // for some $abID

$response = $autobill->fetchInvoiceNumbers('Due');

if ($response['returnCode'] == 200) {
$inv_nums = $response['data']->invoicenum;
foreach ($inv_nums as $inv_n) {

// process invoice $inv_n
}

}

Return Code Return String

400 One of the following:

• Unable to load AutoBill: No match.
• Unable to load AutoBill: error-description.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 129



CashBox 5.0: API Reference Guide fetchRemainingPaymentDetails
fetchRemainingPaymentDetails

The fetchRemainingPaymentDetails method returns AutoBill information after the 
most recent payment. 

Input autobill: the AutoBill object to query.

Output return: an object of type Return that indicates the success or failure of the call.

autobillRemainingBalanceInSet: the balance remaining on the AutoBill.

billingPlanRemainingBalanceInSet: the balance remaining on the BillingPlan.

billingPlanRemainingPaymentsInSet: the number of payments remaining on the 
BillingPlan.

autobillItemRemainingPaymentDetails: an array of PaymentDetails objects, listing 
information about the payment due to each AutoBillItem.

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $rc = $autobill_factory->fetchRemainingPaymentDetails($autobill);

// check response in $rc

print "AutoBill remaining balance is ", 
$rc->{autobillRemainingBalanceInSet}, "\n";

print "There are ", $rc->{billingPlanRemainingPaymentsInSet}, 
" payments remaining.\n";

$pd_ar = $rc->{autobillItemRemainingPaymentDetails};

foreach ($pd_ar as $item_data)
{

print "Payment details for product ", 
$item_data->merchantProductId, ":\n";

print "    Item remaining balance is ", 
$item_data->remainingBalanceInSet, ".\n";

print "    There are ", $item_data->remainingPaymentsInSet, 
" payments left.\n";

}

Note: If an AutoBillItem has a price basis of Included, 
fetchRemainingPaymentDetails will return undefined.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 130



CashBox 5.0: API Reference Guide fetchUpgradeHistoryByMerchantAutoBillId
fetchUpgradeHistoryByMerchantAutoBillId

The fetchUpgradeHistoryByMerchantAutoBillId method returns the specified 
AutoBill’s upgrade history given the MerchantAutoBillId. 

Input merchantAutoBillId: the ID for any item in the AutoBill's upgrade history for which you want 
the entire history series.

Output return: an object of type Return that indicates the success or failure of the call.

upgradeHistorySteps produces an array of steps or revisions in the AutoBill’s history. The 
AutoBillUpgradeHistoryStep object contains 

• vid: the Vindicia ID for the object,

• startTimestamp: the date and time the step began, and 

• endTimestamp: the date and time the step ended. This timestamp is omitted if the step 
is current.

Returns This method returns the codes listed in Table 1: Standard Return Codes.

Example See fetchUpgradeHistoryByVid for an example of how to process the return 
parameters.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 131



CashBox 5.0: API Reference Guide fetchUpgradeHistoryByVid
fetchUpgradeHistoryByVid

This method allows you to track customers’ changes in products, billing plans, and payment 
methods, based on the AutoBill’s VID. If you provide the VID for any item in the 
AutoBill's upgrade history, CashBox will return the entire series of upgrades. 

Note that the VID changes each time a customer upgrades the AutoBill. Use 
fetchAutoBillUpgradeHistoryByMerchantAutoBillId to generate a complete list 
of VIDs for the AutoBill.

Input vid: the ID for any revision in the AutoBill's upgrade history.

Output return: an object of type Return that indicates the success or failure of the call.

upgradeHistorySteps: an array of steps or revisions in the AutoBill’s history. The 
AutoBillUpgradeHistoryStep object contains 

• vid: the Vindicia ID for the object,

• startTimestamp: the date and time the step began, and 

• endTimestamp: the date and time the step ended. This timestamp is omitted if the step 
is current.

Returns This method returns the codes listed in Table 1: Standard Return Codes.

Example $autobillVid = 'a458e923453e3e2737a4f2142b396b100fbc8d3a';

// This code sample shows how to fetch the chain of upgraded autobills

$autobill = new AutoBill();

// now fetch the upgrade history
$response = $autobill->fetchUpgradeHistoryByVid($autobillVid); 

if($response['returnCode'] == 200) {
$history = $response['data']->upgradeHistorySteps;
$first_autobill_vid = $history[0]->vid;

}

© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 132



CashBox 5.0: API Reference Guide finalizeCustomerAction
finalizeCustomerAction

Completes processing of a transaction after the customer finishes payment activities at the 
payment provider hosted web pages, and is redirected to your site. 

The AutoBill will start billing only after this finalization is completed and the underlying 
transaction is authorized (captured). 

Input transactionVid: Vindicia generated unique ID for the underlying transaction. This will be 
available to you through the URL when your customer is redirected to your site by the 
payment provider.

Output return: an object of type Return that indicates the success or failure of the call.

authStatus: an object of type TransactionStatus that indicates the status of the initial 
Transaction. This object will also contain the response received from the payment provider.

autobill: the AutoBill object for which this method finalized the HostedPage validation 
transaction. It contains the updated status of the AutoBill after the finalization. CashBox 
will populate this only if there was no error in processing this call.

Returns This method returns the codes listed in Table 1: Standard Return Codes.

Example // Create an AutoBill with payment product = 712
$autobill = set_ab($identifier, "712");

// Call AutoBill.update with validate=1 
$rc = $autobill->update($autobill, undef, 1, 99);

// Set the status of the AutoBill to “Active” 
// in anticipation of success.
$rc = $autobill->finalizeCustomerAction($vin_id);

$status = $rc->{autobill}->status;
is ($status,"Active", "Status is Active (New)"); 

Note: This method works only for Direct Debit payment products. Calling 
any other payment product with this method will fail.

The customer’s Account must exist before calling 
finalizeCustomerAction.

Note: This flow requires that full amount auth be set to true.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 133



CashBox 5.0: API Reference Guide finalizePayPalAuth
finalizePayPalAuth

The finalizePayPalAuth method completes the authorization of a PayPal payment 
method validation transaction. This method enables you to report the status of the validation 
transaction to CashBox. Use this method only when you are working with an AutoBill that 
is paid for with a PayPal-based payment method. 

CashBox generates the validation transaction when you create the AutoBill by calling the 
update() method with the validatePaymentMethod flag turned on. The update() call 
returns a PayPal site URL to you; ask your customer to visit that URL so that they may 
complete the authorization activities necessary to validate the payment method at PayPal’s 
site. After the customer finishes the authorization at the PayPal Web site, and is redirected 
to your site, call finalizePayPalAuth() from either the success page (returnUrl 
specified in the PayPal payment method) or failure page (cancelUrl specified in the 
payment method) to which the customer was redirected. The AutoBill will start billing only 
after this finalization is completed and authorization of the underlying validation is known to 
CashBox.

For more information on applying tax to PayPal transactions, please see The Transaction 
Object’s addressAndSalesTaxFromPayPalOrder method.

Input payPalTransactionId: Vindicia’s ID for the PayPal payment method validation 
Transaction, generated when you called AutoBill.update. Retrieve this ID from the 
value associated with the name: vindicia_vid in the name–value pairs attached to the 
redirect URL.

success: set by you. Set it to true if the customer successfully authorized the validation 
transaction at PayPal’s site and was redirected to the success page (returnUrl) hosted by 
you. If the customer was redirected to the failure page (cancelUrl), set this to false.

Output return: an object of type Return that indicates the success or failure of the call.

authStatus: a TransactionStatus object. Its payPalStatus attribute contains return 
codes received from PayPal while authorizing the transaction.

autobill: the AutoBill object for which this method finalized the PayPal validation 
transaction. It contains the updated status of the AutoBill after the finalization. For 
example, if the validation was successful, the AutoBill should have an Active status.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 134



CashBox 5.0: API Reference Guide finalizePayPalAuth
Returns In addition to those listed in Table 1: Standard Return Codes, this call returns:  

Example // to finalize a PayPal authorization

$soap_caller = new AutoBill();

// obtain id of the PayPal validation transaction
// from the redirect URL. It is the value associated with name
// 'vindicia_vid'

$payPalTxId = … ;

// if calling from return URL which is reached when the PayPal
// transaction is successfully authorized you should set the
// success input parameter to true

$success = true;
$response = 

$soap_caller->finalizePayPalAuth($payPalTxId, $success);

if($response['returnCode'] == 200) {
printLog "PayPal validation transaction successful";
$updatedAutoBill = $response['data']->autobill;
printLog " AutoBill id " . 

$updatedAutoBill->getMerchantAutoBillId() . "\n";

printLog " AutoBill status " 
. $updatedAutoBill->getStatus() . "\n";

}

Return Code Return String

400 Internal-error-string.

Note: In some cases, after your customer has authorized payment on the 
PayPal site, PayPal will (invisibly) return a 10417 response code: 

Hard Failure: Account not associated with a usable 
funding source. Credit card or Billing Agreement is 
required to complete payment method. 

Upon calling Transaction.finalizePayPalAuth, CashBox 
will then return the error message: 

Merchant and PayPal consider transaction to be in 
different states: 0 vs. 1. 
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 135



CashBox 5.0: API Reference Guide grantCredit
grantCredit

The grantCredit method adds credit to an AutoBill object. With credit available to an 
Account, you may extend the life of an AutoBill object, thus allowing a customer to keep 
their subscription active.

• Token-based credit may be granted to an AutoBill to pay for billing transactions. To grant 
Token-based credit to an AutoBill, the credit must be of the same token type as the 
Payment Method on the AutoBill, and the BillingPlan must also be defined in terms of 
the same Token Type. Token Credits granted will be deducted from the amount billed to 
the AutoBill's payment method at the next billing cycle.

• You may also grant time-based credit to an AutoBill. With a TimeInterval object, 
define a time extension to be given to an AutoBill in terms of years, months, weeks, 
or days. When you grant time credit to an AutoBill, CashBox delays the next billing 
for the AutoBill by the specified amount of time, similar to calling 
delayBillingByDays() on an AutoBill object. This delay does not occur until the 
billing date following the time credit grant. Until then, the time credit remains on the 
AutoBill, and the next billing date appears unchanged. Note that CashBox does not 
generate a transaction to account for such a time-based credit grant.

• When granting a currency credit to an AutoBill, the currency (i.e. USD) for the credit 
grants must be the same as the currency the customer has specified for the AutoBill.

• Time and Currency Credits may be tracked by timestamp and sortValue. When 
granted, they are assigned a VID, which may be used when revoking credit.

See the Credit Subobject for a list of data members of the Credit object and related 
subobjects. See Chapter 12: Credit Grants and Gift Cards in the CashBox Programming 
Guide for more information.

Input autobill: an AutoBill object to which you wish to grant credit. Identify the AutoBill using 
its merchantAutoBillId or VID.

credit: a Credit object specifying the amount and type of credit you wish to grant to the 
AutoBill. 

note: an optional note regarding the credit granted.

Output return: an object of type Return that indicates the success or failure of the call.

autobill: the AutoBill object to which you granted credit. This object contains the updated 
array of Credit objects.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 136



CashBox 5.0: API Reference Guide grantCredit
Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $abill = new AutoBill();

// autobill id for an existing subscription

$abill->setMerchantAutoBillId('SBCR312345');

// We want to grant 2 days of credit
$time = new TimeInterval();
$time->setType('Day');
$time->setAmount(2);

$cr = new Credit();
$cr->setTimeIntervals(array($time));
$note = “optional note explaining credit grant”;

// Now make the SOAP API call to grant credit to the autobill
$response = $abill->grantCredit($cr,$note);

if ($response['returnCode'] == 200) {

// Credit successfully granted to the autobill

$updatedABill = $response['data']->autobill;
print "Current entitlements are valid till: ";
print $updatedABill->getEndDate() . "\n";

}
else {

// Error while granting credit to the account

print $response['returnString'] . "\n";
}

Return Code Return String

400 One of the following:

• AutoBill not found.
• Failed to translate credit error-description.
• Failed to grant credit error-description.
• Failed to save AutoBill after granting credit.
• Failed to reload AutoBill after granting credit error-

description.
• Time interval credit cannot have amount 0.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 137



CashBox 5.0: API Reference Guide makePayment
makePayment

The makePayment method allows you to record a payment against an outstanding invoice. 
This method may be used to enter check or cash payments, payment of goods in trade, or 
payments made with active Payment Methods.

Using the makePayment method on the AutoBill object will cause CashBox to allocate 
the payment directly to the selected AutoBill. To apply a payment against the oldest 
outstanding Invoice, use Account.makePayment instead.

Whether you use a standard PaymentMethod, or a MerchantAcceptedPayment, the 
makePayment method generates a Transaction, and processes the Transaction 
through the auth/capture cycle appropriate to the input Payment Method. Credit Card, 
ECP, PayPal, and other standard Payment Methods are routed through the appropriate 
Payment Processor. The MerchantAcceptedPayment Payment Method is routed through 
Vindicia’s internal transaction process. Both Payment Method types appear as a 
Transaction in the Account’s history.

Input autobill: the AutoBill to which this payment applies.

paymentMethod: the PaymentMethod to be used for this payment. (Note: Assign a unique 
ID for every Account.makePayment call that uses the MerchantAcceptedPayment 
Payment Method, for tracking purposes.) 

amount: the amount of the payment being made.

currency: the ISO 4217 currency code for amount. This must match the currency used for 
charges on the current invoice. (If not specified, the AutoBill/Invoice currency will be used.)

invoiceId: the ID of the Invoice against which the payment is to be made. If not specified, 
the oldest unpaid invoice for this AutoBill will be selected for payment.

overageDisposition: defines how to allocate payments in excess of a required AutoBill 
payment amount. Defaults to applyToOldestInvoice if not specified.

note: an optional memo regarding the payment made.

Output return: an object of type Return that indicates the success or failure of the call.

transaction: the Transaction object generated by the payment attempt. This 
Transaction must be inspected to assess the details of the payment attempt.

summary: an object of type TransactionAttemptSummary, which describes the 
payment attempt: Success, Failure, or Pending.

Note: When using a MerchantAcceptedPayment, you must create a 
new PaymentMethod object for each makePayment call.

Note: PaymentMethods may not be duplicated for an Account. Passing 
in an existing credit card number and expiration date in an attempt 
to create a new PaymentMethod for an Account will return the 
pre-existing PaymentMethod instead.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 138



CashBox 5.0: API Reference Guide makePayment
Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $autobill = new AutoBill();
$autobill->setMerchantAutoBillId($abID);      // for some $abID

$paymentMethod = new PaymentMethod();
$paymentMethod->setMerchantPaymentMethodId($pmId);     // for some $pmId

$response = $autobill->makePayment(
$paymentMethod,
4.50,
'USD',
'inv-bac',
null,
'$4.50 for Scrabble'

);

// check $response

Return Code Return String

400 One of the following:

• Account not found.
• Failed to translate payment method: error-description.
• Failed to make payment: error-description.
• Transaction not returned from payment attempt.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 139



CashBox 5.0: API Reference Guide migrate
migrate

The migrate method allows you to import existing subscription and transaction information 
from your current billing system to CashBox. This call will create new AutoBills which 
reflect the imported information.

AutoBill.migrate may be called multiple times for a given AutoBill. For the first call, 
CashBox will create the AutoBill, and build the billing schedule records that correspond to 
any MigrationTransactions that are included in the call. 

If you call AutoBill.migrate on an existing AutoBill (i.e. if you specify a VID or 
AutoBillId of an AutoBill that already exists), CashBox will backfill the existing AutoBill's 
Transaction history, (import older Transactions for the subscription), and no attempt will be 
made to update the AutoBill itself. 

Input autobill: the AutoBill object to migrate to CashBox. 

nextPeriodStartDate: the next scheduled billing date for this AutoBill. If not provided, it will 
be assumed that this AutoBill is terminal and no future billings are to be scheduled. (For the 
first AutoBill.migrate call for a given AutoBill, this field is required.)

migrationTransactions: an array of MigrationTransaction objects which define the 
history of this AutoBill. 

The most-recent Transaction for this AutoBill must be included in the initial 
AutoBill.migrate call; and the latest status record must show that the Transaction 
is either Captured, Cancelled, Refunded, Settled, or Void. No other 
TransactionStatus values may be used for this call. 

Note: While you may create new Accounts and PaymentMethods with 
this call, you may not create new Products or BillingPlans. Be 
certain that any Products or BillingPlans referenced by an 
input MigrationTransaction object are created before making 
the call.

Note: For this call, the following AutoBill data members are required:

• account
• billingPlan
• currency
• items
• paymentMethod (For this call, this field must be CreditCard.)
• startTimestamp

Note: Any Transactions migrated to CashBox will follow your defined retry 
sequence. For example, an AutoBill migrated to CashBox with a 
single Transaction with status Cancelled will trigger a retry.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 140



CashBox 5.0: API Reference Guide migrate
Output return: an object of type Return that indicates the success or failure of the call.

autobill: the AutoBill object that was created through migration. 

If you specify a VID or merchantAutoBillId for autobill, and that ID does not yet exist 
in the CashBox database, this method will create a new AutoBill object. If the ID does 
exist, CashBox will update the corresponding AutoBill object.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 One of the following:

• At least one migrationTransaction must be included in 
AutoBill.migrate request.

• Error validating parameters for AutoBill Migration.
• Migrated AutoBills must have at least one item.
• Product must be pre-defined for AutoBillItem 

autoBillItem.
• Product not defined for AutoBillItem autoBillItem.
• Invalid AutoBillItem addedDate date.
• Invalid AutoBillItem removedDate: date.
• BillingPlan must be pre-defined.
• BillingPlan with identifier identifier not found.
• Campaign code campaignCode is not valid.
• Invalid value for 

transitionedFromMerchantAutoBillItemId: autoBillItemId.
• Invalid value for 

transitionedToMerchantAutoBillItemId: autoBillItemId.
• Invalid value for nextPeriodStartDate.
• Transaction Migration attempt failed: error.

• (See the Transaction.migrate error list for details that could be 
appended to this message.)

• Migration Transactions not specified.
• PaymentMethod not specified.
• Unsupported Payment Type: type.
• TransactionBilling migration details not provided for 

initialization of AutoBill.
• No BillingPlan: Cannot determine 

TransactionBillingSequence details.
• Billing Plan on last Transaction submitted does not 

match AutoBill BillingPlan.
• AutoBillCycle (transaction_billing_sequence) not 

defined.
• Unable to determine current AutoBill 

BillingPlanPeriod.
• Unable to determine Billing Period billing 

sequence.Failed to determine BillingPlanPeriod index 
for AutoBill Migration.

• BillingPlanCycle cannot be greater than autoBillCycle 
(transaction_billing_sequence).

• Currency code not defined in row n of Transaction 
Array for AutoBill Migration.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 141



CashBox 5.0: API Reference Guide migrate
400 (continued) • Transaction currency (currency) does not match 
AutoBill currency (currency).

• Transaction for retry # n in billing sequence m 
already exists.

• Transaction migration failed for Transaction # n 
during Migration of AutoBill autoBill.
• (See the Transaction.migrate error list for details that could be 

appended to this message.)
• Mismatch found between AutoBill billing sequence (n), 

and the max TransactionBilling sequence (m).
• Transactions cannot be associated with an AutoBill's 

final TransactionBilling.
• TransactionBilling for sequence sequence is in 

invalid state (state) for AutoBill migration.
• (TransactionBillings generated by the migrate process should be in 

one of the following states: Success, Free, or Deferred.)
• Original activity date for historical 

TransactionBilling sequence n is in the future 
(date).

• billing date for TransactionBilling (date) is greater 
than latest allowed (date).

• Transaction (index) in sequence sequence is in an 
invalid state (state) for AutoBill migration.

• (The Transaction state (which is derived from the disposition log) must 
be one of the following: Captured, Cancelled, Refunded, Settled, or 
Void.)

• NRC Transaction in sequence $sequence is in an 
invalid state (state) for AutoBill migration
• (Non-Recurring-Charge Transactions must be in one of the states 

specified for Recurring Transactions (above).)
• Transaction autoBillCycle not defined.
• billingPlanCycle not defined.
• billingPeriodStart not defined.
• Failed to map AutoBill Items to Transaction Items 

during Transaction Migration.
• Cannot map Transaction Items to AutoBill Items - No 

Transaction Items!
• Cannot map Transaction Items to AutoBill Items - No 

AutoBill Items!
• Failed to determine Product SKU for AutoBill Item 

index n while attempting to map Transaction Items to 
AutoBill Items.

• Failed to map AutoBillItem ID autoBillItemId, to a 
TransactionItem.

• Unable to determine AutoBill BillingPlanPeriod for 
Transaction ident transactionId.

• Unable to determine Billing Period billing sequence 
for Transaction ident transactionId.

• Failed to determine BillingPlanPeriod index 
associated with Transaction ident transactionId.

Return Code Return String
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 142



CashBox 5.0: API Reference Guide migrate
Example //To migrate an AutoBill for a pre-existing BillingPlan, 
//Product, Account, and PaymentMethod.
//Note that it is possible to define new Account and 
//PaymentMethod objects within AutoBill.migrate.
//The Product(s) and BillingPlan must, however, be pre-defined.

$billplanVid = 'c6743226ea41afd9db71c0c612a870bfcaa68fa7';
$productVid = '124a5540e359d59ba2a301a4b86cd5434f5c99d3';
$accountVid = '3915038987280cc31b103dbdf291cfd68181b385';
$paymentmethodVid = '822690237671dbb37014bb4c5262e0067ab94f97';
$addressVid = '3c14d744baa5cd618c1e0ff2c1f54b408e8c65e9';

$billPlan = new BillingPlan();
$product = new Product();
$account = new Account();
$autobill = new AutoBill();
$paymentMethod = new PaymentMethod();
$address = new Address();

$billPlan->setVid($billplanVid);
$product->setVid($productVid);
$account->setVid($accountVid);
$paymentMethod->setVid($paymentmethodVid);
$address->setVid($addressVid);

//Define the AutoBill to be Migrated
$item = new AutoBillItem();
$item->setIndex(0);
$item->setAddedDate('2014-01-06T10:14:14-08:00');
$item->setMerchantAutoBillItemId('merchantAutoBillItem1391710456');
$item->setProduct($product);

$autobill->setaccount($account);
$autobill->setItems(array($item));
$autobill->setBillingPlan($billPlan);
$autobill->currency('USD');
$autobill->setCustomerAutoBillName('MGRT_1391710573_cabn_1391710456');
$autobill->setMerchantAutoBillId('MGRT_1391710573_valg_1391710456');

400 (Transaction 
migration error 
messages)

• MigrationTransaction not provided.
• Invalid paymentProcessor: paymentProcessor.
• MigrationTransaction must include at least one 

statusLog record.
• Failed to convert salesTaxAddress.
• Attempt to migrate Transaction which already exists.
• Unsupported Payment Type: paymentType.
• Failed to prepare auth_response for Migrated 

Transactions.
• Unable to determine currency for migrated 

Transaction.
• Calculated Transaction amount (XXX.XX) does not match 

input amount (YYY.YY) on migrated Transaction.

Return Code Return String
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 143



CashBox 5.0: API Reference Guide migrate
$autobill->setPaymentMethod($paymentMethod);
$autobill->setStartTimestamp('2014-01-06T10:14:14-08:00');

//Next, define the MigrationTransaction to be included 
//in the AutoBill.migrate call

$taxItemA = new MigrationTaxItem();
$taxItemA->setAmount(.92);
$taxItemA->setJurisdiction('COUNTY_19');
$taxItemA->setName('SALES TAX');

$taxItemB = new MigrationTaxItem();
$taxItemB->setAmount(6.67);
$taxItemB->setJurisdiction('DISTRICT');
$taxItemB->setName('CA DISTRICT SALES TAX');

$txItemA = new MigrationTransactionItem();
$txItemA->setItemType('RecurringCharge');
$txItemA->setMigrationTaxItems(array($taxItemA, $taxItemB));
$txItemA->setName('product 1391710450 default plan');
$txItemA->setPrice(49.99);
$txItemA->setServicePeriodStartDate('2014-01-06T00:00:00');
$txItemA->setServicePeriodEndDate('2014-03-05T00:00:00');
$txItemA->setSku('bp_1391710450');
$txItemA->setTaxClassification('DC010500');  

// This should be the Avalara tax code associated with this product

$txItemB = new MigrationTransactionItem();
$txItemB->setItemType('RecurringCharge');
$txItemB->setMerchantAutoBillItemId('merchantAutoBillItem1391710456');
$txItemB->setName('product_1391710450_1');
$txItemB->setPrice(42.00);
$txItemB->setServicePeriodStartDate('2014-01-06T00:00:00');
$txItemB->servicePeriodEndDate('2014-03-05T00:00:00');
$txItemB->setSku('1391710450_1');
$txItemB->setTaxClassification('DC010500');

// This should be the Avalara tax code associated with this product

$creditCardStatusA = new CreditCardStatus();
$creditCardStatusA->setAuthCode('000');
$statusLogA = new TransactionStatus();
$statusLogA->setCreditCardStatus($creditCardStatusA);
$statusLogA->setPaymentMethodType('CreditCard');
$statulLogA->setStatus('Captured')
$statusLogA->setTimestamp('2014-02-06T10:16:06-08:00');

$creditCardStatusB = new CreditCardStatus();
$creditCardStatusB->setAuthCode('000');
$statusLogB = new TransactionStatus();
$statusLogB->setCreditCardStatus($creditCardStatusB);
$statusLogB->setPaymentMethodType('CreditCard');
$statusLogB->setStatus('New');
$statusLogB->setTimestamp('2014-02-06T10:14:51-08:00');
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 144



CashBox 5.0: API Reference Guide migrate
$migrationTransaction = new MigrationTransaction();
$migrationTransaction->setAmount(99.58);
$migrationTransaction->setAutoBillCycle(0);
$migrationTransaction->setBillingDate('2014-01-06T00:00:00');
$migrationTransaction->setBillingPlanCycle(0);
$migrationTransaction->setCurrency('USD');
$migrationTransaction->setDivisionNumber('iAmTheWalrus');
$migrationTransaction->setMerchantBillingPlanId('bp_1391710450');
$migrationTransaction->setMigrationTransactionItems

(array($txItemA, $txItemB));
$migrationTransaction->setPaymentMethod($paymentMethod);
$migrationTransaction->setPaymentProcessor('Litle');
$migrationTransaction->setPaymentProcessorTransactionId('1069115');
$migrationTransaction->setRetryNumber(0);
$migrationTransaction->setSalesTaxAddress($address);
$migrationTransaction->setShippingAddress($address);
$migrationTransaction->setStatusLog(array($statusLogA, $statusLogB));
$migrationTransaction->setType(Recurring);

//Migrate AutoBill into CashBox
$response = $autobill->migrate('2014-03-06T00:00:00', 
array($migrationTransaction));
if($response['returnCode'] == 200)
{

//AutoBill and Transaction(s) migrated successfully
print "AutoBill migrated with VID " .
$response['data']->autobill->getVID() . "\n";

}
else
{

//AutoBill migration failed
}

© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 145



CashBox 5.0: API Reference Guide modify
modify

The AutoBill.modify call allows you to modify existing AutoBills, and generate any 
resultant charges or refunds to your customers, with a single call. 

AutoBill.modify allows you to: 

• Modify AutoBills that have any number of AutoBillItems.

• Add, remove, or replace multiple AutoBillItems, in a single call.

• Work with Campaigns. (Added items may have a Campaign Code, and the AutoBill may 
have a billingPlanCampaignCode; the Campaign Code is redeemable on the 
Billing Plan only if a new Billing Plan is sent in.)

• Maintain the history of modified AutoBills.

• Generate a single, pro-rated net charge or refund for the combined modification activity. 
(This charge or refund will appear through the API and Portal with other Transactions 
from this AutoBill.)

• Retain the AutoBill in its original state if any aspect of the call, including the modification-
based charge or refund, fails.

Input autobill: the AutoBill object to modify. Identity this object with its VID or 
merchantAutoBillId.

billProratedPeriod: a Boolean flag which sets whether to prorate the price for the 
modification. If true, and effectiveDate is today, new items will be billed for the prorated 
remainder of the current Billing Period, and prorated credits will be issued for previously 
billed items. If false, your customer will not be billed for any changes to the AutoBill for the 
current Billing Period. Defaults to false if not specified.

Changing a billing plan with effectiveDate = today will always prorate regardless of the 
billProratedPeriod setting. 

Transactions generated as a result of this option will automatically include the 
vin:AutoBillVID and the vin:MerchantAutoBillIdentifier name-value pairs.

Note: This call may not be used to create new AutoBills or Billing Plans. 
Both the AutoBill to modify, and any Products or Billing Plans used in 
modification must exist before making this call.

This call may not be used with AutoBills using Rate Plan pricing, or 
with Seasonal Billing Plans.

Note: You must be integrated with the Avalara Tax system to use this call. 
Please work with your Avalara Support Representative to guarantee 
a cross-platform implementation.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 146



CashBox 5.0: API Reference Guide modify
effectiveDate: indicates when the modification should become effective. 

• nextBill begins changes with the next Billing Cycle.

• today begins changes effective today.

With effectiveDate today, the billing date (and billing day of month) will change only 
if the Billing Plan is changed (in which case, CashBox will perform the first billing for 
the new BillingPlan and AutoBillItems immediately). If only AutoBillItems 
are changed with this call, CashBox will prorate both credits and charges and bill/
refund immediately; future recurring billings will remain scheduled as before.

changeBillingPlanTo: the BillingPlan to replace the current on the AutoBill, 
identified by its merchantBillingPlanId or VID. (The new Billing Plan must already 
exist in your CashBox system before making this call.) 

autoBillItemModifications: an array of AutoBillItemModification objects, which 
define the changes to be made to the existing AutoBill.

removeAutoBillItem: an AutoBillItem to remove from the AutoBill. Identify this 
object with its index, merchantAutoBillItemId, product, or VID.

addAutoBillItem: an AutoBillItem to add to the AutoBill.

dryrun: a Boolean flag that, if set to true, will return the modified AutoBill, without 
recording the result in the CashBox database. Use this variable to compute the cost of an 
AutoBill modification without committing to the change. 

Output return: an object of type Return that indicates the success or failure of the call.

autobill: the AutoBill object that was modified.

transaction: the Transaction object created (if billProratedPeriod was true) for the 
non-recurring charge or credit. 

Note: Changing the Billing Plan will prorate any difference in cost between 
the original and the new Billing Plans, and reset the billing date for 
the AutoBill to today.

Note: The transitionedFromMerchantAutoBillItemVid and 
transitionedToMerchantAutoBillItemId data members will 
be populated only if a removed item is paired with an added item in 
a single AutoBillItemModification object. If submitted with 
separate objects, they will not be linked.

Note: No payment method validations, authorizations or charges will be 
performed if dryrun is true.

Note: Transactions generated as a result of this call will include a name-
value pair with name vin:type and value modify.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 147



CashBox 5.0: API Reference Guide modify
refunds: an array of Refund objects created for the AutoBill as a result of the 
billProratedPeriod option.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 One of the following:

• Could not load the AutoBill.
• Invalid value for effectiveDate: value.
• BillingPlan used in modify must already exist.
• No AutoBillItem found for criteria.
• Could not determine a unique item for criteria.
• The currency field on an added AutoBillItem does not 

match the currency on the AutoBill.
• Could not convert added item: error message.
• Can only apply a billingPlanCampaignCode to a new 

BillingPlan.
• Cannot modify an AutoBill in 

Stopped|Upgraded|PendingCustomerAction state.
• AutoBill has ended and cannot be modified.
• PaymentMethod on AutoBill does not support recurring 

billing.
• Cannot create new BillingPlan as part of an 

AutoBill::modify().
• AutoBill cannot be modified for 'nextBill'; no 

further billing periods remain.
• Can only apply a campaign code to a new billing plan.
• Campaign code code could not be redeemed.
• Cannot redeem a time grant campaign on a BillingPlan 

via AutoBill::modify().
• BillingPlan merchantPlanId is not eligible for 

campaign code code.
• Modifications would result in an AutoBill with no 

active AutoBillItems.
• Cannot remove items or change the BillingPlan 

effective today for an AutoBill with a Token 
PaymentMethod.

• Could not set AutoBill to 'Processing' status.
• Saving modified AutoBill failed; rolling back.
• AutoBillItem to be removed has already been removed.
• Could not determine start date for AutoBillItem.
• Campaign code code could not be redeemed.
• Cannot redeem a time grant campaign on a single 

AutoBillItem via AutoBill::modify().
• Product merchantProductId is not eligible for campaign 

code code.
• Product merchantProductId is not eligible for an active 

time grant campaign.

402 • Modify transaction authorization failed.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 148



CashBox 5.0: API Reference Guide modify
Example // This example will replace one item, add a new item, 
// and change the billing plan effective today

$autoBillIdent = 'autobillToModify';
$annualPlanIdent = 'annualBillingPlan';

$replacementProductIdent = 'replacementProduct';
$newProductIdent = 'newProduct';

$oldAutoBillItemVID = 'd79ae3429ff102383b76d8f1eae8da52bd7dc1af';
$replacementItemIdent = 'upgradedProductItem';
$newItemIdent = 'addedProductItem';

// create and identify the AutoBill to be modified
$autobill = new AutoBill();
$autobill->merchantAutoBillId($autobillIdent);

// existing item must be uniquely identified 
// (e.g., by VID, index, or by merchantAutoBillItemId or product, 
// if these last two are unique within the given AutoBill)
$oldItem = new AutoBillItem();
$oldItem->VID($oldAutoBillItemVID);

// create the product objects to be added; they only need identifying
// information (e.g., a VID or merchantProductId)
$replacementProduct = new Product();
$replacementProduct->merchantProductId($replacementProductIdent);

$newProduct = new Product();
$newProduct->merchantProductId($newProductIdent);

// now build the new AutoBillItems
$replacementItem = new AutoBillItem();
$replacementItem->merchantAutoBillItemId($upgradedProductItem);
$replacementItem->product($replacementProduct);
$replacementItem->index(1);

$newItem = new AutoBillItem();
$newItem->merchantAutoBillItemId($newItemIdent);
$newItem->product($newProduct);
$newItem->index(2);

// and the AutoBillItemModification objects
$addModification = new AutoBillItemModification();
$addModification->addedAutoBillItem($newItem);

$replaceModification = new AutoBillItemModification();
$replaceModification->removeAutoBillItem($oldItem);
$replaceModification->addAutoBillItem($newItem);

// create the object for the new billing plan
$billingPlan = new BillingPlan();
$billingPlan->merchantBillingPlanId($annualPlanIdent);
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 149



CashBox 5.0: API Reference Guide modify
// now perform the modification, effective today, 
// prorating for any item or billing plan changes
$response = $autobill->modify('true', 'today', $billingPlan,

[$addModification, $replaceModification], 'false');

if ($response['returnCode'] == 200)
{

// return includes the updated autobill
$updatedAutoBill = $response['data']->autobill();

// return will include a transaction with all of the 
// details for the prorated amounts
$transaction = $response['data']->transaction();

// if the net value of all prorated changes was negative, 
// there will also be an array with one or more refunds 
// against the original transactions
$refunds = $response['data']->refunds();

}

© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 150



CashBox 5.0: API Reference Guide redeemGiftCard
redeemGiftCard

The redeemGiftCard method redeems a gift card represented by the input GiftCard 
object, and grants the resultant amount of credit to the AutoBill. This method should be 
called after the statusInquiry() method is called on the GiftCard object provided as 
input to this method. If the statusInquiry() method indicates that status of the 
GiftCard object is Active, you may call this method. For more information, see Section 9: 
The GiftCard Object.

For redemption of a gift card, CashBox contacts a gift card processor. (InComm is the only 
gift card processor with whom CashBox has a working relationship at this time.) If the gift 
card is redeemable, the processor returns an SKU or a UPC number. This number is unique 
for each type of gift card, and is defined by a prior agreement between you and the gift card 
processor. CashBox uses the number to look up a Product object with the same 
merchantProductId. CashBox then grants credit to the AutoBill as defined in the 
creditGranted attribute of the Product object. For each type of gift card you wish to 
accept, create (in advance) Product objects with the selected amount of credit specified in 
their creditGranted attributes.

CashBox currently supports only full redemption of the credit associated with a gift card. 

See the Credit Subobject for more information on it and related subobjects. See Chapter 
12: Credit Grants and Gift Cards in the CashBox Programming Guide, for more 
information on gift card redemption.

Input autobill: an AutoBill object to which you wish to grant credit, if redemption of the gift card 
is successful. Use the merchantAutoBillId or VID to identify the object.

giftcard: a GiftCard object encapsulating information about the gift card you wish to 
redeem. For more information, see Section 9: The GiftCard Object. If you called the 
statusInquiry() method before calling this method, you should have the VID of the 
GiftCard object. Use the VID to identify the GiftCard.

credit: a Credit object specifying the amount and type of credit you wish to redeem. (This 
parameter is used with partial credit redemption, and is currently not in use.)

Output return: an object of type Return that indicates the success or failure of the call.

giftcard: the GiftCard that was redeemed, with an updated status.

autobill: the AutoBill input object to which CashBox grants credit if redemption of the 
input gift card is successful. This object contains the updated array of Credit objects.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 151



CashBox 5.0: API Reference Guide redeemGiftCard
Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $abill = new AutoBill();

// autobill id for an existing subscription to which the customer
// wishes to redeem a gift card and add credit to the autobill

$abill->setMerchantAutoBillId('SBCR312345');

$gc = new GiftCard(); 

// set the VID of the gift card, obtained when we checked the 
// status of the gift card and determined that it was active

$gc->setVID($gcVID); 

// Now make the SOAP API call to redeem the gift card

$response = $abill->redeemGiftCard($gc);

if ($response['returnCode'] == 200) {

// Redemption successful. Check if credit was added to the autobill

$updatedABill = $response['data']->autobill;

$availableCredits = $updatedABill->getCredit();
$availableTokens = $availableCredits->getTokenAmounts();

print "Available token credits: \n";
foreach($availableTokens as $tkAmt) {

print "Token type: " . $tkAmt->getMerchantTokenId() . " ";
print "Amount: " . $tkAmt->getAmount() . "\n";

}

// Also make sure status of the gift card is 'Redeemed'

$updatedGc = $response['data']->giftcard;
print "Status of the gift card: ";
print $updatedGc->getStatus()->getStatus() . "\n";

}
else {

// Error while granting credit to the account
print $response['returnString'] . "\n";

}

Return Code Return String

400 One of the following:

• AutoBill not found.
• Failed to translate gift card error-description.
• Failed to redeem gift card error-description.
• Failed to retrieve gift card after redemption 

attempt.
• Failed to save AutoBill after gift card redemption 

attempt.
• Failed to reload AutoBill after gift card redemption 

attempt error-description.
• Redemption attempt failed for Gift Card ID gift-card-

details. 
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 152



CashBox 5.0: API Reference Guide reversePayment
reversePayment

The reversePayment method allows you to reverse payments made using the 
makePayment method. This method may only be used against payments made using the 
MerchantAcceptedPayment payment method.

Input autobill: the AutoBill to which this reversal applies.

timestamp: the time that payment reversal occurs.

paymentId: the paymentId of the Payment to be reversed. Either the paymentId, or the 
invoiceId (and optional indexNumber) must be specified.

The paymentId is automatically set by CashBox when a payment is made to an Invoice, 
AutoBill, or Account. In reversing a payment, you must reference the appropriate 
paymentId.

invoiceId: the ID of the Invoice associated with the payment reversal. Either the 
paymentId, or the invoiceId (and optional indexNumber) must be specified.

indexNumber: the indexNumber of the payment item (on the invoiceId invoice) to be 
reversed.

note: an optional memo regarding the payment reversal.

Output return: an object of type Return that indicates the success or failure of the call.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example // to reverse a payment made using makePayment

$autobill = new AutoBill();
$autobill->setMerchantAutoBillId($abID);      // for some $abID

$paymentMethod = new PaymentMethod();
$paymentMethod->setMerchantPaymentMethodId($pmId); // for some $pmId
$paymentId = $paymentMethod->merchantAcceptedPayment->paymentId;

$response = $autobill->reversePayment(
$now,
$paymentId,
undef,
undef,
'Changed my mind.'

);
// check $response

Return Code Return String

400 One of the following:

• AutoBill not found.
• Neither paymentId nor invoiceId: indexNumber provided 

for reversal attempt.
• Failed to add reverse payment: error-description.

404 Payment ID not found.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 153



CashBox 5.0: API Reference Guide revokeCredit
revokeCredit

The revokeCredit method deducts credit from an AutoBill object. If the deduction 
results in a negative amount for a given type of credit, CashBox sets its balance to 0. This 
method returns the AutoBill object with resultant credit balance. 

Specify the amount, type, and VID of the Credit you wish to revoke from the Account as a 
Credit object. 

Credit and related subobjects are described with the Credit Subobject. See Chapter 12: 
Credit Grants and Gift Cards in the CashBox Programming Guide for more information on 
working with credit.

Input autobill: the AutoBill object from which you wish to revoke credit. Use the 
merchantAutoBillId or VID to identify the object.

credit: a Credit object specifying the amount and type of credit you wish to deduct from 
the AutoBill. 

note: an optional memo regarding the credit revocation.

Output return: an object of type Return that indicates the success or failure of the call.

autobill: the AutoBill object from which you revoked credit. This object contains the 
updated array of Credit objects. 

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 One of the following:

• AutoBill not found.
• Failed to translate credit error-description.
• Failed to revoke credit error-description.
• Failed to save AutoBill after revoking credit.
• Failed to reload AutoBill after revoking credit error-

description.
• Data validation error: Missing required parameter 

credit.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 154



CashBox 5.0: API Reference Guide revokeCredit
Example // to revoke credit from an autobill

$abill = new AutoBill();

// autobill id for customer's existing subscription
// to a game

$abill->setMerchantAutoBillId('STARWARS-239181');

$tok = new Token();

// specify id of an existing token type.
// the autobill has a payment method defined in terms
// of this token type. Also the billing plan used by
// the autobill specifies a price in terms of this token
// type.

$tok->setMerchantTokenId('STARWARS_POINTS');

$tokAmt = new TokenAmount();
$tokAmt->setToken($tok);
$tokAmt->setAmount(100); // customer lost 100 points in the game

$cr = new Credit();
$cr->setTokenAmounts(array($tokAmt));

// Now make the SOAP API call to deduct points from customer's
// subscription

$response = $abill->revokeCredit($cr);

if ($response['returnCode'] == 200) {

// Credit successfully revoked from the autobill

$updatedAbill = $response['data']->autobill;
$availableCredits = $updatedAbill->getCredit();
$availableTokens = $availableCredits->getTokenAmounts();

print "Available points to subscription: \n";
foreach($availableTokens as $tkAmt) {

print "Token type: " . $tkAmt->getMerchantTokenId() . " ";
print "Amount: " . $tkAmt->getAmount() . "\n";

}
}
else {

// Error while revoking credit from the autobill
print $response['returnString'] . "\n";

}

© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 155



CashBox 5.0: API Reference Guide update
update

The update method is used to create a new AutoBill object. An AutoBill object 
represents a customer subscription with recurring billing. Be certain to properly construct the 
AutoBill (for AutoBill attributes see Section 4.1: AutoBill Data Members) before 
passing it into this call.

Call this method to first risk-screen the related Payment Method for the AutoBill object. 
Once you have enabled risk screening, this method scores a Transaction for the related 
Payment Method. (For more information, see the score method.) If the score is below the 
acceptable threshold specified in the minChargebackProbability parameter, the 
AutoBill object will be created. If the score is equal to or greater than the threshold, the 
object will not be created. For scoring to succeed, you must specify, in the AutoBill object, 
the source IP address from which the customer requested this subscription, and, in the 
associated payment method, the billing address.

To have CashBox contact your payment processor to validate the payment method, set the 
validatePaymentMethod flag to true.

To create an AutoBill object, initialize the object and set the values for its data members 
as appropriate, and then call the update() method to create the object on Vindicia’s 
servers. When creating a new AutoBill object, do not set a value for VID; CashBox 
automatically generates the VID when you call update(). When updating an existing 
AutoBill object, identify it with its VID or your AutoBill ID (merchantAutoBillId).

Products may have an array of Products beneath them ("sub-Products"). When a sub-
Product is placed on an AutoBill, all attributes of the top-level Product will apply to the 
AutoBill, except the Entitlements, which will be the union of the Entitlements of all of the 
Products and sub-Products. 

To apply a Campaign discount to an AutoBill, the Billing Plan must have prices defined in a 
currency which matches the AutoBill’s. If the Billing Plan price is defined in currencies which 
differ from those used for the AutoBill, the discount will not be applied. 

Note: While this method may be used to alter an existing AutoBill, it is 
not recommended. Use upgrade to change an existing AutoBill.

Note: The AutoBill.update method may not be used to add Products 
to an AutoBill. To add Products, use AutoBill.addProduct.

Note: The customer’s Account must exist before any Hosted Page related 
call references that Account.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 156



CashBox 5.0: API Reference Guide update
Input autobill: the AutoBill object to create or update. Identity this object with its VID or 
merchantAutoBillId.

duplicateBehavior is a placeholder only, and is currently not in use.

validatePaymentMethod: a Boolean flag that, if set to true, causes this method to validate 
the payment method for the AutoBill object. The nature of validation depends on the type 
of the payment method. For example, for some payment processors that do not support 
validation calls, CashBox validates credit cards by authorizing a transaction that uses the 
validatePaymentMethod method to pay for a very small amount, such as $1.00.

When validatePaymentMethod is true, the AVS and CVN policies (or, in their absence, 
the default evaluation policy) are used to determine the status of the validation. If 
validation fails, the PaymentMethod is not updated.

Note: The AutoBill will not be saved if validation is requested and fails.

The evaluation policy results are mapped to the AutoBill and Entitlement creation as 
follows: 

CashBox also supports a configuration parameter that enables you to fully bill the first 
rebill transaction for this AutoBill object, in order to validate the payment method. 
Consult your Vindicia Client Services representative if you wish to use this configuration 
parameter.

For more detail on AVS and CVN Return Codes, please work with your Vindicia Client 
Services representative.

minChargebackProbability: a number between 0 and 100 by which you specify your fraud 
risk score tolerance level. A chargeback probability (also called the risk-screening score or 
risk score) of 100 indicates that CashBox is 100% certain that a transaction is fraudulent and 
will result in a chargeback. Specify your acceptable threshold for chargeback possibility with 
this parameter. If the score evaluates to be more than your tolerance level, the update call 
will fail.

If you do not set minChargebackProbability, it defaults to 100, meaning that all 
transactions are acceptable and that no risk screening occurs. For more information on 
CashBox risk-screening, see Section 14: Common ChargeGuard Programming Tasks in 
the CashBox Programming Guide.

ignoreAvsPolicy: a Boolean flag that, if set to true, will override the AVS policy, and 
update the paymentMethod, regardless of the AVS return code. If set to false or null, 
(and if validatePaymentMethod is set to true) the AVS return code will be used to 
determine whether to update the paymentMethod.

Table 4-8 AVS / CVN Policy Evaluation Results

Policy Evaluation Result

Success AutoBill is active and entitlement is granted.

Pending AutoBill is pending and entitlement is granted.

Fail AutoBill is cancelled and entitlement is inactive.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 157



CashBox 5.0: API Reference Guide update
ignoreCvnPolicy: an optional Boolean flag that, if set to true, will override the CVN policy, 
and update the paymentMethod, regardless of the CVN return code. If set to false or 
null, (and if validatePaymentMethod is set to true) the CVN return code will be used to 
determine whether to update the paymentMethod.

campaignCode: an optional Coupon or Promotion code, used in conjunction with a 
Campaign, to obtain a discount on this AutoBill.

dryrun: a Boolean flag that, if set to true, will return the updated AutoBill, without 
recording the result in the CashBox database. Use this method to compute the cost of an 
AutoBill without committing to the change. (The projected billing amount will be returned 
in the Transaction object of the nextBilling data member of the returned AutoBill 
object.)

If the AutoBill did not exist before, it will not exist afterward; if it did exist before, it will 
not change. (No payment method validations, authorizations or charges will be performed 
if dryrun is true.)

Output return: an object of type Return that indicates the success or failure of the call.

autobill: the AutoBill object that was created or updated. If you specify a VID or your 
AutoBill ID for autobill, but that ID does not exist in the CashBox database, this method 
creates a new AutoBill object. Otherwise, CashBox updates the AutoBill object whose 
ID matches the input.

created: a Boolean flag that, if set to true, indicates that this method has created a new 
AutoBill object. A false setting indicates that update or upgrade has updated an 
existing AutoBill object.

authStatus: if validatePaymentMethod is set to true, authStatus contains the 
response from the payment processor. For example, the Address Verification Service (AVS) 
and Card Verification Number (CVN) response codes.

firstBillDate: the date of the first billing.

firstBillAmount: the amount of the first billing.

firstBillingCurrency: the currency of the first billing.

score: the risk score for the payment method used for the AutoBill if you enabled risk 
scoring by specifying the value of the input parameter minChargebackProbability to be 
less than 100.

Normally, this value is between 0 and 100, where 100 is the highest risk score, indicating 
maximum chargeback probability. A value of -1 indicates that CashBox could not evaluate 
the score because of missing data such as an IP address or a full billing address. A value 
of -2 indicates an error condition.

scoreCodes: an array of ScoreCode objects, each of which includes a code and 
corresponding message explaining why the risk score evaluated to a certain value.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 158



CashBox 5.0: API Reference Guide update
Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 One of the following:

• Failed to translate credit error-description.
• Unable to create AutoBill: error-description.
• Data validation error: Failed to create Payment-Type-

Specific Payment Record: Credit Card conversion 
failed: Credit Card failed Luhn check.

• Unable to create autobill: Must specify product to 
create autobill with!

• Campaign code XYZ is not usable: Code XYZ is not 
valid.

• No eligible, undiscounted items found for campaign 
code.

402 Unable to create AutoBill: error-description.
(This return code means that validation failed.)

403 Cannot update an AutoBill that has completed the retry 
cycle, and is past its endTimestamp.

407 AVS policy evaluation failed.

408 CVN policy evaluation failed.

409 AVS and CVN policy evaluations failed.

410 AVS and CVN policy evaluations could not be performed.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 159



CashBox 5.0: API Reference Guide update
Example // To create a subscription, to an existing product, for an 
// existing customer, using an existing billing plan

$autobill = new AutoBill();
$account = new Account();
$product = new Product();
$billPlan = new BillingPlan();

// Identify a previously created product by your unique ID
$product->setMerchantProductId('12345');

// Identify a previously created billing plan by your unique ID
$billPlan->setMerchantBillingPlanId('bp12345');

// Identify a previously created account by your unique ID
// Assumption: Account already has a payment method attached to it
// which will be used by the AutoBill automatically

$account->setMerchantAccountId('acct12345');

$autobill->setAccount($account);

// AutoBills may have multiple products 
// each in an AutoBillItem as an array:

$item = new AutoBillItem();
$item->setIndex(0);

// set the Product in the AutoBillItem
$item->setProduct($product); 

// set the Product (AutoBillItem)
$response = $autobill->setItems(array($item)); 

$autobill->setBillingPlan($billPlan);
$autobill->setMerchantAutoBillId('ab-44822'); // your ID for the AutoBill
$autobill->setCurrency('USD');

$validate = true;
$fraudScore = 100 ; // do not want to do risk screening

$response = $autobill->update('SucceedIgnore', 
$validate, $fraudScore, true, true);

if($response['returnCode'] == 200 && $response['created'] ) {
print "AutoBill created with VID " 

. $response['data']->autobill->getVID() . "\n";
if ( $response['authStatus'] != null ) {

$txnStatus = $response['authStatus'];
log (" CVN return code: " 

. $txnStatus->getCreditCardStatus()->getCvnCode() 

. "AVS return code" 

. $txnStatus->getCreditCardStatus()->getAvsCode() . "\n");
}

}

© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 160



CashBox 5.0: API Reference Guide writeOffInvoice
writeOffInvoice

Marks an Invoice as writtenOff, the debt unable to be collected.

Input autobill: the AutoBill associated with the Invoice to be written off.

invoiceId: the ID of the Invoice to write off.

Output return: an object of type Return that indicates the success or failure of the call.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $autobill = new AutoBill();
$autobill->setMerchantAutoBillId($abID);      // for some $abID

$response = $autobill->writeOffInvoice('inv-bac');

// check $response

Return Code Return String

400 One of the following:

• AutoBill not found.
• Invoiced ID not provided.
• Failed to write off invoice: error-description.

404 Invoice ID not found.
© 2014 Vindicia, Inc. Table of Contents The AutoBill Object 161



CashBox 5.0: API Reference Guide writeOffInvoice
5 The BillingPlan Object

The periodicity, frequency, and amount of rebilling transactions generated by an AutoBill 
object are determined by its associated BillingPlan object, which enables you to define a 
billing model for a service or product for subscription. The BillingPlan object also allows 
you to define complex pricing logic, that employs variably priced billing periods. For 
example, a Billing Plan may include an initial, two-month free period, followed by an 
introductory price of $19.99/month for six months, and then by the regular price of $44.99/
month for an indeterminate time. (Billing Plans may be defined in any currency that CashBox 
supports.)

Billing Plans may also be used to customize entitlement access in relation to the Billing 
Plan. For example, entitlements may be coincident with the plan (a customer is granted 
access for every month on which they make a payment), or entitlements may be separated 
from the billing sequence (a customer may be granted access for a year, as a result of only 
three monthly payments).

Create new Billing Plans when you launch or update a subscription service. Billing Plans 
may be created using the CashBox API, or the CashBox Portal.
© 2014 Vindicia, Inc. Table of Contents The BillingPlan Object 162



CashBox 5.0: API Reference Guide BillingPlan Data Members
5.1 BillingPlan Data Members

The following tables list and describe the data members of the BillingPlan object and its 
subobjects. 

Table 5-1 BillingPlan Object Data Members

Data Members Data Type Description

billingState-
mentIdentifier

string The transaction description on the customer’s billing 
statement from the bank when the customer is charged 
through this BillingPlan object. This field’s value and 
its format are constrained by your payment processor; 
consult with Vindicia Client Services before setting the 
value.

If GlobalCollect, MeS, Chase Paymentech or Litle is your 
payment processor, see Appendix A: Custom Billing 
Statement Identifier Requirements in the CashBox Pro-
gramming Guide.

daysBefore-
SeasonToBill

int If the Billing Period set repeats for multiple Seasons, this 
value defines the number of days before the Season be-
gins that the Account should be billed. (Default is 0.)

DaysEnti-
tledAfterSeason

int Defines the number of days after a Season ends that Enti-
tlements will remain Active.

daysEntitledBe-
foreSeason

int Defines the number of days before the Season begins 
that Entitlements will become Active.

description string Your description of the Billing Plan.

endOfLifeTime-
stamp

dateTime Optional. A timestamp that specifies the expiration date 
for this BillingPlan object. This value is for your infor-
mation only, and does not affect CashBox operations.

entitledOffSea-
son

Boolean A Boolean flag that, if set to true, sets Entitlements to re-
main Active in the off-season. (Default is false.)

entitlements-
ValidFor

string The length of time for which Entitlements are valid after 
the last Billing date.

merchantBill-
ingPlanId

string Your unique identifier for this BillingPlan object. This 
value enables you to look up a BillingPlan object with 
the fetchByMerchantBillingPlanId method. Refer-
ence the plan with this ID when making a call that requires 
you to specify a billing plan.

merchant-
EntitlementIds

MerchantEnti-
tlementId[]

An array of identifiers, specified by you, to define the cus-
tomer’s entitlements. These IDs have special meaning in 
your application. For example, your application might con-
tain logic such that the Gold Access ID enables a cus-
tomer to access certain special features of your service.

CashBox returns these IDs to you inside Entitlement 
objects along with the dates till which they are considered 
valid for a given customer.
© 2014 Vindicia, Inc. Table of Contents The BillingPlan Object 163



CashBox 5.0: API Reference Guide BillingPlan Data Members
nameValues NameValuePair[] Optional. An array of name–value pairs, each of which 
enables you to include BillingPlan information other 
than that in the description field. 

See Section 10: The NameValuePair Object.

periods BillingPlanPe-
riod[]

An array of items that describe the billing. The AutoBill 
object uses this array sequentially for actual billing trans-
actions, enabling the creation of complex billing plans in 
numerous currencies, for example, one free month, fol-
lowed by three months at $9.99/month, and then 12 
months for $15.99/month. 

For example, a Billing Plan may define a free trial period, 
followed by a monthly subscription service; or it may de-
fine a Seasonal Billing Plan, whereby a customer is billed 
only during the Season to which they are subscribed.

See the BillingPlanPeriod Subobject.

prenotifyDays int Optional. The number of days before an AutoBill ob-
ject’s billing date to notify yourself or the customer of an 
impending billing.

repeatEvery string If a Billing Period set repeats, this value defines the length 
of time after the first billing that the set should repeat.

seasonSet SeasonSet The SeasonSet to which the Billing Plan applies. (May 
be null.)

See Section 16.1: SeasonSet Data Members.

skipInitial-
FreeWhenRepeat-
ing

Boolean A Boolean flag that, if set to true, excludes initial free pe-
riods when repeating a Billing Period set. (Default is 
true.)

status BillingPlanSta-
tus

An enumerated string value that describes the current 
state of the BillingPlan object. This value is for your 
information only, and does not affect CashBox operations. 

See the BillingPlanStatus Subobject.

timesToRun string The number of times the sequence of Billing Periods 
should be repeated. Valid input includes positive integers, 
or “unlimited.” (Default is null.) 

VID string Vindicia's Globally Unique Identifier (GUID) for this object. 
When creating a new BillingPlan object, leave this 
field blank; it will be automatically populated by CashBox.

Table 5-1 BillingPlan Object Data Members  (Continued)

Data Members Data Type Description
© 2014 Vindicia, Inc. Table of Contents The BillingPlan Object 164



CashBox 5.0: API Reference Guide BillingPlan Subobjects
5.2 BillingPlan Subobjects

The BillingPlan object has several subobjects:

• BillingPlanPeriod Subobject

• BillingPlanPeriodType Subobject

• BillingPlanPrice Subobject

• BillingPlanStatus Subobject

BillingPlanPeriod Subobject

Describes a quantity of time and a set of prices to use for the BillingPlan. 

Table 5-2 BillingPlanPeriod Object Data Members

Data Members Data Type Description

cycles int The number of billing cycles that pertain to this billing 
period. Set the value to 0 to specify an infinite number 
of billing cycles; set it to 3 to use this billing-plan peri-
od three times in succession. 

doNotNotify-
FirstBill

Boolean A Boolean flag that, if set to true, prevents the 
prenotification email message from being sent. Use 
this flag to prevent email notification for the first bill af-
ter a free trial, for which an expiration warning mes-
sage has already been sent.

expireWarning-
Days

int The number of days before the expiration of this bill-
ing period to send a warning by email. CashBox 
sends the warning X number of days before the expi-
ration date, where X is the value specified in this attri-
bute. 

free Boolean A Boolean flag that, if set to true, guarantees that 
CashBox will not bill for the AutoBill’s Products, re-
gardless of whether they are added or included. 
CashBox will bill for Charges, which may have been 
explicitly added during the period.

Note that setting this flag to true causes CashBox to 
ignore any price defined elsewhere for the Billing Pe-
riod, and set the period to free.

prices BillingPlan-
Price[]

The price of this billing period, in a specific currency 
or token type, but not both. The actual price for the 
transactions generated for the associated AutoBill 
object depends on the price picked from this array 
that matches the currency on AutoBill. 

See the BillingPlanPrice Subobject.
© 2014 Vindicia, Inc. Table of Contents The BillingPlan Object 165



CashBox 5.0: API Reference Guide BillingPlan Subobjects
BillingPlanPeriodType Subobject

The unit of time the Period describes. 

BillingPlanPrice Subobject

A price for the BillingPlan. 

quantity int The number of units of the billing period type to 
count as a single billing period. For example, for a bi-
weekly billing cycle, set this value to 2 and Bill-
ingPlanPeriodType to Week. (Default is 1.)

type BillingPlan-
PeriodType

An enumerated string that specifies the unit (day, 
week, month, or year) for the duration of the billing 
period. 

See the BillingPlanPeriodType Subobject.

Table 5-2 BillingPlanPeriod Object Data Members

Data Members Data Type Description

Table 5-3 BillingPlanPeriodType Object Data Members

Data Members Data Type Description

Day string The billing period is by day.

Week string The billing period is by week.

Month string The billing period is by month.

Year string The billing period is by year.

Table 5-4 BillingPlanPrice Object Data Members

Data Members Data Type Description

amount decimal The amount to bill. Must be zero (for free trials) or 
positive.

currency string The ISO 4217 currency code (see www.xe.com/
iso4217.htm) of billing. The default is USD.

priceListName string Optional. The name of the price list that contains this 
price. This is a free-form string of a maximum of 255 
characters that describes this price point.

tokenAmount TokenAmount The price of this billing plan period, expressed in 
terms of the number of tokens of a certain type. 
CashBox decrements this amount from the Account 
object when billing it for this period.
© 2014 Vindicia, Inc. Table of Contents The BillingPlan Object 166



CashBox 5.0: API Reference Guide BillingPlan Subobjects
BillingPlanStatus Subobject

Describes whether the BillingPlan is Active or Suspended. Suspended Billing Plans 
may not be AutoBill renewed. 

Table 5-5 BillingPlanStatus Object Data Members

Data Members Data Type Description

Active string The BillingPlan object is active (accessible to the 
customer).

Suspended string The BillingPlan object is inactive (inaccessible to 
the customer).
© 2014 Vindicia, Inc. Table of Contents The BillingPlan Object 167



CashBox 5.0: API Reference Guide BillingPlan Methods
5.3 BillingPlan Methods

The following table summarizes the methods for the BillingPlan object. 

Table 5-6 BillingPlan Object Methods

Method Description

fetchAll Returns all the BillingPlan objects.

fetchAllInSeason Returns all in season Billing Plans.

fetchAllOffSeason Returns all off-season Billing Plans.

fetchByBillingPlanStatus Returns one or more BillingPlan objects whose status matches 
the input (Active or Suspended).

fetchByMerchantBilling-
PlanId

Returns a BillingPlan object whose ID assigned by you match-
es the input.

fetchByMerchantEntitle-
mentId

Returns one or more BillingPlan objects whose entitlement ID 
assigned by you (merchantEntitlementId) matches the input.

fetchByVid Returns a BillingPlan object whose VID matches the input.

update Creates or updates a BillingPlan object.
© 2014 Vindicia, Inc. Table of Contents The BillingPlan Object 168



CashBox 5.0: API Reference Guide fetchAll
fetchAll

The fetchAll method returns all your BillingPlan objects.

This method supports paging to limit the number of records returned per call. Returning a 
large number of records in one call may swamp buffers, and might cause a failure. Vindicia 
recommends that you call this method in a loop, incrementing the page for each loop 
iteration with an optimal page size (number of records returned in one call) until the page 
contains a number of records that is less than the given page size.

Input page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to display per page per call. This value must be greater 
than 0.

Output return: an object of type Return that indicates the success or failure of the call.

billingPlans: an array of returned BillingPlan objects.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $bp = new BillingPlan();
$page = 0;
$pageSize = 10;
do {

$ret = $bp->fetchAll($page, $pageSize);
$count = 0;
if ($ret['returnCode'] == 200) {

$fetchedPlans = $ret['billingPlans'];
$count = sizeof($fetchedPlans);
foreach ($fetchedPlans as $plan) {

// process a fetched plan here …
}

$page++;
}

} while ($count > 0);

Return Code Return String

404 No BillingPlans found for merchant.
© 2014 Vindicia, Inc. Table of Contents The BillingPlan Object 169



CashBox 5.0: API Reference Guide fetchAllInSeason
fetchAllInSeason

The fetchAllInSeason method returns all BillingPlan objects with in season 
SeasonSets.

Input page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to display per page per call. This value must be greater 
than 0.

nowDate: the (optional) date to query. (Defaults to today.)

Output return: an object of type Return that indicates the success or failure of the call.

billingPlans: an array of returned BillingPlan objects.

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $bp = new BillingPlan();
$page = 0;
$pageSize = 10;
do {

$ret = $bp->fetchAllInSeason($page, $pageSize);
$count = 0;
if ($ret['returnCode'] == 200) {

$fetchedPlans = $ret['billingPlans'];
$count = sizeof($fetchedPlans);
foreach ($fetchedPlans as $plan) {

// process a fetched plan here …
}

$page++;
}

} while ($count > 0);
© 2014 Vindicia, Inc. Table of Contents The BillingPlan Object 170



CashBox 5.0: API Reference Guide fetchAllOffSeason
fetchAllOffSeason

The fetchAllOffSeason method returns all BillingPlan objects with off-season 
SeasonSets.

Input page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to display per page per call. This value must be greater 
than 0.

nowDate: the (optional) date to query. (Defaults to today.)

Output return: an object of type Return that indicates the success or failure of the call.

billingPlans: an array of returned BillingPlan objects.

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $bp = new BillingPlan();
$page = 0;
$pageSize = 10;
do {

$ret = $bp->fetchAllOffSeason($page, $pageSize);
$count = 0;
if ($ret['returnCode'] == 200) {

$fetchedPlans = $ret['billingPlans'];
$count = sizeof($fetchedPlans);
foreach ($fetchedPlans as $plan) {

// process a fetched plan here …
}

$page++;
}

} while ($count > 0);
© 2014 Vindicia, Inc. Table of Contents The BillingPlan Object 171



CashBox 5.0: API Reference Guide fetchByBillingPlanStatus
fetchByBillingPlanStatus

The fetchByBillingPlanStatus method returns one or more BillingPlan objects 
whose status matches the input (either Active or Suspended). For example, call this 
method to retrieve all active billing plans, and present them to a customer as subscription 
choices.

Input status: a string that describes the BillingPlan status (either Active or Suspended), 
which serves as the search criterion.

Output return: an object of type Return that indicates the success or failure of the call.

billingPlans: an array of one or more BillingPlan objects whose status matches the 
input.

Returns This method returns the codes listed in Table 1: Standard Return Codes.

Example // Create an array of billing plan object
$plan = new BillingPlan();

// now load all billing plans that have a status of Suspended
$response = $plan->fetchByBillingPlanStatus('Active');
if($response['returnCode'] == 200) {

$fetchedPlans = $response['data']->billingPlans;

if ($fetchedPlans != null ) {
foreach ($fetchedPlans as $billPlan) {

// process a fetched plan here
}

}
}

© 2014 Vindicia, Inc. Table of Contents The BillingPlan Object 172



CashBox 5.0: API Reference Guide fetchByMerchantBillingPlanId
fetchByMerchantBillingPlanId

The fetchByMerchantBillingPlanId method returns a BillingPlan object whose 
ID, assigned by you, matches the input.

Input merchantBillingPlanId: your billing plan ID (merchantBillingPlanId), which serves as 
the search criterion.

Output return: an object of type Return that indicates the success or failure of the call.

billingPlan: the BillingPlan object whose merchantBillingPlanId matches the 
input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $bpMerchantId = '12345';

// Create a billing plan object
$plan = new BillingPlan();

// now load a billing plan record into the Billing Plan object
$response = $plan->fetchByMerchantBillingPlanId($bpMerchantId);
if($response['returnCode'] == 200) {

$fetchedBillingPlan = $response['data']->billingPlan;

// process fetched billing plan here
}

Return Code Return String

404 No BillingPlans found for Merchant Billing Plan ID in-
put-merchantBillingPlanId.
© 2014 Vindicia, Inc. Table of Contents The BillingPlan Object 173



CashBox 5.0: API Reference Guide fetchByMerchantEntitlementId
fetchByMerchantEntitlementId

The fetchByMerchantEntitlementId method returns one or more BillingPlan 
objects that offer an entitlement whose ID matches the input. For example, call this method 
if a customer would like to see all the billing plans which grant a specific privilege on your 
site.

Input merchantEntitlementId: the merchant’s unique ID for the Entitlement.

Output return: an object of type Return that indicates the success or failure of the call.

billingPlans: an array of one or more BillingPlan objects with an entitlement whose ID 
matches the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $plan = new BillingPlan();

// now load all billing plans that have an 
// entitlement id of download $meId = 'Gold Access'; 
// This is the id we want to retrieve plans by

$response = $plan->fetchByMerchantEntitlementId($meId);

if($response['returnCode'] == 200) {

$fetchedPlans = $response['data']->billingPlans;

if ($fetchedPlans != null ) {
foreach ($fetchedPlans as $billPlan) {

// process a fetched plan here
}

}
}

Return Code Return String

404 No BillingPlans found for entitlementId input-merchantEn-
titlementId.
© 2014 Vindicia, Inc. Table of Contents The BillingPlan Object 174



CashBox 5.0: API Reference Guide fetchByVid
fetchByVid

The fetchByVid method returns a BillingPlan object whose VID matches the input.

When you first create a BillingPlan object with the update() method, leave the VID 
field empty; CashBox automatically assigns the object a unique VID inside the 
BillingPlan object that you receive in response to the call. Use this VID to retrieve the 
object later.

Input vid: the BillingPlan object’s Vindicia identifier, which serves as the search criterion.

Output return: an object of type Return that indicates the success or failure of the call.

billingPlan: the BillingPlan object whose VID matches the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $planVid = 'MyVindiciaVID';

// Create a billing plan object
$plan = new BillingPlan();
// now load a billing plan record into the BillingPlan object by VID
$response = $plan->fetchByVid($planVid);

if($response['returnCode'] == 200) {
$fetchedPlan = $response['data']->billingPlan;

// process fetched billing plan here
}

Return Code Return String

404 No BillingPlans found for VID input-vid.
© 2014 Vindicia, Inc. Table of Contents The BillingPlan Object 175



CashBox 5.0: API Reference Guide update
update

The update method creates a new BillingPlan object (that is, a new billing plan), or 
updates an existing BillingPlan object.

Billing Plans may be created using either the CashBox API, or the CashBox Portal. Use the 
BillingPlan.update method of the API to create or update a large number of billing 
plans.

To create a BillingPlan object, initialize the object, set the values for its data members as 
appropriate, and then call the update() method to store the changes. When creating a new 
BillingPlan object, do not set a value for VID; CashBox will automatically generate a VID 
for the object when you call update(). 

Set the BillingPlanPeriod object’s free flag to true to override any price setting for 
Products included in the AutoBill. If set to true, no Product price will be applied to the 
AutoBill; only Charges. 

When updating an existing BillingPlan object, identify it with its VID or your billing plan 
ID (merchantBillingPlanId). Be certain to add billing plan periods and prices in the 
appropriate currencies. 

Input billingPlan: the BillingPlan object to be created or updated. If you are updating an 
existing plan, identify this object with its VID or your billing plan ID 
(merchantBillingPlanId).

Output return: an object of type Return that indicates the success or failure of the call.

billingPlan: the BillingPlan object that was created or updated.

created: a Boolean flag that, if set to true, indicates that this method has created a new 
BillingPlan object. A false setting indicates that update has updated an existing 
BillingPlan object.

Returns This method returns the codes listed in Table 1: Standard Return Codes.

Note: Setting this BillingPlanPeriod flag to true causes CashBox to 
ignore any price defined elsewhere for the Billing Period, and set 
the period to free.

Note: Changing the pricing structure for a Billing Plan will change the 
price for any active AutoBills associated with the plan. If your 
customer has already received a pre-billing notification before you 
change the Billing Plan’s price, but before they are billed, they will 
be charged the old price for that Billing Cycle. If they have not 
received a pre-billing notification, the new Billing Plan price will take 
effect upon the next Billing Cycle.
© 2014 Vindicia, Inc. Table of Contents The BillingPlan Object 176



CashBox 5.0: API Reference Guide update
Example // to create a billing plan

// Create a new billing plan
$plan = new BillingPlan();

// Identify the billing plan by your unique identifier, etc.
$plan->setMerchantBillingPlanId('12345');
$plan->setPreNotifyDays(7);
$plan->setStatus('Active');
$plan->description('1 Free Month then 2 Months at $5.00 (USD), 

$5.60 (CAD) then $120.00(USD), $135.00(CAD) per year');
$plan->periods[0]=(new BillingPlanPeriod(type => 'Month',

quantity => 1,
cycles => 1, //Just once
prices => [new BillingPlanPrices('amount' => 0,
'currency' => 'USD'),
new BillingPlanPrices('amount' => 0, 'currency' => 'CAD')]));

$plan->periods[1]=(new BillingPlanPeriod(type => 'Month',
quantity => 1,
cycles => 2, //for 2 months
prices => [new BillingPlanPrices
('amount' => 5.00, 'currency' => 'USD'),
new BillingPlanPrices('amount' => 5.60, 'currency' => 'CAD')]));

$plan->periods[2]=(new BillingPlanPeriod(
type => 'Year',
quantity => 1,
cycles => 0, //Repeat infinitely
prices => [new BillingPlanPrices('amount' => 120.00,
'currency' => 'USD'),
new BillingPlanPrices('amount' => 135.00, 'currency' => 'CAD')]));

$response = $plan->update();
if($response['returnCode'] == 200 && $response['created'])
{

print "Billing plan successfully created. VID: " 
. $response['data']->billingPlan->getVID() . "\n";

}

© 2014 Vindicia, Inc. Table of Contents The BillingPlan Object 177



CashBox 5.0: API Reference Guide update
6 The Campaign Object

CashBox Campaigns allow you to offer special discounts on your existing products. 
Campaigns are discounts given over a period of time for a service or subscription, and may be 
applied to multiple Products, and multiple Billing Cycles. 

Promotion Campaigns generate a single Campaign Code, which may be distributed to 
multiple customers. 

Coupon Campaigns generate multiple unique Campaign Codes, which may be used a 
defined number of times. Coupon Campaigns are often highly targeted, and Coupon Code 
distribution and redemption may be tracked. 

The CashBox Portal offers a single page from which you may create Campaigns, from 
selecting the product, pricing change, and time frame, to defining the Campaign description 
and Coupon or Promotion code.

Once a Campaign is underway, that is, once a Campaign has been activated, and 
Promotions or Coupons have been redeemed, you may not change any Campaign 
parameters that define the discount. To change parameters, such as 
flatAmountDiscount, or the number of weeks in a Rolling Campaign, you must cancel 
the Campaign, and deactivate any existing Coupon or Promotion Codes.

For more information on Campaigns, see Chapter 10: Campaigns  in the CashBox Users 
Guide.
© 2014 Vindicia, Inc. Table of Contents The Campaign Object 178



CashBox 5.0: API Reference Guide Campaign Data Members
6.1 Campaign Data Members

The Campaign object encapsulates the information for a Campaign, including Campaign 
Type, Status, and Coupon Codes, if applicable.

The following table lists and describes the data members of the Campaign object.

Table 6-1 Campaign Object Data Members

Data Members Data Type Description

campaignId string Your unique identifier for this Campaign object. 

Note: Read-only once the Campaign has been created.

campaignType CampaignType Specifies whether the Campaign is a Coupon or Promo-
tion. Valid CampaignTypes include:

• Undefined (Used only for errors.)
• Coupon
• Promotion

Note: Read-only once the Campaign is Active.

couponCodePre-
fix

string Defines a prefix for the CashBox randomly generated 
Coupon Code.

couponCodeQuan-
tity

integer The number of Coupon Codes to generate.

couponCodeRe-
quiresActiva-
tion

Boolean A Boolean flag which, if set to true, creates inactive Cou-
pon Codes. (Inactive Coupon Codes must be individually 
activated before use.) (Default is false.)

couponCodeSepa-
rator

string The (optional) character used to separate the coupon-
CodePrefix from the CouponCode string. This may be 
any printable, non-alphanumeric ASCII character.

cycles integer The number of Billing Cycles to which the Campaign dis-
count will be applied.

Note: A Campaign must include either the cycles or the 
expirationDate data member, and it may not include 
both.

description string Description of the Campaign. 

Note: Read-only once the Campaign is Active.

eligibleProduct Product One or more Products eligible for this Campaign.

See Section 13.1: Product Data Members.

expirationDate dateTime The date the Campaign discount expires. (If null, the 
offerEndDate will be used.)

This date may be after the Campaign’s offerEndDate, 
but cannot be before it.

Note: A Campaign must include either the cycles or the 
expirationDate data member, and it may not include 
both.
© 2014 Vindicia, Inc. Table of Contents The Campaign Object 179



CashBox 5.0: API Reference Guide Campaign Data Members
flatAmountDis-
count

CurrencyAmount Defines the discount, or discounts, as a Currency-
Amount pair object. 

Note: flatAmountDiscount and percentageDis-
count are mutually exclusive.

Note: A Campaign must include either the flat-
AmountDiscount or the percentageDiscount data 
member, and it may not include both.

maxRedemptions integer Sets the maximum number of different AutoBills to which 
a Campaign Code may be applied.

name string Name of the Campaign. 

Note: Read-only once the Campaign is Active.

note string An optional memo regarding the Campaign.

offerEndDate dateTime The last date on which the Campaign Code may be re-
deemed.

offerStartDate dateTime The first date on which the Campaign Code may be re-
deemed.

percentageDis-
count

decimal Defines the discount as a percentage of the original Prod-
uct price. 

Note: flatAmountDiscount and percentageDis-
count are mutually exclusive.

Note: A Campaign must include either the flat-
AmountDiscount or the percentageDiscount data 
member, and it may not include both.

promotionCode string The redemption code associated with the Promotion.

promotionCode-
Aliases

string (0 or more) An array of alternative redemption codes for the Promo-
tion. 

Note: Setting this array will replace any existing list of 
aliases; it will not add new values to an existing list.

restrictToNew-
Subscription

Boolean A Boolean flag which, if true, indicates that the Cam-
paign offer applies only to new AutoBills, and may not be 
applied to existing AutoBills.

state CampaignState State of the campaign:

• Undefined
• Active
• Inactive
• Pending
• Complete

Table 6-1 Campaign Object Data Members  (Continued)

Data Members Data Type Description
© 2014 Vindicia, Inc. Table of Contents The Campaign Object 180



CashBox 5.0: API Reference Guide Campaign Data Members
timeGrant CampaignTime-
Grant

Defines the grant, as a CampaignTimeGrant object. 

This object includes two data members: 

• quantity: the number of time units to grant.
• type = an enumeration of type 
CampaignTimeGrantLengthType, which may be 
Day, Week, Month, or Year.

VID string Vindicia's Globally Unique Identifier (GUID) for this object. 
When creating a new Campaign object, leave this field 
blank; it will be automatically populated by CashBox.

Table 6-1 Campaign Object Data Members  (Continued)

Data Members Data Type Description
© 2014 Vindicia, Inc. Table of Contents The Campaign Object 181



CashBox 5.0: API Reference Guide Campaign Related Object
6.2 Campaign Related Object

The Campaign object has one related object:

• CouponCode Object
© 2014 Vindicia, Inc. Table of Contents The Campaign Object 182



CashBox 5.0: API Reference Guide Campaign Related Object
CouponCode Object

Created by CashBox in response to a Generate Coupon Codes request, this object stores 
the randomly generated string Codes for the Coupon Campaign.

Each coupon code may be redeemed a fixed number of times. When a coupon code is 
applied to multiple AutoBillItems within a single AutoBill, or multiple transaction items on 
a single Transaction, it will count as a single Redemption. If a Coupon Code is applied to 
multiple AutoBills, or multiple Transactions, it will count as multiple redemptions. (Applying a 
Coupon Code to a single AutoBill at multiple points in time will also count as multiple 
redemptions.)

For more information on generating Coupon Codes, see Chapter 11: Working with 
Campaigns in the CashBox Programming Guide. 

Table 6-2 CouponCode Object Data Members

Data Members Data Type Description

campaignId string Read only. A unique identifier for the Campaign ob-
ject. 

code string The Coupon value, which consists of <coupon-
CodePrefix><separator (if defined)><randomly 
generated string>.

This field is available only when creating the Coupon. 
When retrieving the CouponCode object, this field 
will always be returned blank.

note string An optional memo regarding the CouponCode.

redeemedBy CouponRe-
deemedBy

An array of CouponRedeemedBy objects, which lists 
the Account and date on which the Coupon was re-
deemed. Fields include:

• merchantAccountId (string)
• accountVID (string)
• date (dateTime)

sequence int A unique number for each Coupon Code generated, 
starting with 1.

state CouponCode-
State

The state of the Coupon Code:

• Not Yet Activated
• Activated
• Redeemed
• Expired
• Marked Used
• Retrieved
• Invalidated
• Initialized

VID string Vindicia's Globally Unique Identifier (GUID) for this 
object. When creating a new CouponCode object, 
leave this field blank; it will be automatically populat-
ed by CashBox.
© 2014 Vindicia, Inc. Table of Contents The Campaign Object 183



CashBox 5.0: API Reference Guide Campaign Methods
6.3 Campaign Methods

The following table summarizes the methods for the Campaign object. 

Table 6-3 Campaign Object Methods

Method Description

activateCampaign Sets the state of an Inactive or Pending Campaign to Active. 

activateCode Activates a CouponCode. 

cancelCampaign Cancels a Campaign and all of its existing promotionCodes or 
couponCodes.

cloneCampaign Vindicia best practices recommendation is to use the CashBox GUI 
interface, rather than the API, to clone a Campaign.

createCampaign Vindicia best practices recommendation is to use the CashBox GUI 
interface, rather than the API, to create new Campaigns.

deactivateCampaign Sets the status of an Active or Pending Campaign to Inac-
tive. 

fetchAllCampaigns Returns an array of Campaign objects, filtered by Campaign-
State, if specified.

fetchByCampaignId Loads a Campaign by your Campaign ID.

fetchByVid Loads a Campaign by its VID.

generateCouponCodes Vindicia best practices recommendation is to use the CashBox GUI 
interface, rather than the API, to generate Coupon Codes.

markAllCouponsUsed Vindicia best practices recommendation is to use the CashBox GUI 
interface, rather than the API, to mark all Coupons Used.

retrieveCouponCodes Fetches previously generated CouponCodes.

updateCampaign Vindicia best practices recommendation is to use the CashBox GUI 
interface, rather than the API, to update a Campaign.

validateCode Checks if a Coupon or Promotion may be used.
© 2014 Vindicia, Inc. Table of Contents The Campaign Object 184



CashBox 5.0: API Reference Guide activateCampaign
activateCampaign

Sets the state of an Inactive or Pending Campaign to Active. 

This method will fail if CouponCodes have been created, but not yet retrieved.

This method fails silently if the Campaign is already Active. Activating a Campaign from 
Pending sets the offer date to the current date.

Input campaign: the Campaign object to be activated. Identify this object with its VID or 
campaignId.

forcePending: a Boolean flag which, if set to true, allows the campaign to be activated, 
even from the Pending state. If this flag is false or omitted, the Campaign must be in the 
Inactive state to be activated.

Output return: an object of type Return that indicates the success or failure of the call.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $camp = new Campaign();
$camp->setCampaignId('camp132');
$response = $camp->activateCampaign(false);

// false is for the forcePending parameter

// check $response

Return Code Return String

400 One of the following:

• Failed to update SOAP object in DB.
• Current state of <state> is an invalid state for 

Campaign activation.
• Failed to obtain SOAP object from DB.
• Tried to activateCampaign without doing 

createCampaign first.
• Can't activate campaign.
© 2014 Vindicia, Inc. Table of Contents The Campaign Object 185



CashBox 5.0: API Reference Guide activateCode
activateCode

Activates a Coupon Code. Use this method to activate individual Coupon Codes before they 
may be used.

Coupon Codes may not be activated if their Campaign is not Active.

Use the validateCode method to activate a Code at the same time it is validated.

Input code: the Coupon Code to be activated. Because all Coupon Codes are unique, it is 
sufficient to specify the Code.

Output return: an object of type Return that indicates the success or failure of the call.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $camp = new Campaign();
$response = $camp->activateCode(

'promo123',     // the campaign code
); 

Return Code Return String

400 One of the following:

• Code code doesn't represent a CouponCode.
• Code code can't be activated: error-description.
© 2014 Vindicia, Inc. Table of Contents The Campaign Object 186



CashBox 5.0: API Reference Guide cancelCampaign
cancelCampaign

This method cancels a Campaign, and sets its state to Inactive. Once cancelled, a 
campaign's discounts are unobtainable. Cancel cannot be reversed. To “reactivate” a 
cancelled Campaign, use the CashBox Portal to clone the Campaign. (Note that in cloning a 
Campaign, you must assign a new campaignId to the clone.)

Use this method to cancel a Campaign if something goes wrong, such as lost Coupon 
Codes, or a security breach.

Input campaign: the Campaign object to be cancelled. Identify this object with its VID or 
campaignId.

Output return: an object of type Return that indicates the success or failure of the call.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $camp = new Campaign();
$camp->setCampaignId('camp132');
$campaign->cancelCampaign();

Return Code Return String

400 One of the following:

• Failed to update SOAP object in DB.
• Campaign is not in the right state for cancellation.
• Failed to obtain SOAP object from DB.
• Tried to cancelCampaign without doing createCampaign 

first.
• Can't cancel campaign until campaign code generation 

is complete.
• Can't cancel campaign: unable to invalidate campaign 

codes
Campaign codes requested = <requested>
Campaign codes generated = <generated>
© 2014 Vindicia, Inc. Table of Contents The Campaign Object 187



CashBox 5.0: API Reference Guide deactivateCampaign
deactivateCampaign

Sets the status of an Active or Pending Campaign to Inactive. 

This method fails silently if the Campaign is already Inactive.

Input campaign: the Campaign object to be deactivated. Identify this object with its VID or 
campaignId.

Output return: an object of type Return that indicates the success or failure of the call.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $camp = new Campaign();
$camp->setCampaignId('camp132');
$response = $camp->deactivateCampaign();

// check $response

Return Code Return String

400 One of the following:

• Tried to deactivateCampaign without doing 
createCampaign first.

• Current state of <state> is an invalid state for 
Campaign deactivation.

• Failed to update SOAP object in DB.
• Failed to obtain SOAP object from DB.
© 2014 Vindicia, Inc. Table of Contents The Campaign Object 188



CashBox 5.0: API Reference Guide fetchAllCampaigns
fetchAllCampaigns

This method returns an array of Campaign objects, filtered by CampaignState, if 
specified.

Input status: the (optional) CampaignState of the Campaign(s) you wish to have returned. To 
fetch all Campaigns, set status to MatchAnyState.

page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to display per page per call. This value must be greater 
than 0.

Output return: an object of type Return that indicates the success or failure of the call.

campaign: an array of all Campaign objects whose status matches the input.

Returns This method returns the codes listed in Table 1: Standard Return Codes.

Example $camp = new Campaign();
$response = $camp->fetchAllCampaigns();
// check $response

$fetchedCampaigns = $response['campaign'];
foreach ($fetchedCampaigns as $campaign) {

print "got campaign "
. $campaign->campaignId() . " "
. $campaign->name()       . "\n";

}

© 2014 Vindicia, Inc. Table of Contents The Campaign Object 189



CashBox 5.0: API Reference Guide fetchByCampaignId
fetchByCampaignId

Loads a Campaign by its Campaign ID.

Input campaignId: the ID of the Campaign you wish to return.

Output return: an object of type Return that indicates the success or failure of the call.

campaign: the Campaign object whose CampaignId matches the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $camp = new Campaign();
$response = $camp->fetchByCampaignId('camp132');

// check $response

$campaign = $response['campaign'];
print "got campaign " . $campaign->name() . "\n";

Return Code Return String

400 Can't load Campaign with ID input-campaignId.
© 2014 Vindicia, Inc. Table of Contents The Campaign Object 190



CashBox 5.0: API Reference Guide fetchByVid
fetchByVid

Loads a Campaign by its VID.

Input vid: the VID of the Campaign you wish to return.

Output return: an object of type Return that indicates the success or failure of the call.

campaign: the Campaign object whose VID matches the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $camp = new Campaign();
$response = 

$camp->fetchByVid('8367ae7148d071a4e25c24bef856f68f71ee03e3');

// check $response

$campaign = $response['campaign'];
print "got campaign " . $campaign->name() . "\n";

Return Code Return String

400 Can't load Campaign with VID input-vid.
© 2014 Vindicia, Inc. Table of Contents The Campaign Object 191



CashBox 5.0: API Reference Guide retrieveCouponCodes
retrieveCouponCodes

Fetches previously generated Coupon Codes.

Coupon Codes must be retrieved before a Campaign is set to Active. Coupon Codes may 
not be retrieved for an Active Campaign.

For more information on generating Coupon Codes, see Section 10.2: Campaign Code 
Generation and Distribution in the CashBox User Guide.

If you attempt to retrieve a page of Campaign Codes, and Code generation is not yet 
complete, retrieveCouponCodes will return an error, and the error string will indicate how 
many Codes have been generated, and how many have been requested. For example:

Campaign codes requested = nnn; campaign codes generated = mmm.

Input campaign: the Campaign object for which CouponCodes should be returned. Identify this 
object with its VID or campaignId.

page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to display per page per call. This value must be greater 
than 0.

Output return: an object of type Return that indicates the success or failure of the call.

couponCode: An array of Coupon Codes fetched.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 One of the following:

• Page number must be >= 0 and pageSize must be > 0.
• Can't load Campaign.
• Claimed to load a campaign by ID but it has no VID.
• Can't retrieve campaign codes when campaign state is 

'Active.'
• Can't retrieve campaign codes:

Coupon codes not initialized.
Number of campaign codes requested not yet set up.
Number of campaign codes requested is zero.
Campaign codes requested = <requested>; 
campaign codes generated = <generated>
© 2014 Vindicia, Inc. Table of Contents The Campaign Object 192



CashBox 5.0: API Reference Guide retrieveCouponCodes
Example $camp = new Campaign();
$camp->setCampaignId('camp132');
$response = $camp->retrieveCouponCodes(

0,      // page num
10,     // page size

);

$codes = $response['couponCode'];
for ($codes as $c) {

print "code " . $c->sequence
. " "     . $c->code
. " "     . $c->state
. "\n";

}

© 2014 Vindicia, Inc. Table of Contents The Campaign Object 193



CashBox 5.0: API Reference Guide validateCode
validateCode

Checks if a Coupon or Promotion Code may be used.

Input code: the CampaignCode to be validated.

activateCodeNow: a Boolean flag which, if true, activates the code as soon as it has been 
validated. If false or omitted, an inactive CampaignCode will remain inactive.

Output return: an object of type Return that indicates the success or failure of the call.

valid: a Boolean flag which indicates whether or not the Code is valid.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $camp = new Campaign();
$response = $camp->validateCode(

'promo123',     // the campaign code
true            // activate now

);

// check $response

Return Code Return String

400 One of the following:

• Code input-code doesn't represent a CouponCode.
• Code input-code can't be activated: error-description.
• Code input-code is not redeemable: error-description.
© 2014 Vindicia, Inc. Table of Contents The Campaign Object 194



CashBox 5.0: API Reference Guide validateCode
7 The Chargeback Object

A chargeback is initiated by a customer to reverse a specific transaction charge on their 
billing statement. Work with the Chargeback object when you subscribe to Vindicia’s 
ChargeGuard service to dispute chargebacks on your behalf. (See Chapter 14: Common 
ChargeGuard Programming Tasks in the CashBox Programming Guide for more 
information.) 

Each Chargeback object holds information about a chargeback against a specific 
transaction. This transaction could be a one-time transaction, or a rebilling transaction 
generated by a CashBox AutoBill object (subscription). If you are using ChargeGuard 
only, and are conducting transactions outside of CashBox, the transaction is simply a 
transaction reported by you.

Chargebacks are usually automatically downloaded by Vindicia from your payment 
processor. As Vindicia takes steps to dispute a chargeback on your behalf, the status of the 
Chargeback object will change.
© 2014 Vindicia, Inc. Table of Contents The Chargeback Object 195



CashBox 5.0: API Reference Guide Chargeback Data Members
7.1 Chargeback Data Members

The Chargeback object encapsulates information on a chargeback: the amount, date, 
reference number, and, most importantly, status.

The following table lists and describes the data members of the Chargeback object.

Table 7-1 Chargeback Object Data Members

Data Members Data Type Description

amount decimal This chargeback’s settlement amount, which usually matches the 
amount of the original transaction. In some cases, customers charge 
back only part of a transaction. (Vindicia does not provide information 
on the items that are charged back.) 

Note: Given exchange-rate fluctuations, transactions across currencies 
might be charged back at amounts that differ from the original amounts.

caseNumber string Your bank’s case number for this Chargeback object, if any.

currency string The ISO 4217 currency code (see www.xe.com/iso4217.htm) of this 
Chargeback object. This currency applies to the settlement amount 
(see the amount attribute). The default is USD.

divisionNumber string The number of your division or group your payment processor used 
when processing the original Transaction. Chase Paymentech refers to 
this number as the Division Number; Litle calls it the Report Group; MeS 
calls it the Profile ID.

merchantNumber string Your bank’s merchant number, which identifies you as the merchant.

merchantTrans-
actionId

string Your unique identifier for the transaction associated with this Charge-
back object. If CashBox generated the transaction, for example, for a 
recurring bill, CashBox created this ID for you when processing the 
transaction with your payment processor. If you did not process the 
transaction through CashBox, but only reported it to Vindicia, then this 
ID must match the order number you used when processing the trans-
action with your payment processor.

merchantTrans-
actionTimestamp

dateTime A timestamp that specifies the date and time when the original transac-
tion occurred.

merchantUserId string Your unique identifier for the account of the customer who conducted 
the original transaction. See the merchantAccountId attribute of the 
Account object in Section 1.2: Account Data Members.

nameValues NameValuePair[] Optional. An array of name–value pairs for the Chargeback object.

See Section 10: The NameValuePair Object.

note string Notes on the Chargeback object. Vindicia personnel might make en-
tries here during the dispute process.

presentmentA-
mount

decimal The amount charged back (in the presentment currency), which usually 
matches the amount of the original transaction. Specify this attribute if 
the original transaction was processed with Chase Paymentech in a 
currency other than USD.
© 2014 Vindicia, Inc. Table of Contents The Chargeback Object 196



CashBox 5.0: API Reference Guide Chargeback Data Members
presentmentCur-
rency

string The ISO 4217 currency code (see www.xe.com/iso4217.htm) of this 
transaction at presentment. The default is USD.

postedTimestamp dateTime A timestamp that specifies the date and time when the chargeback was 
posted in the Vindicia database. The difference in time between the 
chargeback, and this posted timestamp, will depend on the frequency at 
which Vindicia downloads chargebacks from your bank or payment pro-
cessor.

processorRe-
ceivedTimestamp

dateTime A timestamp that specifies the date and time when your bank received 
the chargeback from the customer.

reasonCode string The reason code reported by your bank for this Chargeback object. 
Reason codes vary from bank to bank.

referenceNumber string Your bank’s reference number for this Chargeback object, if any.

status ChargebackSta-
tus

The current chargeback status in ChargeGuard. A chargeback goes 
through a life cycle as Vindicia disputes the chargeback on your behalf. 

See Table 7-3: ChargebackStatus Object Values.

statusChanged-
Timestamp

dateTime A timestamp that specifies the date and time for the last status change.

VID string Vindicia's Globally Unique Identifier (GUID) for this object. When creat-
ing a new Chargeback object, leave this field blank; it will be automati-
cally populated by CashBox.

Table 7-1 Chargeback Object Data Members  (Continued)

Data Members Data Type Description
© 2014 Vindicia, Inc. Table of Contents The Chargeback Object 197



CashBox 5.0: API Reference Guide Chargeback Methods
7.2 Chargeback Methods

The following table summarizes the methods for the Chargeback object. 

Table 7-2 Chargeback Object Methods

Method Description

fetchByAccount (This method is not in use.)

fetchByCaseNumber and 
fetchByReferenceNumber

Returns one or more Chargeback objects whose case or refer-
ence number matches the input.

fetchByMerchantTransac-
tionId

Returns one or more Chargeback objects for the transaction 
whose ID assigned by you (merchantTransactionId) matches 
the input.

fetchByStatus Returns one or more Chargeback objects whose status matches 
the input.

fetchByStatusSince Returns one or more Chargeback objects whose status has 
changed since the specified timestamp.

fetchByVid Returns a Chargeback object whose VID matches the input.

fetchDelta Returns the Chargeback objects whose status has changed since 
this call was last made.

fetchDeltaSince Returns the Chargeback objects whose status has changed since 
the specified timestamp.

report Reports a batch of Chargeback objects to ChargeGuard.

update Creates or updates a Chargeback object in the Vindicia database.
© 2014 Vindicia, Inc. Table of Contents The Chargeback Object 198



CashBox 5.0: API Reference Guide fetchByCaseNumber and fetchByReferenceNumber
fetchByCaseNumber and fetchByReferenceNumber
Case and reference numbers are usually assigned by payment processors to track 
chargebacks in their systems. Some processors assign case numbers; others, reference 
numbers; and some assign both. In some cases, multiple chargebacks have the same case 
or reference number.

The fetchByCaseNumber method returns one or more Chargeback objects whose case 
number matches the input. The fetchByReferenceNumber method returns one or more 
Chargeback objects whose reference number matches the input.

Input For fetchByCaseNumber(), caseNumber is the payment processor’s case number, 
which serves as the search criterion.

For fetchByReferenceNumber(), referenceNumber is the payment processor’s 
reference number, which serves as the search criterion.

Output return: an object of type Return that indicates the success or failure of the call.

chargebacks: an array of one or more Chargeback objects whose case or reference 
number matches the input.

Returns In addition to those listed in Table 1: Standard Return Codes, fetchByCaseNumber also 
returns: 

In addition to those listed in Table 1: Standard Return Codes, fetchByReferenceNumber 
also returns: 

Return Code Return String

400 One of the following:

• Unable to load chargebacks by case number input-case-
number: No match.

• Unable to load chargebacks by case number input-case-
number: error-description.

• Must specify a case number to load by!

Return Code Return String

400 One of the following:

• Unable to load chargebacks by reference number input-
reference-number: No match.

• Unable to load chargebacks by reference number input-
reference-number: error-description.

• Must specify a reference number to load by!
© 2014 Vindicia, Inc. Table of Contents The Chargeback Object 199



CashBox 5.0: API Reference Guide fetchByCaseNumber and fetchByReferenceNumber
Example // The following example uses the fetchByCaseNumber call
// Call fetchByReferenceNumber similarly

$cb = new Chargeback();
$caseNo = "34593201";
$ret = $cb->fetchByCaseNumber($caseNo);
if ($ret['returnCode'] == 200) {
$fetchedChargebacks = $ret['chargebacks'];

if ($fetchedChargebacks != null) {
foreach ($fetchedChargebacks as $chargeback) {

// process a fetched chargeback here …
$status = $chargeback->getStatus();
$amount = $chargeback->getAmount();

}
}

}

© 2014 Vindicia, Inc. Table of Contents The Chargeback Object 200



CashBox 5.0: API Reference Guide fetchByMerchantTransactionId
fetchByMerchantTransactionId

The fetchByMerchantTransactionId method returns one or more Chargeback 
objects for the transaction whose ID assigned by you (merchantTransactionId) 
matches the input. Multiple chargebacks may be associated with one transaction, because a 
customer can charge back a transaction’s line items separately.

Input merchantTransactionId: your ID (merchantTransactionId) of the transaction whose 
chargebacks you wish to fetch. 

Output return: an object of type Return that indicates the success or failure of the call.

chargebacks: an array of one or more Chargebacks associated with the transaction 
whose ID matches the one specified as the input parameter.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $cb = new Chargeback();

$ret = $cb->fetchByMerchantTransactionId($txnId);
if ($ret['returnCode'] == 200) {
$fetchedChargebacks = $ret['chargebacks'];

if ($fetchedChargebacks != null) {
foreach ($fetchedChargebacks as $chargeback) {

// process a fetched chargeback here …
$status = $chargeback->getStatus();
$amount = $chargeback->getAmount();

}
}

}

Return Code Return String

400 One of the following:

• Unable to load chargebacks by merchantTransactionId 
input-merchantTransactionId: No match.

• Unable to load chargebacks by merchantTransactionId 
input-merchantTransactionId: error-description.

• Must specify merchant transaction id to load by!
© 2014 Vindicia, Inc. Table of Contents The Chargeback Object 201



CashBox 5.0: API Reference Guide fetchByStatus
fetchByStatus

The fetchByStatus method returns one or more Chargeback objects whose status 
matches the input.

Because multiple chargebacks can be of the same status, this method supports paging to 
limit the number of records returned per call. Occasionally, returning a large number of 
records in one call swamps buffers and might cause a failure. Vindicia recommends that you 
call this method in a loop, incrementing the page for each loop iteration with an optimal page 
size (number of records returned in one call) until the page contains a number of records 
that is less than the given page size.

Input status: a string that describes the Chargeback status, which serves as the search 
criterion. See Table 7-3 for the values of the Chargeback enumeration.

page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to display per page per call. This value must be greater 
than 0.

Table 7-3 ChargebackStatus Object Values

Value Description

Challenged Vindicia has submitted rebuttal documents to your payment processor to dis-
pute this chargeback.

CollectionsNew An inactive status.

CollectionsWon An inactive status.

CollectionsLost An inactive status.

Duplicate A duplicate chargeback has either been manually entered or received by 
Vindicia from the payment processor. Another chargeback in the queue ex-
ists with exactly the same information but is not marked duplicate.

Expired The related documents or transaction details you reported were received too 
late by Vindicia to dispute this chargeback.

Incomplete Vindicia has received chargeback information from the payment processor 
but does not have the original transaction details from you.

Legitimate A valid chargeback because the original transaction was truly fraudulent. 
Vindicia does not represent or dispute legitimate transactions.

Lost Vindicia challenged this chargeback but lost the case.

New The first chargeback received by Vindicia, which is in the process of decid-
ing how to pursue on your behalf.

NewSecondChargeback A second chargeback has been received against a transaction that was ini-
tially charged back, disputed, and won.
© 2014 Vindicia, Inc. Table of Contents The Chargeback Object 202



CashBox 5.0: API Reference Guide fetchByStatus
Output return: an object of type Return that indicates the success or failure of the call.

chargebacks: an array of one or more Chargeback objects whose status matches the 
input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Pass Even though all the documentation is available, Vindicia will not dispute this 
chargeback because of one or more of the following reasons:

The chargeback is less than US$5.

Not enough evidence exists for a dispute.

Regulations do not allow Vindicia to respond.

Vindicia does not recommend taking the dispute to arbitration. 

Retrieval An incoming retrieval or ticket request.

Responded Vindicia has responded to the retrieval or ticket request.

Represented As a result of Vindicia’s intervention, the chargeback was reversed in your 
favor. However, the customer or issuing bank is continuing the dispute by is-
suing a second chargeback. (This status is not in use.)

Won Vindicia challenged this chargeback, which has been reversed in your favor.

Table 7-3 ChargebackStatus Object Values  (Continued)

Value Description

Return Code Return String

400 One of the following:

• Unable to load chargebacks by status input-status: No 
match.

• Unable to load chargebacks by status input-status: error-
description.

• Must specify a status to load by!
© 2014 Vindicia, Inc. Table of Contents The Chargeback Object 203



CashBox 5.0: API Reference Guide fetchByStatus
Example $cb = new Chargeback();
$page = 0;
$pageSize = 50;

do {
$ret = $cb->fetchByStatus('Won', $page, $pageSize);
$count = 0;
if ($ret['returnCode'] == 200) {

$fetchedChargebacks = $ret['chargebacks'];
if ($fetchedChargebacks != null) {

$count = sizeof($fetchedChargebacks);
foreach ($fetchedChargebacks as $chargeback) {

// process a fetched chargeback here …

$transactionId = 
$chargeback->getMerchantTransactionId();
$amount = $chargeback->getAmount();

}
$page++;

}
}

} while ($count > 0);
© 2014 Vindicia, Inc. Table of Contents The Chargeback Object 204



CashBox 5.0: API Reference Guide fetchByStatusSince
fetchByStatusSince

The fetchByStatusSince method returns one or more Chargeback objects whose 
statuses match the input and have changed since the specified timestamp. This call is 
similar the fetchByStatus() (see the preceding section), except that, with this call, you 
can restrict the retrieved chargebacks to a time window during which they changed to the 
status specified in the input.

Make this call periodically to, for example, retrieve the chargebacks that you have won so as 
to adjust your revenue statistics accordingly. Be sure to record the time you previously made 
this call and specify that time in the input for your next call. 

Input status: a ChargebackStatus value. See Table 7-3: ChargebackStatus Object Values.

timestamp: the date and time on or after which the status of the Chargeback objects 
changed to status.

page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to display per page. Value must be greater than 0.

Output return: an object of type Return that indicates the success or failure of the call.

chargebacks: an array of one or more Chargeback objects whose status changed since 
the timestamp specified in the input.

Returns This method returns the codes listed in Table 1: Standard Return Codes.

Example $cb = new Chargeback();
$page = 0;
$pageSize = 50;
// Assume a function is available that returned timestamp when 
// we last made this call
$since = getLastCallTimestamp();
do {

$ret = $cb->fetchByStatusSince('Won', $since, $page, $pageSize);
$count = 0;
if ($ret['returnCode'] == 200) {

$fetchedChargebacks = $ret['chargebacks'];
if ($fetchedChargebacks != null) {

$count = sizeof($fetchedChargebacks);
foreach ($fetchedChargebacks as $chargeback) {

// process a fetched chargeback here …
$transactionId = $chargeback->getMerchantTransactionId();
$amount = $chargeback->getAmount();

}
$page++;

}
}

} while ($count > 0);
© 2014 Vindicia, Inc. Table of Contents The Chargeback Object 205



CashBox 5.0: API Reference Guide fetchByVid
fetchByVid

The fetchByVid method returns a Chargeback object whose VID matches the input, that 
is, it enables you to retrieve a Chargeback object by its VID.

When Vindicia adds a Chargeback object to its database by downloading the information 
from your payment processor or through your calling update() to create a Chargeback 
object, Vindicia assigns the object a unique identifier called VID. That VID is in the 
Chargeback object returned to you when you make calls to fetch chargebacks. 

This call is useful for retrieving a specific chargeback because a Chargeback object does 
not have any other unique identifiers. Since there can be multiple chargebacks against one 
transaction, you cannot uniquely identify a chargeback with its associated Transaction 
object’s ID, reference number, or case number.

Input vid: the Chargeback object’s Vindicia identifier, which serves as the search criterion.

Output return: an object of type Return that indicates the success or failure of the call.

chargeback: the Chargeback object whose VID matches the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $accountVid = 'MyVindiciaAccountVID';

// Create a SOAP caller object
$cb = new Chargeback();
$cbVID = "a209408014a33fec3dcd4a3339d78efc33603bfe";

// now load a chargeback object by VID
$response = $cb->fetchByVid($cbVid);
if($response['returnCode'] == 200) {

$fetchedCb = $response['data']->chargeback;
}
else {

// The call was unsuccessful 
print "Return code: " . $response['returnCode'] . "\n";
print "Return string: " . $response['returnString'] . "\n";

}

Return Code Return String

400 One of the following:

• Unable to load chargebacks by VID input-vid: No match.
• Unable to load chargebacks by VID input-vid: error-

description.
• Must specify VID to load by!
© 2014 Vindicia, Inc. Table of Contents The Chargeback Object 206



CashBox 5.0: API Reference Guide fetchDelta
fetchDelta

The fetchDelta method is similar to fetchDeltaSince, except that fetchDelta does 
not require a timestamp as a parameter. CashBox keeps track of when you last called this 
method and returns the Chargeback objects whose statuses have changed since then. If 
you have never called this method before, CashBox returns all your chargebacks since 
January 1, 1970 (“epoch”).

This method is useful for periodically fetching the chargebacks with status changes or those 
that are newly added to the Vindicia database if you have no facilities for recording the time 
window for which you retrieved the results before.

For paging, this method only requires that you specify the page size. As with 
fetchDeltaSince, you need not increment through page numbers because this call 
keeps a record of the items previously returned to you in the last call. When you make this 
call next time, the results will continue onward from the last position in the result set.

Input pageSize: the number of records to display per page per call.

Output return: an object of type Return that indicates the success or failure of the call.

chargebacks: an array of one or more Chargeback objects that are newly created or 
whose statuses have changed since you last called fetchDelta.

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $cb = new Chargeback();
$pageSize = 50;

do {
$ret = $cb->fetchDelta ($pageSize);
$count = 0;
if ($ret['returnCode'] == 200) {

$fetchedChargebacks = $ret['chargebacks'];
if ($fetchedChargebacks != null) {

$count = sizeof($fetchedChargebacks);
foreach ($fetchedChargebacks as $chargeback) {

// process a fetched chargeback here …
$status = $chargeback->getStatus();
$transactionId = $chargeback->getMerchantTransactionId();
$amount = $chargeback->getAmount();

}
$page++;

}
}

} while ($count > 0); 

// quit when no more objects are retrieved
© 2014 Vindicia, Inc. Table of Contents The Chargeback Object 207



CashBox 5.0: API Reference Guide fetchDeltaSince
fetchDeltaSince

You can retrieve chargebacks from Vindicia in either of these ways:

• Manually, by logging into the CashBox Portal and downloading a comma-separated 
values (CSV) file of the chargebacks for a certain date range

• Programmatically, by making the fetchDeltaSince call, which returns one or more 
Chargeback objects whose statuses have changed since the specified timestamp

To always retrieve your chargebacks programmatically, call fetchDeltaSince 
periodically. The periodicity depends on your transaction and chargeback volume. Keep in 
mind that lag time usually exists between the time the customer calls the bank to charge 
back a transaction and the time the chargeback is downloaded from your payment 
processor and added to the Vindicia database.

Many merchants examine the statuses of their chargebacks from the information thus 
retrieved and, in some cases, use them as the basis on which to forbid or allow transactions 
initiated by certain customers or certain credit-card accounts. Each retrieved Chargeback 
object contains the ID of the original transaction that was charged back. You can retrieve the 
corresponding transaction and customer account with that ID by making the calls available 
for the Transaction object.

This method supports paging to limit the number of records returned per call. Occasionally, 
returning a large number of records in one call swamps buffers and might cause a failure. 
Vindicia recommends that you call this method in a loop, incrementing the page for each 
loop iteration with an optimal page size (number of records returned in one call) until the 
page contains a number of records that is less than the given page size.

Input timestamp: the date and time on or after which a chargeback changed its status.

endTimestamp: a timestamp that specifies the date and time before which a chargeback 
changed its status. If null, CashBox applies only timeStamp as the search criterion.

page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to display per page per call. This value must be greater 
than 0.

Output return: an object of type Return that indicates the success or failure of the call.

chargebacks: an array of one or more Chargeback objects whose status has changed 
since timestamp (and before endTimestamp, if specified).

Returns This method returns the codes listed in Table 1: Standard Return Codes.
© 2014 Vindicia, Inc. Table of Contents The Chargeback Object 208



CashBox 5.0: API Reference Guide fetchDeltaSince
Example $cb = new Chargeback();
$page = 0;
$pageSize = 50;

// Here we want to fetch chargebacks that have changed in status or 
// have been added since the last time we ran this call. Assume we have 
// a function available to us that gives us the timestamp for the
// last time we ran this call

$since = getLastCallTime(); 
do {

$ret = $cb->fetchDeltaSince($since, null, $page, $pageSize);
$count = 0;
if ($ret['returnCode'] == 200) {

$fetchedChargebacks = $ret['chargebacks'];
if ($fetchedChargebacks != null) {

$count = sizeof($fetchedChargebacks);
foreach ($fetchedChargebacks as $chargeback) {

// process a fetched chargeback here …
$status = $chargeback->getStatus();
$transactionId = $chargeback->getMerchantTransactionId();
$amount = $chargeback->getAmount();

}
$page++;

}
}

} while ($count > 0);
© 2014 Vindicia, Inc. Table of Contents The Chargeback Object 209



CashBox 5.0: API Reference Guide report
report

The report method reports a batch of Chargeback objects to ChargeGuard. This method 
is rarely used, because Vindicia usually retrieves chargebacks directly from the bank or 
payment processor on the merchant’s behalf, and enters them into ChargeGuard. If your 
bank or payment processor does not allow Vindicia access to that information, you must 
retrieve the chargebacks yourself, and send the information to Vindicia by calling this 
method.

The data in this call is processed asynchronously. If the call succeeds, it means that 
CashBox has received the data and queued it for processing. Because CashBox processes 
chargebacks in the queue sequentially, and then adds them to the Vindicia database, a time 
lag exists between the time you report the chargebacks and the time they appear on the 
CashBox Portal.

An incomplete chargeback, or one that contains invalid data, might cause errors during 
processing, in which case CashBox might not add the chargeback to the database. Vindicia 
monitors its server logs for such errors and can, in some cases, fix them and reprocess the 
chargebacks. In other cases, a Vindicia representative might contact you for the correct 
data.

If you submit large amounts of data with this call, it might time out. Consider dividing the 
data into smaller batches and submitting them with separate calls, one batch at a time. 

Input chargebacks: an array of Chargeback objects to send to Vindicia.

Output return: an object of type Return that indicates the success or failure of the call.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 Error saving transaction: error-description.
© 2014 Vindicia, Inc. Table of Contents The Chargeback Object 210



CashBox 5.0: API Reference Guide report
Example // create a chargeback object and populate it with data

$cb = new Chargeback();
$cb->setMerchantTransactionId("TX-2324");
$cb->setAmount(34.99);
$cb->setReferenceNumber("PTECH-42123");
$cb->setProcessorReceivedTimestamp('2009-11-11T22:34:32.265Z');

// Set other chargeback object fields here as available

...

// Create another chargeback to report

$cb2 = new Chargeback();
$cb2->setMerchantTransactionId("TX-2327");
$cb2->setAmount(19.99);
$cb2->setReferenceNumber("PTECH-42543");
$cb2->setProcessorReceivedTimestamp('2009-11-10T02:34:32.265Z');

$cb_soapcaller = new Chargeback();

// Make the SOAP call to report the chargebacks

$ret = $cb_soapcaller->report(array($cb, $cb2));
if ($ret['returnCode'] == 200) {

log("Chargebacks submitted to Vindicia successfully at " . time() );
}

© 2014 Vindicia, Inc. Table of Contents The Chargeback Object 211



CashBox 5.0: API Reference Guide update
update

The update method creates or updates a Chargeback object. This method is rarely used, 
because Vindicia usually creates and updates chargebacks by retrieving them directly from 
your payment processor, and updating their status during the dispute process.

You may also call Chargeback.report() to create one or more chargebacks in the 
Vindicia database. To create or update a single chargeback and immediately discover if the 
call succeeds or fails, call update(). The report() method processes data 
asynchronously, which means that even if you successfully submit a chargeback with a 
batch report() call but an error occurs during processing, you are not immediately aware 
of the error.

To create a Chargeback object, initialize the object and set the values for its data 
members, as appropriate, and then call update() to store the changes. When creating a 
new Chargeback object, do not set a value for VID because CashBox automatically 
generates that when you call update(). When updating an existing Chargeback object, 
identify it with its VID.

Input chargeback: the Chargeback object to create or update. To update an object, identify it 
with its VID.

Output return: an object of type Return that indicates the success or failure of the call.

chargeback: the Chargeback object that was created or updated.

created: a Boolean flag that, if set to true, indicates that this method has created a new 
Chargeback object. A false setting indicates that update has updated an existing 
Chargeback object.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

200 One of the following:

• OK.
• Chargeback object was unchanged.

400 One of the following:

• Failed to save chargeback.
• Error saving chargeback disposition log entry: error-

description.
© 2014 Vindicia, Inc. Table of Contents The Chargeback Object 212



CashBox 5.0: API Reference Guide update
Example // create a chargeback object and populate it with data

$cb = new Chargeback();
$cb->setMerchantTransactionId("TX-2324");
$cb->setAmount(34.99);
$cb->setReferenceNumber("PTECH-42123");
$cb->setProcessorReceivedTimestamp('2009-11-11T22:34:32.265Z');

// Set other chargeback object fields here as available

...

$ret = $cb->update();
if ($ret['returnCode'] == 200 && ($ret['created']) {

log("Chargeback created with VID" 
. $ret['chargeback']->getVID() .
" with Vindicia successfully at " . time() );

}

© 2014 Vindicia, Inc. Table of Contents The Chargeback Object 213



CashBox 5.0: API Reference Guide update
8 The Entitlement Object

An entitlement is the customer’s right to access a product, as defined by their contractual 
agreement with a merchant. An Entitlement object (associated with an Account object) 
specifies whether a customer has the appropriate entitlement when the object is retrieved 
from the CashBox database. This object allows you to determine whether a customer can 
access a specific resource on your site at any given time.

CashBox uses several pieces of information to determine the content of an Entitlement 
object:

• The merchantEntitlementId, (the Entitlement Identifier), which is defined when 
creating new Entitlements for Products or Billing Plans.

When creating Entitlements, use the merchantEntitlementId (the Entitlement 
Identifier) field to describe the entitlement conveyed. For example, to allow customers 
access to a Gold-Level subscription, create an Entitlement with 
merchantEntitlementId: GoldAccess.

When creating Product and BillingPlan objects, specify the appropriate 
merchantEntitlementId in the object definition.

• CashBox calculates the endTimestamp of an Entitlement based on the AutoBill’s 
Billing Plan. Until a payment attempt fails, or the AutoBill is stopped for any other 
reason, CashBox will assume that payments will continue to be made for the duration of 
the Billing Plan, and sets the Entitlement’s endTimestamp according to its parameters. 
If the Billing Plan has a finite number of Billing Periods, the endTimestamp will be the 
termination date for the Billing Plan. If the Billing Plan has an infinite number of Billing 
Periods, the endTimestamp is null.

• The active flag on the Entitlement object defines whether the related entitlement is 
valid on the date you received the object from Vindicia. If the flag’s value is true, it 
means that when CashBox constructed the Entitlement object, the customer was 
entitled to the access the object represents. To determine the duration, check the 
endTimestamp date.

• The account attribute of an Entitlement object specifies the customer to whom the 
object applies.

CashBox automatically grants entitlements upon successful creation of an AutoBill, and 
changes the end date only upon a payment failure or customer cancellation.

Note: If you are upgrading from CashBox 4.1 or previous, you must 
contact Vindicia Client Services to enable a merchant configuration 
setting which will allow Entitlements to work properly for CashBox 
4.2 and greater.
© 2014 Vindicia, Inc. Table of Contents The Entitlement Object 214



CashBox 5.0: API Reference Guide Entitlement Data Members
8.1 Entitlement Data Members

The following table lists and describes the data members of the Entitlement object.

Table 8-1 Entitlement Object Data Members

Data Members Data Type Description

account Account The Account object with which this Entitlement object 
is associated. 

See Section 1.2: Account Data Members.

active Boolean A Boolean flag that, if set to true, indicates that the En-
titlement is currently active.

autoBillVid string The AutoBill VID associated with this Entitlement.

description string Your description for the Entitlement.

endTimestamp dateTime The date on which the Entitlement will expire, plus a grace 
period for the final billing transaction. (Blank for no end 
date.) 

If CashBox returns this Entitlement object in the ac-
tive status, you may assume that the object is active un-
til this date (or the next failed billing attempt, if such 
occurs).

Re-fetch this Entitlement object to determine if it is still 
valid. If you call fetchDeltaSince() to retrieve Enti-
tlement objects that might have changed but do not re-
ceive an update to this object, consider this Entitlement to 
be invalid after this timestamp.

merchantAuto-
BillId

string Your AutoBill ID associated with this Entitlement.

merchantEnti-
tlementId

string An identifier for a specific privilege on your site. This ID, 
which has a special meaning in your application, specifies 
the resources to which a customer has access. Define this 
ID in the merchantEntitlementId field in Product or 
BillingPlan objects.

merchantProduc-
tId

string Your Product ID associated with this Entitlement, if 
any.

productVid string The Product VID associated with this Entitlement, if 
any.

source string Indicates if this is a Product, BillingPlan, or Ac-
count Entitlement.

startTimestamp dateTime The time the entitlement begins.
© 2014 Vindicia, Inc. Table of Contents The Entitlement Object 215



CashBox 5.0: API Reference Guide Entitlement Methods
8.2 Entitlement Methods

The following table summarizes the methods for the Entitlement object. 

Table 8-2 Entitlement Object Methods

Method Description

fetchByAccount Returns one or more Entitlement objects for the Account object speci-
fied in the input.

fetchByEntitlemen-
tIdAndAccount

Returns the Entitlement object with the entitlement ID for the Account 
object specified in the input.

fetchDeltaSince Returns one or more Entitlement objects that have changed since the 
specified timestamp.
© 2014 Vindicia, Inc. Table of Contents The Entitlement Object 216



CashBox 5.0: API Reference Guide fetchByAccount
fetchByAccount

The fetchByAccount method returns one or more Entitlement objects associated with 
the specified Account object. These Entitlements may be associated through an 
AutoBill, or directly with the Account.

Use this method to look up entitlements for a specific customer. Use the frequency of 
customer access, to determine how often to make this call. For example, if a customer on a 
monthly Billing Plan logs into your service several times each day, it’s unnecessary and 
inefficient to make a call to CashBox to look up their entitlements for every login.

Instead, cache the entitlements obtained from this call locally. The Entitlement objects 
with the active flag set to true thus obtained and locally stored can be considered valid 
until the endTimestamp date.

You may cache Entitlement objects locally on your site with the database table shown 
below. Here, the columns customer_id and entitlement_id form a joint primary key. 

For example, to check the entitlements for customer Jdoe1970, check if entries exist in the 
table for Jdoe1970 and then follow these steps in your application logic:

• If entries exist, check if an entry exists in the table for the entitlement ID you need. If yes 
and if the active_till date is today or in the future, allow Jdoe1970 access. If the 
active_till date is in the past, call fetchByAccount() or 
fetchByEntitlementIdAndAccount() and specify the related entitlement ID 
(entitlement_id).

Afterwards, update the Jdoe1970 table entries with the data in the Entitlement 
objects returned, and check the active_till date again. If it is not null and is in 
the future, allow Jdoe1970 access.

• If no entries exist, call fetchByAccount() and add entries to the entitlement cache 
table with the data in the Entitlement objects returned. Next, check the entry for the 
entitlement ID you need for Jdoe1970 and the active_till date. If that date is in the 
future, grant Jdoe1970 access. If no entry exists or if the active_till date is null 
or in the past, Jdoe1970 does not have that specific entitlement.

customer_id entitlement_id Last Update Active Till …

Jdoe1970 GoldAccessLevel1 2009-09-18 2009-10-13

Jdoe1970 VideoDownloadSpe-
cial

2009-09-18 null

Jdoe1970 LiveTechSupport 2009-08-23 2009-09-01
© 2014 Vindicia, Inc. Table of Contents The Entitlement Object 217



CashBox 5.0: API Reference Guide fetchByAccount
Input account: the Account object for which to retrieve entitlements. Use the 
merchantAccountId or VID to identify the object.

showAll: a Boolean flag that, if set to true, causes fetchByAccount to return all the 
Entitlement objects, including those that have expired. Otherwise, fetchByAccount 
returns only the active Entitlement objects.

includeChildren: a Boolean flag that, if set to true, includes any children associated with 
this Account. If this flag is omitted, CashBox will interpret it as false, and constructs the 
query without looking at any child's account.

Output return: an object of type Return that indicates the success or failure of the call.

entitlements: an array of one or more Entitlement objects whose Account object 
matches the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $account = new Account();
$acctId = 'xyz101';
$account->setMerchantAccountId($acctId);

// create the entitlement object to make the SOAP call
$entitlement = new Entitlement();
$showAll = true;

// fetch the records
$response = $entitlement->fetchByAccount($account, $showAll);
if ($response['returnCode'] == 200) {

$fetchedEnts = $response['data']->entitlements;
if ($fetchedEnts != null){

foreach ($fetchedEnts as $ent) {
$customer_id = $ent->getAccount()->getMerchantAccountId();
$entitlement_id = $ent->getMerchantEntitlementId();
$active = $ent->getActive();
$active_till = null;
if ($active) {

$active_till = $ent->getEndTimestamp();
}
// use or locally store info obtained above

}
}

}

Return Code Return String

404 Account not found.
© 2014 Vindicia, Inc. Table of Contents The Entitlement Object 218



CashBox 5.0: API Reference Guide fetchByEntitlementIdAndAccount
fetchByEntitlementIdAndAccount

The behavior and use of the fetchByEntitlementIdAndAccount call are similar to the 
fetchByAccount() call. The only exception is that, instead of retrieving all the 
Entitlement objects for a specific customer, this method enables you to retrieve an 
Entitlement object with a specific entitlement ID for that customer. For details on how to 
interpret and store fetched Entitlement objects, see the fetchByAccount method.

Input entitlementId: your entitlement ID (merchantEntitlementId), which serves as one of 
the two search criteria.

account: the Account object, which serves as one of the two search criteria. Use the 
merchantAccountId or VID to identify the object.

showAll: a Boolean flag, which, if true, shows all entitlements, including those that have 
expired. if false or null, returns only active entitlements.

includeChildren: an optional Boolean flag that, if set to true, includes any children 
associated with this Account. If this flag is omitted, CashBox will interpret it as false, and 
constructs the query without looking at any child's account.

Output return: an object of type Return that indicates the success or failure of the call.

entitlement: the Entitlement object with the specified entitlement ID 
(merchantEntitlementId) for the specified Account object.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $account = new Account();

$account->setMerchantAccountId('xyz101');

// create the entitlement object to make the SOAP call
$entitlement = new Entitlement();
$entitlement_id = 'ent_id_to_search_by';

// fetch the record
$response = 

$entitlement->fetchByEntitlementIdAndAccount($entitlement_id, $account);
if ($response['returnCode'] == 200) {

$ent = $response['data']->entitlement;
if ($ent != null) {

$customer_id = $ent->getAccount()->getMerchantAccountId();
$entitlement_id= $ent->getMerchantEntitlementId();
$active = $ent->getActive();
if ($active) {

$active_till = $ent->getEndTimestamp();
}

// use or locally store info obtained above
}

}

Return Code Return String

400 Account not specified.

404 Account not found.
© 2014 Vindicia, Inc. Table of Contents The Entitlement Object 219



CashBox 5.0: API Reference Guide fetchDeltaSince
fetchDeltaSince

The fetchDeltaSince call returns all the Entitlement objects that have changed since 
the specified timestamp. The change could be in the active status of an Entitlement, or in 
its endTimestamp if the entitlement is still active.

The purpose of this call differs from that of fetchByAccount() and 
fetchByEntitlementIdAndAccount(), which are used to look up the entitlements for a 
customer while they request access to a resource on your site. (fetchByAccount() and 
fetchByEntitlementIdAndAccount() often require that you make a request to the 
Vindicia servers during the customer’s active session.)

To avoid making such a heavyweight call during a customer session, and to improve user 
experience, maintain a local cache of Entitlements in a table similar to the one shown in the 
fetchByAccount method for a faster lookup. Update that table periodically, or at a system 
quiescent time for all your customers by calling fetchDeltaSince().

Entitlements for an Account object may change for one of the following reasons:

• Your customer failed to pay their bill, and your grace period has been exhausted.

• You have created a new AutoBill object for an Account object.

• A cancellation for an AutoBill object with immediate disentitlement has occurred 
because either:

• you have called AutoBill.cancel() or Account.stopAutoBilling() and 
set the flag for immediate disentitlement, or 

• Vindicia has received a chargeback from your payment processor against one of the 
transactions generated by the AutoBill object, and your profile configuration with 
Vindicia specifies that the customer be immediately disentitled in case of 
chargebacks. 

• You have added or deleted entitlement IDs (merchantEntitlementIds) from a 
Product or BillingPlan object associated with an active AutoBill object.

• CashBox has postponed the end-date on an AutoBill object, as a result of a call that 
you made to delay the billing. See the delayBillingByDays() and 
delayBillingToDate() calls for AutoBill.

CashBox maintains a log of each event that can deactivate or extend an entitlement for all 
AutoBill and associated Account objects. When you call fetchDeltaSince(), 
CashBox constructs an Entitlement object from each log entry that has been added 
since the timestamp specified in the input, and includes it in the results returned to you. 
Thus, if an entitlement for a customer is changed several times during the 
fetchDeltaSince period, an Entitlement object that contains the same Account and 
Entitlement ID is in the result set for each of those changes. Because this method returns 
Entitlement objects in ascending order of the time when the log entries were made, in 
most cases you can determine the latest status of a customer’s entitlement from the last 
Entitlement object with that ID in the result set. (In some cases, additional sorting logic is 
required to determine the active Entitlement with the latest end date.)
© 2014 Vindicia, Inc. Table of Contents The Entitlement Object 220



CashBox 5.0: API Reference Guide fetchDeltaSince
If you are using a database table, as described in the fetchByAccount method, to check 
the entitlements for a customer (for example, Jdoe1970), first check if entries exist in the 
table for Jdoe1970 and then follow these steps in your application logic:

• If entries exist, check if one exists in the table for the entitlement ID you wish to look up. 
If it exists, and if the active_till date is today or in the future, allow Jdoe1970 
access. If the active_till date is in the past or is null, or if a row with the 
entitlement ID in question does not exist for Jdoe1970, Jdoe1970 does not have 
access to the resources with that entitlement ID.

• If no entries exist, call fetchByAccount() for Jdoe1970 and add the entries to the 
entitlement cache table with the data in the Entitlement objects returned. Next, 
check the entry for the entitlement ID you need to look up for Jdoe1970 and the 
active_till date. If that date is in the future, grant Jdoe1970 access. If no entry 
exists or if the active_till date is null or in the past, Jdoe1970 does not have that 
specific entitlement.

The fetchDeltaSince method supports paging to limit the number of records returned 
per call. Returning a large number of records in one call may swamp buffers and might 
cause a failure. Vindicia recommends that you call this method in a loop, incrementing the 
page for each loop iteration with an optimal page size (number of records returned in one 
call) until the page contains a number of records that is less than the given page size.

Input timestamp: the date and time after which to return the Entitlement objects that have 
changed.

page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to display per page per call. This value must be greater 
than 0.

endTimestamp: the time window’s upper threshold by which to limit the search. If 
unspecified, this value defaults to the current time.

Output return: an object of type Return that indicates the success or failure of the call.

entitlements: an array of one or more Entitlement objects that have changed since 
timestamp.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 Invalid value or values of timestamp, and/or page, and/
or page size.
© 2014 Vindicia, Inc. Table of Contents The Entitlement Object 221



CashBox 5.0: API Reference Guide fetchDeltaSince
Example $ent = new Entitlement();
$pg = 0;
$pageSize = 200;
$count = 0;
$endTimestamp = '2010-01-02T22:34:32.265Z';
$startTimestamp = '2010-01-01T22:34:32.265Z';

do {
$ret = $ent->fetchDeltaSince($startTimestamp, $pg, $pageSize, 

$endTimestamp);
$fetchedEnts = $ret['entitlements'];
$count = 0;
if ($fetchedEnts != null) {

$count = count($fetchedEnts);
foreach ($fetchedEnts as $ent) {

$customer_id = $ent->getAccount()->getMerchantAccountId();
$entitlement_id = $ent->getMerchantEntitlementId();
$active = $ent->getActive(); 
if($active == 1) {

$valid_till = $ent->endTimestamp();
}
// cache the data to your local database table here

}
$pg++; 

}
} while ($count > 0);
© 2014 Vindicia, Inc. Table of Contents The Entitlement Object 222



CashBox 5.0: API Reference Guide fetchDeltaSince
9 The GiftCard Object

The GiftCard object encapsulates information about a gift card offered by a merchant as a 
means of paying for a recurring subscription (AutoBill) or a one-time transaction. 
Payment with a gift card does not involve a monetary transaction. Instead, when you 
successfully redeem a gift card, CashBox adds credit to an Account or AutoBill. With the 
credit available to an Account, you can conduct a one-time transaction for that Account. 
Similarly, an AutoBill deducts credit available to it for every periodically recurring 
transaction it generates. The AutoBill offers entitlements to the subscriber as long as 
enough credit is available to sustain the offer. For more information, see the grantCredit 
method. For more information on how gift cards work within the CashBox system, see 
Chapter 12: Credit Grants and Gift Cards in the CashBox Programming Guide. 

With the redeemGiftCard() method of both the Account and AutoBill objects, you 
can redeem a gift card against those objects. For example, if you call redeemGiftCard() 
on an AutoBill object, the credit will be added to the AutoBill. See the 
redeemGiftCard, and redeemGiftCard methods.

CashBox determines how much credit to grant to an AutoBill or an Account by looking 
up a Product object. Create the Product object in advance in CashBox. The 
merchantProductId of this Product object should match the SKU (UPC) number 
returned by the gift card processor company (for example, InComm). The SKU/UPC number 
the processor returns when a gift card is redeemed is decided by a prior agreement between 
you and the gift card processor company. Before you start accepting gift cards from your 
customers, create a Product object in CashBox with a matching merchantProductId. 
When you create the Product, set its creditsGranted attribute to the amount of credit 
you want granted when the corresponding gift card is redeemed. See Section 13: The 
Product Object for more information.

As discussed in Section 12.2: Working with Gift Cards in the CashBox Programming 
Guide, gift card redemption is a two-step process. In step 1, determine the status of the gift 
card by calling the statusInquiry() method, discussed below. If the status is Active, in 
the second step, redeem the card by calling redeemGiftCard() from the Account or 
AutoBill object.
© 2014 Vindicia, Inc. Table of Contents The GiftCard Object 223



CashBox 5.0: API Reference Guide GiftCard Data Members
9.1 GiftCard Data Members

The following table lists and describes the data members of the GiftCard object.

Table 9-1 GiftCard Object Data Members

Data Members Data Type Description

hashType HashType (This data member is not in use.)

lastDigits string Read-only. Last four digits of a gift card’s PIN. Do not 
populate this attribute; CashBox may populate this attri-
bute when it returns a GiftCard object to you. For secu-
rity, use this field for display to avoid displaying the entire 
PIN.

paymentProvider string Gift card processor company that CashBox should contact 
to check the status of a gift card and redeem the gift card. 
If left blank, this field defaults to InComm. CashBox sup-
ports only gift cards redeemable by InComm, Inc.

pin string Unique number associated with each gift card. A custom-
er redeeming a gift card must give you this number. Popu-
late this attribute in the GiftCard object when you check 
the status of the card for the first time. CashBox then cre-
ates a new record for this card in its system and assigns it 
a VID. For your subsequent calls that need to refer to this 
gift card, you need not populate the pin. Specifying only 
the VID will suffice.

pinHash string (This data member is not in use.)

pinLength integer Read-only. Number of characters or digits in the PIN of 
the gift card. Do not populate this attribute; CashBox may 
populate this attribute when it returns a GiftCard object 
to you.

product Product Read-only. Credit to add to the AutoBill or Account 
for which the card was redeemed, as specified by the 
Product object’s creditsGranted attribute. CashBox 
populates this attribute in the GiftCard object it returns 
to you in response to a successful redeemGiftCard() 
call. The merchantProductId of this object matches 
the SKU/UPC returned by the gift card processor.

See Section 13.1: Product Data Members.

sku string Read-only. Unique ID (UPC) the gift card processor re-
turns when CashBox redeems a specific type of gift card. 
Do not populate this attribute; CashBox may populate this 
attribute when it returns a GiftCard object to you when 
you call redeemGiftCard(). 

You must have previously created a Product object in 
CashBox with a merchantProductId matching each 
SKU you expect the processor to return, before redeem-
ing gift cards. 
© 2014 Vindicia, Inc. Table of Contents The GiftCard Object 224



CashBox 5.0: API Reference Guide GiftCard Data Members
status GiftCardStatus Read-only. Status of this gift card. CashBox populates 
this attribute in the GiftCard object returned to you 
when GiftCard is queried or changed as a result of call-
ing statusInquiry, redeemGiftCard, or reverse. 

See the GiftCardStatus Subobject.

VID string Vindicia's Globally Unique Identifier (GUID) for this object. 
When creating a new GiftCard object, leave this field 
blank; it will be automatically populated by CashBox.

Table 9-1 GiftCard Object Data Members  (Continued)

Data Members Data Type Description
© 2014 Vindicia, Inc. Table of Contents The GiftCard Object 225



CashBox 5.0: API Reference Guide GiftCard Subobjects
9.2 GiftCard Subobjects

The GiftCard object has two subobjects:

• GiftCardStatus Subobject

• GiftCardStatusType Subobject

GiftCardStatus Subobject

Describes the current status for a GiftCard by Activity.

Table 9-2 GiftCardStatus Object Data Members

Data Members Data Type Description

nameValues NameValue-
Pair[]

An array of name–value pairs. 

(This data member is not in use.)

providerRe-
sponseCode

string Code that CashBox received from the gift card pro-
cessor when it set the current status. 

Use this code to determine why the processor did not 
authorize a certain gift card.

providerRe-
sponseMsg

string Message string corresponding to the response code, 
if any, CashBox received from the gift card processor 
when it set the current status. 

Use this string to determine why the processor did 
not authorize a certain gift card.

status GiftCardStatu-
sType

String describing the current status of a gift card. This 
string will be one of the values defined in the enumer-
ation. 

See the GiftCardStatusType Subobject for the 
status values returned when you execute sta-
tusInquiry, redeemGiftCard, or reverse.

timestamp dateTime The date and time when the GiftCard object ac-
quired its current status. 
© 2014 Vindicia, Inc. Table of Contents The GiftCard Object 226



CashBox 5.0: API Reference Guide GiftCard Subobjects
GiftCardStatusType Subobject

Describes a list of GiftCardStatus types.

Table 9-3 GiftCardStatusType Object Enumeration Values

Value Description

Active One of the following:

• You may redeem the GiftCard whose status you checked. 
• An earlier call to reverse redemption of a GiftCard was 

successful and you can redeem the GiftCard again.

Deactive One of the following:

• The gift card processor rejected the GiftCard. 
• A call to redeem a GiftCard was unsuccessful. 
• An attempt to reverse a redemption on a GiftCard was not 

authorized by the gift card processor.

Redeemed Your call for redemption of a GiftCard was successful.

RedemptionPending An earlier call to redeem the GiftCard did not yet complete. This 
is useful when there are two simultaneous attempts to redeem the 
same gift card, for example, via a multithreaded application.

Suspended (This status is not in use.)

Unknown CashBox cannot determine the status of the GiftCard for one of 
two reasons: 

• It could not contact the processor.
• It could not interpret a response from the processor.
© 2014 Vindicia, Inc. Table of Contents The GiftCard Object 227



CashBox 5.0: API Reference Guide GiftCard Methods
9.3 GiftCard Methods

The following table lists and summarizes the methods for the GiftCard object. 

Table 9-4 GiftCard Object Methods

Method Description

reverse Reverses status of a GiftCard from a previous redemption attempt.

statusInquiry Returns the latest status of a GiftCard 

Use this method to determine whether a GiftCard can be redeemed.
© 2014 Vindicia, Inc. Table of Contents The GiftCard Object 228



CashBox 5.0: API Reference Guide reverse
reverse

The reverse method reverses a previous operation on a GiftCard (if the gift card 
processor allows it). Use reverse to reset the status of a gift card back to Active if a 
technical glitch occurred when you tried to redeem a gift card. reverse lets you retry the 
redemption. Do not use this method to undo the successful redemption of a gift card. This 
method does not automatically revoke credit from an AutoBill or Account, granted when 
the gift card was successfully redeemed.

Input giftCard: the GiftCard object whose status you wish to reverse. Use the VID attribute to 
specify the GiftCard object.

Output return: an object of type Return that indicates the success or failure of the call.

giftcard: the reversed GiftCard object, with updated status.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $gc = new GiftCard();

// set the gift card VID. obtained when checking the gift card status

$gc->setVID($gcVID); 

// Now make the SOAP API call to reverse the redemption

$response = $gc->reverse();

if ($response->['returnCode'] == 200) {

// Also make sure the status of the gift card is 'Active'
$updatedGc = $response['data']->giftcard;
if ($updatedGc->getStatus()->getStatus() == 'Active') {

print “Gift card is now redeemable \n”;
}

}
else {

// Error while reversing the card
print "Return code: " . $response['returnCode'];
print " Return string: ";
print $response['returnString'] . "\n";

}

Return Code Return String

400 One of the following:

• Failed to retrieve gift card error-description.
• Reversal attempt failed error-description.
• Reversal attempt rejected by GiftCard Processor.
© 2014 Vindicia, Inc. Table of Contents The GiftCard Object 229



CashBox 5.0: API Reference Guide statusInquiry
statusInquiry

The statusInquiry method causes CashBox to check with the gift card processor to 
learn the latest status of an input GiftCard. CashBox populates the status attribute in the 
GiftCard object it returns in response. Call this method before redeeming a gift card. If the 
status is Active, the gift card is redeemable.

Input giftCard: the GiftCard object for which you want a status check. If this is a new gift card, 
be certain to specify the pin attribute. If this is an existing GiftCard object, you may 
specify only the VID attribute.

Output return: an object of type Return that indicates the success or failure of the call.

giftcard: the GiftCard object requested, with an updated status.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $gc = new GiftCard(); 

// set the PIN provided by the customer
$gc->setPin('683092298403'); 
$gc->setPaymentProvider('InComm');

// Now make API call to check the status of the gift card

$response = $gc->statusInquiry(); 
if($response['returnCode'] == 200) { 

// The API call is successful. Now check the
// status in the updated GiftCard object returned by this call

$updatedGc = $response['data']->giftcard; 
$status = $updatedGc->getStatus(); 

// the status thus obtained is an object of type GiftCardStatus
// Now check if it indicates gift card is redeemable

if ($status->getStatus() == 'Active') {

// The gift card is redeemable, so retrieve its VID
// so that we can reference it just by VID when we redeem it

$gcVID = $updatedGc->getVID();
}
else {

// Gift card is not redeemable. Inform the customer here
// You may want to include the response received from the gift
// card processor

$responseCode = $status->getProviderResponseCode();
$responseMsg = $status->getProviderResponseMessage();

}
}

Return Code Return String

400 Gift Card could not be saved prior to status. Status 
Inquiry attempt failed error-description.
© 2014 Vindicia, Inc. Table of Contents The GiftCard Object 230



CashBox 5.0: API Reference Guide statusInquiry
10 The NameValuePair Object

The NameValuePair object is referenced by several CashBox objects, and is used to hold 
attributes not otherwise supported in the object. This object is used to store a list of names, 
which are associated with text string values. These name-value pairs may be used to store 
custom data for your own, internal tracking purposes, or to store CashBox specific data, 
used for defined CashBox purposes.

For some objects, such as the PaymentMethod and Transaction objects, CashBox 
automatically generates certain name-value pairs, designated with vin: as the name’s 
prefix. These pairs are listed and defined in the nameValue data member table for the 
specific object. 

Cashbox also provides several pre-defined name-value pairs for use within CashBox. For 
these pairs, CashBox populates the name; you populate the value. These pairs include:

vin:Division: This name-value pair may be populated in an AutoBill, 
Transaction, or PaymentMethod (for purposes of validation) object. If used in 
conjunction with the divisionName name-value pair in your CashBox setup, it sends 
Transactions associated with these objects to the specified division (ID) at the processor.

vin:Division may be used to route Transactions to different payment processors, 
or to different merchant IDs configured at your payment processor in cases where you 
are not already routing by currency. The value you pass must match a value that has 
been configured in your merchant configuration in CashBox. Work with your Vindicia 
Client Services representative to configure this option.

vin:MandateFlag and vin:MandateVersion: When creating an AutoBill with 
EDD as the Payment Method, use vin:MandateFlag and vin:MandateVersion to 
associate a mandate document with the AutoBill. For example, set vin:Mandate flag to 
true, and vin:MandateVersion to 1.02 to associate a mandate document version 
1.02 with the AutoBill.

vin:MandateBankName: The Bank Name for the EDD Payment Method (required only 
in the Netherlands).

Note: CashBox allows only one value per name per object. 
NameValuePair objects may have several values associated 
with each name, but only one value may be used for a given name 
when assigning name-value pairs to an individual CashBox object.
© 2014 Vindicia, Inc. Table of Contents The NameValuePair Object 231



CashBox 5.0: API Reference Guide NameValuePair Data Members
10.1 NameValuePair Data Members

The following table lists and describes the data members of the NameValuePair object. 

Table 10-1 NameValue Object Data Members

Data Members Data Type Description

name string The name for the name/value pair.

value string The value for the name/value pair.
© 2014 Vindicia, Inc. Table of Contents The NameValuePair Object 232



CashBox 5.0: API Reference Guide NameValuePair Methods
10.2 NameValuePair Methods

The methods for NameValuePair are fetchNameValueNames and 
fetchNameValueTypes, which allow you to fetch the array of names for any given object.

fetchNameValueNames

fetchNameValueNames accepts one parameter consisting of a type name, which must be 
one of the strings that fetchNameValueTypes returns. The fetchNameValueNames 
method returns an array of strings consisting of a list of distinct names from among the 
name/value pairs that the calling merchant has associated with objects of the given type.

Input type: the type of object for which the Names should be returned. This may be any of the 
CashBox objects that reference the NameValuePair object, and includes: Account, 
AutoBill, BillingPlan, CurrencyAmount, PaymentMethod, Product, 
TimeInterval, Transaction, or WebSession.

Output return: an object of type Return that indicates the success or failure of the call.

names: an array of distinct names from the NameValuePair object associated with the 
input object.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $nvp = new NameValuePair();
$response = $nvp->fetchNameValueNames('Account');

if ($response['returnCode'] == 200) {
$names = $response['names];
foreach ($names as $name) {

print "$name\n";
}

}
else {

print "Error: " . $response['returnString'] . "\n";
}

Return Code Return String

400 One of the following:

• Invalid Type.
• Failed to retrieve name/value names.
© 2014 Vindicia, Inc. Table of Contents The NameValuePair Object 233



CashBox 5.0: API Reference Guide fetchNameValueTypes
fetchNameValueTypes

fetchNameValueTypes takes no input parameters and returns a types list, which is an 
array of strings. Each string represents the name of a client-accessible type that supports 
name/value pairs. 

Object types may include: Account, AutoBill, BillingPlan, CurrencyAmount, 
PaymentMethod, Product, TimeInterval, Transaction, or WebSession.

Input This method accepts no input parameters.

Output return: an object of type Return that indicates the success or failure of the call.

types: an array of strings representing the types of objects that support name-value pairs.

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $nvp = new NameValuePair();
$response = $nvp->fetchNameValueTypes();

if ($response['returnCode'] == 200) {
$names = $response['types];
foreach ($types as $type) {

print "$type\n";
}

}
else {

print "Error: " . $response['returnString'] . "\n";
}

© 2014 Vindicia, Inc. Table of Contents The NameValuePair Object 234



CashBox 5.0: API Reference Guide fetchNameValueTypes
11 The PaymentMethod Object

The PaymentMethod object defines a customer’s method of paying for your product or 
service. This is an umbrella object that encapsulates the subobjects that specify the details 
of various payment types, such as credit card, electronic check, and PayPal. An instance of 
the PaymentMethod object refers to only one payment type. When creating an instance, 
specify the payment type to which this object refers by populating the type attribute and 
then adding the related details. For example, for a credit-card payment, add details such as 
the card number and its expiration date in the corresponding subobject.

Although this object offers methods to independently create a new payment method in 
CashBox, to validate payment, and so forth, you might create PaymentMethod objects 
indirectly through Account, AutoBill, or Transaction objects, as follows:

• When creating an Account object, you can specify multiple PaymentMethod objects 
owned by the account in the paymentMethods attribute of the Account object. 

• When creating an AutoBill object, you can specify a payment method for the rebilling 
transactions generated by the AutoBill object in its paymentMethod attribute. 
Otherwise, the AutoBill rebill transactions use the payment method available with the 
account.

• When creating a Transaction object, you can specify the sourcePaymentMethod 
attribute to define the means by which this transaction will be paid. 

In the last two cases, CashBox creates the PaymentMethod object and associates it with 
the underlying Account object. For example, if you specify a PaymentMethod object in a 
Transaction object’s sourcePaymentMethod attribute, CashBox attaches the 
PaymentMethod object to the Account object on the Transaction object. You can turn 
off this behavior by setting the active flag on the PaymentMethod object to false.
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 235



CashBox 5.0: API Reference Guide PaymentMethod Data Members
11.1 PaymentMethod Data Members

The following table lists and describes the data members of the PaymentMethod object.

Table 11-1 PaymentMethod Object Data Members

Data Member Data Type Description

accountHolder-
Name

string The name of the account holder.

active Boolean A Boolean flag that, if set to true, causes CashBox to include this 
PaymentMethod object in the list of payment methods for the associat-
ed Account object, if any. 

billingAddress Address The customer’s billing address for this payment method only. This field 
is required if this payment method refers to a credit card and you want 
to conduct address-verification operations through AVS while validating 
the payment method. 

boleto Boleto A subobject that specifies the details of a Boleto Bancário payment in 
Latin America. You must populate this attribute if you set the type attri-
bute (described later in this table) to Boleto. 

See the Boleto Subobject.

carrierBilling CarrierBilling A subobject that specifies the details of a Carrier Billing Payment Meth-
od. You must populate this data member if you set the type attribute to 
CarrierBilling.

creditCard CreditCard A subobject that specifies the details of a credit card. You must populate 
this attribute if you set the type attribute (described later in this table) to 
CreditCard. 

See the CreditCard Subobject.

currency string The ISO 4217 currency code (see www.xe.com/iso4217.htm) to use for 
validating this payment method. The default is USD. Often, CashBox 
validates a payment method by only authorizing a transaction that uses 
the method for a small amount of this currency.

If this PaymentMethod object represents an EDD payment (that is, the 
type is set to DirectDebit), the currency must be one of the EDD-
supported currencies, such as EUR for Euro. CashBox uses this curren-
cy while validating the payment method.

customerDe-
scription

string Optional. The customer’s description for this payment method.

customerSpeci-
fiedType

string A customer-specified arbitrary string that describes the payment meth-
od type. 

This field is optional for most credit cards, but required for the following 
card types, which must be specified exactly as listed:

• Switch
• Solo
• Dankort
• Laser, and 
• CarteBleue. 
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 236



CashBox 5.0: API Reference Guide PaymentMethod Data Members
directDebit DirectDebit A subobject that contains the details of the EDD payment. You must 
specify this attribute if you set the type attribute to DirectDebit.

See the DirectDebit Subobject. 

ecp ECP A subobject that specifies the details of an electronic-check payment. 
You must populate this attribute if you set the type attribute to ECP. 

See the ECP Subobject.

hostedPage HostedPage A subobject that contains the details of a payment accepted or applied 
using payment provider billing pages.

Note: Your customer’s Account must exist before any Hosted Page re-
lated call references that Account.

See the HostedPage Subobject.

merchantAccept-
edPayment

MerchantAccept-
edPayment

A subobject that specifies the merchant's (optional) unique ID for this 
payment method. This is a free-form, unique string of 1024 or fewer 
bytes.

See the MerchantAcceptedPayment Subobject.

merchantPay-
mentMethodId

string Your unique identifier for this PaymentMethod object. Once you’ve cre-
ated this object, you may refer to it with this identifier.

nameValues NameValuePair[] Optional. An array of name–value pairs that provides additional infor-
mation on the PaymentMethod object, as follows:

A name–value pair with the Name: CVN. The value for CVN is the securi-
ty code on a credit card (the CVV2 code for Visa or the CVC code for 
MasterCard), for example, 111. This name–value pair is required if you 
want to run security code checks, such as CVV checks for Visa, on 
credit cards.

A name–value pair with Name: issueNumber. The value for issue-
Number is the issue number on the customer’s Switch or Solo card.

A name–value pair with Name: startDate. The value for startDate 
is the start date on a customer’s Switch or Solo credit card with a date 
format of MMYY.

See Section 10: The NameValuePair Object.

paypal PayPal A subobject that specifies the details of a PayPal payment. You must 
populate this attribute if you set the type attribute to PayPal. 

See the PayPal Subobject.

sortOrder integer The index into the paymentMethods array at which the Payment-
Method object is to be inserted if this object is associated with an Ac-
count object. (See the Account object’s paymentMethods data 
member in Section 1.2: Account Data Members). 

If no value is specified, CashBox will add the PaymentMethod at the 
beginning of the array, making it the default Payment Method for the Ac-
count.

If a value is specified, and a PaymentMethod already exists at that in-
dex, CashBox will insert the new PaymentMethod at the position indi-
cated, and move the others down the array.

Table 11-1 PaymentMethod Object Data Members  (Continued)

Data Member Data Type Description
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 237



CashBox 5.0: API Reference Guide PaymentMethod Data Members
token Token An object that specifies the details of a token-based payment. You must 
populate this attribute if you set the type attribute to Token. 

See Section 17.1: Token Data Members.

type PaymentMethod-
Type

Required. A string of the CashBox enumerated data type that defines 
the type of this payment method. Depending on this string, you must 
also populate the corresponding subobject in the appropriate attribute. 
For example, if you set the value of this data member to CreditCard, 
populate the creditCard data member with a CreditCard object 
that contains the card details.

See the PaymentMethodType Subobject. 

VID string Vindicia's Globally Unique Identifier (GUID) for this object. When creat-
ing a new PaymentMethod object, leave this field blank; it will be auto-
matically populated by CashBox.

Table 11-1 PaymentMethod Object Data Members  (Continued)

Data Member Data Type Description
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 238



CashBox 5.0: API Reference Guide PaymentMethod Subobjects
11.2 PaymentMethod Subobjects

The PaymentMethod object has several subobjects:

• Boleto Subobject

• CarrierBilling Subobject

• CreditCard Subobject

• DirectDebit Subobject

• ECP Subobject

• HostedPage Subobject

• MerchantAcceptedPayment Subobject

• PaymentMethodType Subobject

• PayPal Subobject

• PhoneNumber Subobject

• PriceCriteria Subobject

Boleto Subobject

Lists details for a Boleto Bancario payment. 

Table 11-2 Boleto Object Data Members

Data Member Data Type Description

fiscalNumber string The fiscal number that appears on the customer’s Bo-
leto Bancário payment slip. This number, formally 
called Casadastro de Pessoas, is formatted in a spe-
cific pattern (modulo 11).

Note: fiscalNumber is associated with a customer, 
not a payment method, and is analogous to a U.S. 
social security number. Treat fiscalNumber as Per-
sonally Identifiable Information (PII).
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 239



CashBox 5.0: API Reference Guide PaymentMethod Subobjects
CarrierBilling Subobject

Lists details for a Mobile Carrier payment. 

Table 11-3 CarrierBilling Object Data Members

Data Member Data Type Description

countryCode string ISO 3166-1 alpha-2 Country Code for the customer’s 
location.

currency string ISO 4217 Currency Code for either the 
static_price_inc_salestax, or the 
dynamic_target_price. (For dynamic pricing, 
the customer currency will be determined by the cus-
tomer region/countryCode.)

encodedPhone-
Number

string The (read only) payment provider-encoded phone 
number used in the Transaction.

paymentProvid-
er

PaymentPro-
vider

The payment provider selected for the Transaction. 
(CashBox currently supports BOKU.)

See Section 12.1: PaymentProvider Data Members.

phoneNumber PhoneNumber Optional. The customer phone number used for the 
payment.

See the PhoneNumber Subobject.

priceCriteria PriceCriteria PriceCriteria are used when stipulating dynamic 
pricing for a Transaction. Note that priceCriteria 
has no meaning (and will be ignored) when creating a 
new PaymentMethod for an Account. Therefore only 
include this subobject with the PaymentMethod 
when processing a Carrier Billing-funded Transac-
tion.

See the PriceCriteria Subobject.
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 240



CashBox 5.0: API Reference Guide PaymentMethod Subobjects
CreditCard Subobject

Lists details for a Credit Card. 

Table 11-4 CreditCard Object Data Members

Data Member Data Type Description

account string The credit card’s account number. Be certain to enter 
the number in full if you are using the associated 
payment method for CashBox one-time or recurring 
Transactions. When fully specified, this number must 
fulfill the Luhn check criterion. Note: CashBox partial-
ly masks the account number (for example, 
444444XXXXXX1111) when returning this object to 
you in response to a call.

If this object is associated with a Transaction ob-
ject that is reported directly to Vindicia (for example, if 
you are a ChargeGuard customer and report Trans-
actions you process outside of CashBox), you might 
choose to omit this value or mask it partially for secu-
rity. In that case, specify one of the following:

An encrypted value of the credit-card account 
number in the accountHash field (see the item 
below), or

The BIN (the first six digits of the credit-card 
number) and the last four digits of that number in 
the bin and lastDigits fields (see the items 
below).

accountLength int The length (number of digits) of the full account num-
ber. For example, for a Visa credit card, set the value 
to 16. Specify this string only if you are not specifying 
the full account number for security reasons.

bin string The BIN, which is the first six digits of the full account 
number. Specify this string only if you are not specify-
ing the full account number or its hash in the ac-
countHash field for security when reporting 
transactions to Vindicia for ChargeGuard. You need 
not specify this field if the associated payment meth-
od is for a Transaction processed through CashBox.

extendedCar-
dAttributes

ExtendedCard-
Attributes

Enhanced auth response details returned from Pay-
ment Provider.

See the ExtendedCardAttributes Subobject.

expirationDate string The CreditCard expiration date in YYYYMM for-
mat, where YYYY is the four-digit year and MM is the 
two-digit month. For example, the string for July 2007 
is 200707.
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 241



CashBox 5.0: API Reference Guide PaymentMethod Subobjects
hashType HashType The type of hash algorithm used if you specify the 
accountHash field. The allowed value is sha1, as 
CashBox only supports SHA1 hashing. Do not speci-
fy this field if the associated payment method is for a 
one-time or recurring Transaction processed through 
CashBox, as CashBox will automatically default to 
SHA1. 

lastDigits string The truncated last part of the full credit-card account 
number, typically the last four or five digits of that 
number. Specify this string only if you are not specify-
ing the full account number or its hash in the ac-
countHash field for security when reporting 
transactions to Vindicia for ChargeGuard.

VID string Vindicia's Globally Unique Identifier (GUID) for this 
object. When creating a new CreditCard object, 
leave this field blank; it will be automatically populat-
ed by CashBox.

Table 11-4 CreditCard Object Data Members  (Continued)

Data Member Data Type Description
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 242



CashBox 5.0: API Reference Guide PaymentMethod Subobjects
DirectDebit Subobject

Lists details for a Direct Debit account. 

Table 11-5 DirectDebit Object Data Members

Data Member Data Type Description

account string The number of the customer’s bank account from 
which to deduct payment. To use the associated 
PaymentMethod object for one-time or recurring 
transactions, you must specify the full account num-
ber. CashBox partially masks the account number (for 
example, 444444XXXXXX1111) when returning this 
object to you in response to an API call. 

For security, if this object is associated with a Trans-
action object that is only reported to Vindicia (for 
example, if you are a ChargeGuard customer and re-
port your transactions to Vindicia), you might choose 
to omit this value or mask it partially, such as by spec-
ifying an encrypted value of the account number in 
the accountHash field.

accountHash string A hash of the full account number, usually obtained 
through the Secure Hash Algorithm (SHA1). For nu-
meric accounts, delete the nonnumeric characters 
before hashing. For calibration, the test number 
1111111111111111 generates an SHA1 hash of 
747417f2206148a3118d0f3adf20b5e4139baac.

Specify this string only if you are not specifying the 
full account number for security reasons when report-
ing transactions to Vindicia for ChargeGuard.

You need not specify this field when using the associ-
ated payment method in a Transaction processed 
through CashBox.

accountLength int The number of digits in the full account number.

Specify this attribute only if you are not specifying the 
full account number but are specifying the accoun-
tHash field only for security reasons when reporting 
transactions to Vindicia for ChargeGuard.

You need not specify this field for the associated pay-
ment method for a Transaction processed through 
CashBox.

bankSortCode string The European bank sort code that identifies the bank 
that houses the customer’s bank account whose 
number is specified in the account field. This code is 
similar to the bank routing number in the United 
States.

You must specify this field for the associated pay-
ment method for a Transaction processed through 
CashBox. However, you may leave this field blank for 
bank accounts in the Netherlands or Belgium, if the 
countryCode attribute is set to NL or BE.
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 243



CashBox 5.0: API Reference Guide PaymentMethod Subobjects
countryCode string The ISO-3166-1 two-letter code for the country in 
which the related bank account is located. This code 
must match the country code specified in the Pay-
mentMethod object’s billing address. Valid values 
are AT (Austria), DE (Germany), and NL (the Nether-
lands).

You must specify this field for the associated pay-
ment method for a Transaction processed through 
CashBox.

hashType HashType The type of hashing algorithm used if you specify a 
value for the accountHash field. The allowed values 
are sha1 and md5. Currently, only SHA1 hashing is 
supported on the server side.

You need not specify this field for the associated pay-
ment method for a Transaction processed through 
CashBox.

lastDigits string (This data member is not in use.)

ribCode string (This data member is not in use.)

Table 11-5 DirectDebit Object Data Members  (Continued)

Data Member Data Type Description
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 244



CashBox 5.0: API Reference Guide PaymentMethod Subobjects
ECP Subobject

Lists details for an ECP account. 

Table 11-6 ECP Object Data Members

Data Member Data Type Description

account string The full bank account number for this payment. Be 
certain to enter this number in full if you are using the 
associated payment method for CashBox Transac-
tions. 

Note: CashBox does not validate ECP accounts al-
gorithmically, and partially masks the account number 
when returning it in response to your call.

accountHash string A hash of the full account number. Specify this string 
only if you are not specifying the full account number 
when reporting a Transaction for ChargeGuard.

accountLength integer The length (number of digits) of the full account num-
ber. Specify this string only if you are not specifying 
the full account number when reporting a Transaction 
for ChargeGuard.

accountType AccountType The type of bank account that issues this electronic 
check. The allowed values are ConsumerChecking, 
ConsumerSavings, and CorporateChecking.

allowedTrans-
actionType

ECPTransac-
tionType

The enumerated Transaction types allowed for ECP- 
or ACH-based Transactions that use this Payment-
Method object. The allowed values are All, In-
bound, Outbound, InboundOutbound, Transfer, 
and NA. The default is All.

hashType HashType The type of hash algorithm used if you specify the 
accountHash field. The allowed values are sha1 
and md5. CashBox supports SHA1 hashing only. You 
need not specify this field if the associated payment 
method is for a Transaction processed through Cash-
Box.

lastDigits string The truncated last part of the full account number, 
typically the last four or five digits of that number. 
Specify this string only if you are not specifying the 
full account number or its hash in the accountHash 
field for security when reporting transactions to Vindi-
cia for ChargeGuard. You need not specify this field if 
the associated payment method is for a one-time or 
recurring transaction processed through CashBox.

routingNumber string The bank routing number for an ACH or ECP ac-
count. Be certain to enter the correct number if you 
are using the associated payment method for Cash-
Box Transactions.
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 245



CashBox 5.0: API Reference Guide PaymentMethod Subobjects
ExtendedCardAttributes Subobject

This object is read-only, and lists auth response details returned from your Payment 
Provider.

Table 11-7 ExtendedCardAttributes Object Data Members

Data Member Data Type Description

Affluent int Possible values: Y (true), N (false), U (undefined).

Applicable Processors: CPT, Litle.

Card-
Description

string The returned description for the card. 

Applicable Processors: Litle, MeS.

CommercialCard int Possible values: Y (true), N (false), U (undefined).

Applicable Processors: CPT, Litle.

ConsumerCard int Possible values: Y (true), N (false), U (undefined).

Applicable Processor: Litle.

CountryOf-
Issuance

string Possible values: USA, etc.

Applicable Processors: CPT, Litle.

CreditCard int Possible values: Y (true), N (false), U (undefined).

Applicable Processors: Litle, MeS.

DebitCard int Possible values: Y (true), N (false), U (undefined).

Applicable Processors: Litle, MeS.

DurbinRegulat-
ed

int Possible values: Y (true), N (false), U (undefined).

Applicable Processor: CPT.

GiftCard int Possible values: Y (true), N (false), U (undefined).

Applicable Processors: Litle, MeS.

HealthcareCard int Possible values: Y (true), N (false), U (undefined).

Applicable Processors: CPT, Litle, MeS.

MassAffluent int Possible values: Y (true), N (false), U (undefined).

Applicable Processor: Litle.

PayrollCard int Possible values: Y (true), N (false), U (undefined).

Applicable Processors: CPT, Litle.

PINlessDebit-
Card

int Possible values: Y (true), N (false), U (undefined).

Applicable Processor: CPT.

PrepaidCard int Possible values: Y (true), N (false), U (undefined).

Applicable Processors: CPT, Litle, MeS.

Reloadable int Possible values: Y (true), N (false), U (undefined).

Applicable Processor: Litle.
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 246



CashBox 5.0: API Reference Guide PaymentMethod Subobjects
Signature-
DebitCard

int Possible values: Y (true), N (false), U (undefined).

Applicable Processor: CPT.

Virtual-
AccountNumber

int Possible values: Y (true), N (false), U (undefined).

Applicable Processor: Litle.

Table 11-7 ExtendedCardAttributes Object Data Members  (Continued)

Data Member Data Type Description
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 247



CashBox 5.0: API Reference Guide PaymentMethod Subobjects
HostedPage Subobject

Lists details for a HostedPage account. 

Note: The customer’s Account must exist before any Hosted Page related 
call references that Account.

Table 11-8 HostedPage Object Data Members

Data Member Data Type Description

countryCode string The ISO 3166 ( alpha-2 ) country code for customer’s 
location,

Note: The combination country+processorPayment-
MethodId+merchantId must be set at GlobalCollect

language string Optional. The ISO 639-1 language matrix code for 
the payment pages.

paymentProvid-
er

PaymentPro-
vider

The payment provider selected for the Transaction. 
(CashBox supports GlobalCollect.)

See Section 12.1: PaymentProvider Data Members.
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 248



CashBox 5.0: API Reference Guide PaymentMethod Subobjects
MerchantAcceptedPayment Subobject

Lists details for a payment entered manually by a merchant. 

processor-
PaymentMetho-
dId

string The payment method to use for the Transaction. 
(These values correspond to GlobalCollect’s payment 
product ID.)

CashBox supports the following values:

Moneybookers: 843

Paysafecard: 830

Ukash: 1400

Direct Debit (Germany): 702

Recurring Direct Debit (Germany): 712

Direct Debit (Austria): 703

Recurring Direct Debit (Austria): 713

Direct Debit (Netherlands): 701

Recurring Direct Debit (Netherlands): 711

Direct Debit (Spain): 709

Recurring Direct Debit (Spain): 719

PayPal: 840

iDEAL: 809

Sofortuberweisung: 836

Yandex: 849

Webmoney: 841

CashU: 845

Alipay: 861

returnUrl string Optional. The URL to which you would like custom-
ers to be redirected after they have successfully com-
pleted the HostedPage transaction.

(This is often your confirmation page.)

Table 11-8 HostedPage Object Data Members  (Continued)

Data Member Data Type Description

Table 11-9 MerchantAcceptedPayment Object Data Members

Data Members Data Type Description

account string The full account number.

accountHash string A hash of the full account number. Any non-numeric 
characters should be removed prior to hashing. If the 
account number is provided, this may be left blank 
and the hash will be calculated by CashBox. The ex-
act length and format of this string may depend upon 
the hash algorithm chosen.
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 249



CashBox 5.0: API Reference Guide PaymentMethod Subobjects
accountLength string Length of the total account number. If the full account 
number is submitted, this field may be left blank, and 
CashBox will calculate it.

amount decimal The amount paid by a customer. This value must be 0 
for PaymentMethods attached to AutoBills. 

Note: MerchantAcceptedPayment Payment-
Methods may be attached to AutoBills to indicate that 
the customer should be invoiced (rather than auto-
matically charged).

currency string The ISO 4217 currency code for the payment. Cur-
rency or token must be specified, and must match the 
currency for charges contained in the invoice/Auto-
Bill.

hashType HashType The algorithm used to hash the account number. If 
this value is not provided, CashBox will use assume 
SHA1.

lastDigits string The last part of the account number for display pur-
poses, generally the last four digits. If the account 
field is provided, this may be left blank and will be 
filled in by CashBox.

note string An optional memo regarding the payment made.

paymentId string The ID of the payment accepted by the merchant.

paymentType string The type of payment accepted by the merchant.

timestamp dateTime The time that payment occurred.

token Token The Token associated with the amount (if this is a To-
ken-based AutoBill).

See Section 17.1: Token Data Members.

Table 11-9 MerchantAcceptedPayment Object Data Members

Data Members Data Type Description
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 250



CashBox 5.0: API Reference Guide PaymentMethod Subobjects
PaymentMethodType Subobject

Describes the type of PaymentMethod. 

Note: CashBox does not support partial payments data for the Merchant 
Accepted Payment paymentMethodType.

CashBox does not support the CarrierBilling or Boleto 
Payment Method Type with AutoBill.migrate.

Table 11-10 PaymentMethodType Object Values 

Value Description

Boleto The payment method is Boleto Bancário.

CarrierBilling The payment method is Carrier Billing.

CreditCard The payment method is credit card.

DirectDebit The payment method is direct debit. CashBox supports direct debit pay-
ment methods in the Netherlands, Germany, and Austria.

ECP The payment method is electronic check through the ACH network.

HostedPage The payment method is HostedPage.

Note: The customer’s Account must exist before any Hosted Page re-
lated call references that Account.

MerchantAccept-
edPayment

The payment is manually entered by the merchant.

PayPal The payment method is PayPal.

Token The payment method is Tokens.
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 251



CashBox 5.0: API Reference Guide PaymentMethod Subobjects
PayPal Subobject

Lists details for a PayPal account. 

Note: PayPal has one email address, payerId, that identifies the PayPal account of the 
customer.

Table 11-11 PayPal Object Data Members

Data Member Data Type Description

cancelUrl string The URL to which you would like to redirect custom-
ers if PayPal indicates failure after they have com-
pleted the payment process on the PayPal site. 

hashType HashType (This data member is not in use.)

password string (This data member is not in use.)

passwordHash string (This data member is not in use.)

payerId string Unique PayPal customer account identification num-
ber in PayPal ExpressCheckout.

returnUrl string The URL to which you would like customers to be re-
directed after they have successfully completed pay-
ment transactions on the PayPal site. 

(This is often your confirmation page, on which the 
customer confirms the order and payment or the bill-
ing agreement.)

paypalEmail string Email used in PayPal ExpressCheckout (read-only). 
(CashBox automatically populates this field with the 
customer email addressed used in the PayPal Trans-
action.)

referenceId string This data member maps to the PayPal field "REFER-
ENCEID" which is the Billing Agreement ID or Refer-
ence Transaction ID associated with a PayPal Billing 
Agreement. 

Note: If you enter a value for this data member, set 
requestReferenceId to false.

requestRefer-
enceId

Boolean When processing the initial Transaction for an Auto-
Bill, ask PayPal for a Reference ID that can be used 
in the future for recurring billing. This works only if 
you have been previously approved for Reference 
Transactions by PayPal. 
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 252



CashBox 5.0: API Reference Guide PaymentMethod Subobjects
PhoneNumber Subobject

The PhoneNumber object is used to store customer phone number information, for use in 
Carrier Billing. This object is optional. Information contained within it is not required to be 
passed to the payment provider at this time.

For more information, see Section 6.3: Using Carrier Billing for One-Time Transactions in 
the CashBox Programming Guide.

The PhoneNumber object describes a customer phone number used for Carrier Billing. 

Table 11-12 PhoneNumber Object Data Members

Data Member Data Type Description

areaCode string Required. The area code segment of the phone 
number. 

countryCode string The Country Code segment of the phone number.

extension string The phone number’s extension.

localNumber string Required. The local number (excluding extension).

phoneType PhoneType The type of phone.

rawInput string Raw, unfiltered data input by customer.
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 253



CashBox 5.0: API Reference Guide PaymentMethod Subobjects
PriceCriteria Subobject

The PriceCriteria object is used to define dynamic pricing for a CarrierBilling 
Transaction. (Because mobile payments may only be processed for fixed values in a given 
country, pricing may be defined as Static, or Dynamic. The PriceCriteria subobject 
allows you to define your pricing structure.)

Note that priceCriteria has no meaning (and will be ignored) when creating a new 
PaymentMethod for an Account. Therefore, include this subobject with the 
PaymentMethod only when processing a CarrierBilling-funded Transaction. 

Table 11-13 PriceCriteria Object Data Members

Data Member Data Type Description

countryCode string ISO 3166-1 alpha-2 countryCode for customer loca-
tion. This value will override the CarrierBilling 
object’s countryCode data member.

currency string ISO 4217 Currency Code for either the static-
PriceIncSalesTax, or the dynamicTarget-
Price. (For dynamic pricing, the customer currency 
will be determined by the customer region/country-
Code.) This value will override the CarrierBilling 
object’s currency data member.

description string A description for the Price Criteria.

dynamic-
Deviation

int The % deviation (+/- 1000) from the target value that 
is acceptable as a price point selection.

dynamicMatch int The % deviation (+/- 1000) from the target value that 
is classified as an exact match.

dynamicPrice-
Mode

DynamicPrice-
Mode

Defines which price point element is matched by the 
dynamic pricing algorithm.

DynamicPriceMode may be one of three types:

Price: The target value will be matched to 
“price-inc-salestax” values in the payment 
provider’s price point matrix.

PayoutGross: The target value will be matched 
to “gross-payout” values in the payment provider’s 
price point matrix.

PayoutNet: The target value will be matched to 
“net-payout” values in the payment provider’s price 
point matrix.

dynamicTarget-
Price

decimal The target price in the specified currency for dynamic 
pricing.

fwdUrl string Overrides both the successful transaction forward-to 
URL, and the failed transaction forward-to URL.

merchant-
ServiceIdenti-
fier

string Your service identifier for the payment provider.
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 254



CashBox 5.0: API Reference Guide PaymentMethod Subobjects
paymentProvid-
er

PaymentPro-
vider

PaymentProvider selected for the Transaction. 
This value will override the CarrierBilling ob-
ject’s paymentProvider data member. (CashBox 
currently supports BOKU as a CarrierBilling 
payment provider.)

See Section 12.1: PaymentProvider Data Members.

pricePoint-
DeviationPoli-
cy

PricePoint-
DeviationPoli-
cy

The allowed price deviation policy for Carrier-
Billing payments using dynamic price selection.

PricePointDeviationPolicy may be one of 
three values:

HiPreferred: A solution higher than the target 
value will be favored over a lower solution.

HiOnly: Only solutions higher than the target 
value will be returned.

LowPreferred: A solution lower than the target 
value will be favored over a higher solution.

LowOnly: Only solutions lower than the target 
value will be returned.

NearestNoPreference: The closest solution to 
the target value will be selected.

staticPrice-
IncSalesTax

decimal The price including tax (the amount your customer 
will pay). Used with Transactions with static “exact 
match” pricing.

static-
SelectionRow-
Ref

int The row number identifier in the static product/service 
price matrix.

subMerchant-
Identifier

string The sub-merchant identifier for the Transaction.

Table 11-13 PriceCriteria Object Data Members  (Continued)

Data Member Data Type Description
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 255



CashBox 5.0: API Reference Guide PaymentMethod Methods
11.3 PaymentMethod Methods

The following table summarizes the methods for the PaymentMethod object. 

Table 11-14 PaymentMethod Object Methods

Method Description

fetchByAccount Returns one or more PaymentMethod objects whose Account 
object matches the input.

fetchByMerchantPayment-
MethodId

Returns a PaymentMethod object whose merchantPayment-
MethodId matches the input.

fetchByVid Returns a PaymentMethod object whose VID matches the input.

fetchByWebSessionVid Returns a PaymentMethod object whose WebSessionVid 
matches the input.

update Creates or updates a PaymentMethod object. 

validate Validates but does not store a PaymentMethod object.
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 256



CashBox 5.0: API Reference Guide fetchByAccount
fetchByAccount

The fetchByAccount method returns one or more PaymentMethod objects whose 
Account object matches the input. You can, for example, call this method to retrieve the 
payment methods a customer has used before, present them to the customer, and ask them 
to choose one for a new product or subscription purchase.

Input account: the Account object that serves as the search criterion. Use the 
merchantAccountId or VID to identify the object.

includeChildren: an optional Boolean flag that, if set to true, includes any children 
associated with this Account. If this flag is omitted, CashBox will interpret it as false, and 
constructs the query without looking at any child's account.

Output return: an object of type Return that indicates the success or failure of the call.

paymentMethods: an array of one or more active PaymentMethod objects associated with 
the Account object specified in the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $merchantId = '12345';

// Create a payment method object to make the call
$paymentMethod = new PaymentMethod();

// Create an account object to search the payment methods by
$account = new Account();
$account->setMerchantAccountId('abc101');

$response = $paymentMethod->fetchByAccount($account);
if($response['returnCode'] == 200) {

$fetchedPms = $response['data']->paymentMethods;

if($fetchedPms != null) {

foreach ($fetchedPms as $pm) {

// process a fetched payment method object here
$accountHolder = $pm->getAccountHolderName();
if ($pm->getType() == "CreditCard") {

$cc = $pm->getCreditCard();
// process other credit card attributes here

}
}

}
}

Return Code Return String

400 Account parameter is required.

404 One of the following:

• No PaymentMethods found for account.
• Account not found.
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 257



CashBox 5.0: API Reference Guide fetchByMerchantPaymentMethodId
fetchByMerchantPaymentMethodId

The fetchByMerchantPaymentMethodId method returns a PaymentMethod object 
whose merchantPaymentMethodId (assigned by you) matches the input.

Input paymentMethodId: the payment method ID (merchantPaymentMethodId), which serves 
as the search criterion.

Output return: an object of type Return that indicates the success or failure of the call.

paymentMethod: the PaymentMethod object whose merchantPaymentMethodId 
matches the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $merchantId = '12345';

// Create a payment method object to make the call
$paymentMethod = new PaymentMethod();

$pmId = 'PM34922012';

$response = $paymentMethod->fetchByMerchantPaymentMethodId($pmId);

if($response['returnCode'] == 200) {
$fetchedPm = $response['data']->paymentMethod;

if($fetchedPm != null) { 

// process the fetched payment method object here
$accountHolder = $fetchedPm->getAccountHolderName();
if ($fetchedPm->getType() == "CreditCard") {

$cc = $fetchedPm->getCreditCard();
// process other credit card attributes here

}
else if($fetchedPm->getType() == "ECP") {

$ecp = $fetchedPm->getEcp();
// process other ecp attributes here

}
}

}

Return Code Return String

400 Missing required parameter paymentMethodId.

404 Unable to find requested PaymentMethod: error-description.
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 258



CashBox 5.0: API Reference Guide fetchByVid
fetchByVid

The fetchByVid method returns a PaymentMethod object whose VID matches the input.

VID is Vindicia’s unique identifier for a PaymentMethod object. While creating a 
PaymentMethod object, do not specify a VID for it yourself. When CashBox receives a 
PaymentMethod object in a call, such as PaymentMethod.update() or 
Transaction.AuthCapture(), if no VID or merchantPaymentMethodId exists inside 
the object, CashBox creates a new PaymentMethod object and assigns it a VID. Retrieve 
this VID from the PaymentMethod object CashBox returns to you in response to your call. 
Then, you may identify the object with the VID, and retrieve it by calling this method.

Input vid: the PaymentMethod object’s Vindicia identifier, which serves as the search criterion.

Output return: an object of type Return that indicates the success or failure of the call.

paymentMethod: the PaymentMethod object whose VID matches the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $merchantId = '12345';

// Create a payment method object to make the call
$paymentMethod = new PaymentMethod();

$vid = '6d46cb877cc9b0a458d61e0771e740ad8b531ec9';

$response = $paymentMethod->fetchByVid($vid);

if($response['returnCode'] == 200) {

$fetchedPm = $response['data']->paymentMethod;
if($fetchedPm != null) { 

// process the fetched payment method object here
$accountHolder = $fetchedPm->getAccountHolderName();
if ($fetchedPm->getType() == "CreditCard") {

$cc = $fetchedPm->getCreditCard();
// process other credit card attributes here

}
else if($fetchedPm->getType() == "ECP") {

$ecp = $fetchedPm->getEcp();
// process other ecp attributes here

}
}

}

Return Code Return String

400 Missing required parameter 'vid'.

404 One of the following:

• Unable to find requested PaymentMethod: error-
description.

• Unable to find requested PaymentMethod: No matches.
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 259



CashBox 5.0: API Reference Guide fetchByWebSessionVid
fetchByWebSessionVid

Use Vindicia’s Hosted Order Automation (HOA) to create CashBox objects that contain 
sensitive payment information, such as credit-card account numbers. Store credit card 
numbers directly on Vindicia’s servers after your customers have submitted their data 
through a specially designed Web order form accessed from your server. Because HOA 
bypasses your server altogether at form submission, you need not comply with PCI 
requirements. See Chapter 13: Hosted Order Automation in the CashBox Programming 
Guide for details on HOA. 

You must create a WebSession object on Vindicia’s servers before serving an order form to 
your customer to track the form’s submission to Vindicia. (For details, see Section 19: The 
WebSession Object.) You may then call the fetchByWebSessionVid method to retrieve 
the PaymentMethod object created by HOA when a customer submits an order form, which 
results in a one-time or recurring bill. 

The WebSession object’s VID serves as the tracking ID for the Web session, from serving 
the order form to a customer, to returning a success or failure page to that same customer. 
Use the WebSession object to program the success page (see the WebSession object’s 
returnURL attribute), to which HOA redirects the customer’s browser after successfully 
processing the data in the order form. On your success page, the WebSession object’s VID 
is available to you because HOA passes it during the redirection. In turn, you may pass that 
VID as the input parameter to this call and retrieve the PaymentMethod object created by 
HOA. Finally, extract the contents of the PaymentMethod object and include them, as 
appropriate, in the success page to be returned to the customer.

Input vid: the WebSession object’s Vindicia unique identifier for tracking the submission of the 
order form.

Output return: an object of type Return that indicates the success or failure of the call.

paymentMethod: a PaymentMethod object, created by HOA as a result of an order form 
submitted by a customer.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 Missing required parameter 'vid'.

404 Unable to find requested PaymentMethod: No matches.
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 260



CashBox 5.0: API Reference Guide fetchByWebSessionVid
Example // To use the fetchByWebSessionVid call on a success web page

$webSessionVid = …; //passed in by redirected page

$soap = new WebSession($soapLogin, $soapPwd);

$response = $soap->fetchByVID($webSessionVid);

if ($response['returnCode'] == 200) {

$fetchedWs = $response['data']->session;

// check if the CashBox API call made by HOA was successful
$retCode = $fetchedWs->apiReturn->returnCode;
if ($retCode == 200) {

// Assuming HOA created a PaymentMethod object, fetch it

$soapPm = new PaymentMethod($soapLogin, $soapPwd);
$resp = $soapPm->fetchByWebSessionVid($webSessionVid);
if ($resp['returnCode'] == 200) {

$createdPm = $resp['data']->paymentMethod;

// Get PaymentMethod contents here to be included in
// HTML returned to the customer.

}
else {

// Return error message to customer
}

}
else {

// return failure page to customer
}

}
else {

// Return error message to the customer 
}

© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 261



CashBox 5.0: API Reference Guide update
update

The update method creates or updates a PaymentMethod object. To encapsulate a 
specific payment method for a customer, you must specify the payment type in the object’s 
type attribute, and then populate the payment details (specific to the payment type) in a 
PaymentMethodType-specific subobject. For example, if you set type to PayPal, 
construct a PayPal object and set it in the PaymentMethod object’s PayPal attribute.

This call supports a flag that may be set to validate the payment method. The validation 
process varies according to the payment method type. For example, for credit-card-based 
payment methods, validation proceeds by authorizing a transaction for US$1 (or for an 
amount in the currency you specified on the PaymentMethod object) with your payment 
processor. That transaction is not captured so the customer is not charged. However, 
CashBox does not support validation for the PayPal payment method type.

In case of the credit-card payment method, you can screen the card for fraud risk when 
creating the PaymentMethod object by specifying a chargeback probability score (also 
called risk score) that is acceptable to you. CashBox scores the payment method for fraud 
risk by examining the billing address, the BIN (the first six digits of the card’s account 
number), the previous chargebacks on transactions conducted with this card, and other 
criteria. For details, see the score method. If CashBox evaluates the risk score for the 
payment method to be higher than your acceptable score, the creation process fails. 

If validate is set to true, and validation fails, the PaymentMethod object is not created or 
updated.

Note: The customer’s Account must exist before any Hosted Page related 
call references that Account.
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 262



CashBox 5.0: API Reference Guide update
The following table describes the validation process for the various payment methods.

Table 11-15 Validation Process by Payment Method Type

Payment 
Method Type

Validation Process

Credit card The account number must meet the Luhn check criterion and the payment 
processor must authorize a transaction for a small amount (one currency 
unit or, if the currency is not specified on the PaymentMethod object, 
US$1). CashBox sends this transaction to the payment processor for autho-
rization only and does not capture it so the customer is not charged. These 
transactions, whose success status is AuthorizedForValidation, are 
displayed on the CashBox Portal.

Direct debit First, CashBox internally validates the account number (account) and bank 
sort code (bankSortCode). The rules that apply depend on the country 
specified in the DirectDebit object. If internal validation succeeds, Cash-
Box contacts the payment processor (currently, Chase Paymentech only) 
and conducts an auth operation, with no capture, on a transaction that uses 
the EDD payment method for a small amount, such as one unit of the cur-
rency specified on the PaymentMethod object.

The payment processor’s initial response to the auth call is based on the 
verification that the account number and the bank sort code do not match 
any numbers in the negative file (blacklist) maintained by the processor. In 
that case, CashBox considers the payment method valid.

Electronic check 
(ECP)

CashBox supports ECP if your payment processor is Chase Paymentech or 
Litle. 

For Chase, CashBox validates the ECP payment method by sending the LO 
verification code to Chase Paymentech, which verifies that the bank-account 
and routing numbers are valid and that they are not in Chase Paymentech’s 
negative file.

(You may also perform a VO validation, which is more costly and involves 
more thorough checks. Work with Vindicia Client Services to add it to 
your CashBox configuration.)

For Litle, ECP (Litle “eCheck”) data will be validated (verifying that the rout-
ing number is correctly formatted and that it exists in the Fed database) by 
CashBox. For auth and authCapture requests (whether performed direct-
ly by the merchant, or automatically by the CashBox rebilling system) an ad-
ditional verification procedure is performed. This verification compares the 
ECP account information against a 3rd party database to determine if the ac-
count is associated with activities such as fraud, over drafts, or other items 
determined to be risk factors. If this verification procedure returns negative 
information, the auth or authCapture request will be rejected.

Merchant Ac-
cepted

CashBox does not validate Merchant Accepted payments.
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 263



CashBox 5.0: API Reference Guide update
PayPal The PaymentMethod object methods do not support validation for PayPal. 
Instead, if you specify PayPal as the payment method while creating an Au-
toBill object, CashBox authorizes a transaction for a small amount (US 
$1 if the currency is USD). Such an authorization requires that the customer 
log in to his or her account on the PayPal site and agree to the terms and 
conditions of recurring billing (reference transaction). That process serves 
as validation of the PayPal payment method.

Token Validation of the token payment method can occur only if that method is as-
sociated with an Account object. In that case, CashBox validates by ensur-
ing that the token type (ID) has been previously defined and added to the 
Account object.

Table 11-15 Validation Process by Payment Method Type  (Continued)

Payment 
Method Type

Validation Process
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 264



CashBox 5.0: API Reference Guide update
Input paymentMethod: the PaymentMethod object to create or update. In case of an update, 
you can identify this object with either its VID or your payment method ID 
(merchantPaymentMethodId).

validate: a Boolean flag that, if set to true, causes this method to validate the 
PaymentMethod object first before creating or updating. 

When validate is true, the AVS and CVN policies (or, in their absence, the default 
evaluation policy) are used to determine the status of the validation. If validation fails, the 
PaymentMethod is not updated.

For more detail on AVS and CVN Return Codes, please work with your Vindicia Client 
Services representative.

minChargebackProbability: a number between 0 and 100 by which you specify your fraud 
risk score tolerance level. A chargeback probability (also called the risk-screening score or 
risk score) of 100 indicates that CashBox is 100% certain that a transaction is fraudulent and 
will result in a chargeback. Specify your acceptable threshold for chargeback possibility with 
this parameter. If the score evaluates to be more than your tolerance level, the update call 
will fail.

For risk score evaluation, you must specify the sourceIp parameter, described below, 
and full billing address containing city, state (district), and country for the payment 
method.

replaceOnAllAutoBills: a Boolean flag that, if set to true, causes this method to 
propagate the updates to an existing payment method to all the AutoBill objects. This 
operation works only for those payment methods that are already associated with an 
Account object. The default is false, meaning that this method does not update any 
AutoBill objects. 

sourceIp: the customer IP address from which the customer specified details for this 
payment method. It must be specified if you want CashBox to evaluate risk score for this 
payment method, that is, if you specify minChargebackProbability to be less than 100.

replaceOnAllChildAutoBills: a Boolean flag that, if set to true, the update will propagate 
to the AutoBills belonging to children of this account. If replaceOnAllAutoBills is set 
to false, this flag is ignored. If replaceOnAllAutoBills is set to true and 
replaceOnAllChildAutoBills is set to true, this will affect only the parent account. 

ignoreAvsPolicy: a Boolean flag that, if set to true, will override the AVS policy, and 
update the paymentMethod, regardless of the AVS return code. If set to false or null, 
(and if validate is set to true) the AVS return code will be used to determine whether to 
update the paymentMethod.

ignoreCvnPolicy: an optional Boolean flag that, if set to true, will override the CVN policy, 
and update the paymentMethod, regardless of the CVN return code. If set to false or 
null, (and if validate is set to true) the CVN return code will be used to determine 
whether to update the paymentMethod.
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 265



CashBox 5.0: API Reference Guide update
Output return: an object of type Return that indicates the success or failure of the call.

paymentMethod: the PaymentMethod object that was created or updated. If the object 
was newly created, this output contains the object’s Vindicia-assigned ID in the VID 
attribute. CashBox masks the account numbers in this object.

created: a Boolean flag that, if set to true, indicates that this method has created a new 
PaymentMethod object. A false setting indicates that update has updated an existing 
PaymentMethod object, which occurs if a PaymentMethod object with the 
merchantPaymentMethodId or VID value specified in the input already exists in the 
Vindicia database.

validated: a Boolean flag that, if set to true, indicates that the update method has 
successfully validated the underlying payment method. This is meaningful only if you turned 
the input validate flag on. 

score: the fraud risk score evaluated by CashBox for this payment method. If you specified 
minChargebackProbability of less than 100, CashBox evaluates the fraud risk score 
for this payment method.

scoreCodes: an array of code numbers and corresponding explanatory text that explains 
the score evaluated by CashBox.

authStatus: a TransactionStatus object containing information received from the 
payment processor for the underlying validation transaction. This is available only if you 
chose to validate the payment method.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

261 All active AutoBills were updated. AutoBills which are 
both expired and Suspended cannot be updated.

400 One of the following:

• Error-description. (Returned if CashBox cannot map a 
PaymentMethod object that is passed into a database record.)

• Data validation error Failed to create Payment-Type-
Specific Payment Record: Credit Card conversion 
failed: Credit Card failed Luhn check.

• Unable to save payment method: error-description.

402 Unable to authorize card.

407 AVS policy evaluation failed.

408 CVN policy evaluation failed.

409 AVS and CVN policy evaluations failed.

410 AVS and CVN policy evaluations could not be performed.

501 Error-description.
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 266



CashBox 5.0: API Reference Guide update
Example // To create a credit card based payment method and validate it. 

// Create a payment method object to make the call
$paymentMethod = new PaymentMethod();

$paymentMethod->setType('CreditCard');
$paymentMethod->setAccountHolderName('Jane Doe');
$paymentMethod->setCustomerSpecifiedType('Visa');
$paymentMethod->setCurrency('USD');
$paymentMethod->setActive(true);

$cc = new CreditCard();
$cc->setAccount('411111111111111');
$cc->setExpirationDate('201208');

$paymentMethod->setCreditCard($cc);

// not setting merchantPaymentMethodId. We can use the 
// VID returned after creation as unique id for the payment method

$validate = true;
$minChargebackProbability = 100; // not evaluating risk score
$replaceOnAutoBills = false; // just creating the payment method, not

// attached to an account yet
$ip = null; // not evaluating risk score
$response = $paymentMethod->update($validate, 

$minChargebackProbability, 
$replaceOnAutoBills, $ip);

if($response['returnCode'] == 200 && $response['created']) {
$retPm = $response['data']->paymentMethod;
print('Payment method successfully created with VID' 

. $retPm->getVID());
}

else if($response['returnCode'] == 402) {
print('Payment method is invalid');

}
// check response from the payment processor
$validationTxStatus = $response['authStatus'];
if ($validationTxStatus != null) {

$creditCardStatus = 
$validationTxStatus->getCreditCardStatus();

if ($creditCardStatus != null) {
$authCode = $creditCardStatus->getAuthCode();
$avsCode = $creditCardStatus->getAuthCode();
print "Card rejected with code " . $authCode . "\n";
print "Address verification code " . $avsCode . "\n";

}
}

© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 267



CashBox 5.0: API Reference Guide validate
validate

The validate method validates a PaymentMethod object. You call this method on an 
appropriately populated PaymentMethod object. The validation process varies according to 
the payment method type. See the update method for the validation process in the context 
of the validate parameter being passed to the update() call.

This call only validates the PaymentMethod object but does not create, update, or store the 
data in CashBox. To create or update the data, call update() on the object after validation.

This method considers the Luhn check, the authorization return, and the (merchant defined) 
active AVS and CVN policy when formulating the validated result.

For more detail on AVS and CVN Return Codes, please work with your Vindicia Client 
Services representative.

Input paymentMethod: the PaymentMethod to validate.

sourceIp: the customer IP address from which the customer specified details for this 
payment method. It must be specified if CashBox is to evaluate risk score for this payment 
method, that is, if you specify minChargebackProbability to be less than 100.

minChargebackProbability: a number between 0 and 100 by which you specify your fraud 
risk score tolerance level. A probability of 100 indicates that CashBox is 100% certain that a 
transaction is fraudulent and will result in a chargeback. Specify your acceptable threshold 
for chargeback possibility with this parameter. If the score evaluates to be more than your 
tolerance level, CashBox will not validate the payment method with your payment processor, 
saving you the cost of obtaining validation for potentially fraudulent payment methods.

For risk score evaluation, you must specify the sourceIp parameter, described below, and 
the full billing address containing city, state (district), and country for the payment method.

ignoreAvsPolicy: a Boolean flag that, if set to true, will override the AVS policy, and 
update the paymentMethod, regardless of the AVS return code. If set to false or null, 
(and if validatePaymentMethod is set to true) the AVS return code will be used to 
determine whether to update the paymentMethod.

ignoreCvnPolicy: an optional Boolean flag that, if set to true, will override the CVN policy, 
and update the paymentMethod, regardless of the CVN return code. If set to false or 
null, (and if validatePaymentMethod is set to true) the CVN return code will be used to 
determine whether to update the paymentMethod.
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 268



CashBox 5.0: API Reference Guide validate
Output return: an object of type Return that indicates the success or failure of the call.

authStatus: a TransactionStatus object containing information received from the 
payment processor for the underlying validation transaction processed by your payment 
processor. If you have enabled risk scoring and if the score evaluates to be more than your 
tolerance threshold specified in the minChargebackProbability input parameter, CashBox 
will not populate this output parameter.

validated: a Boolean flag that, if set to true, indicates that this method has successfully 
validated the PaymentMethod object. A false setting indicates that the validation failed. 

avsCvnPolicyEvaluationDetails: an object of type AvsCvnPolicyStatus, and contains 
two fields, returnCode and returnString, which pertain to the outcome of the AVS/CVN 
policy evaluation.

(Note: All other methods affected by the AVS/CVN policy return their returnCode and 
returnString in the Return object from the method.)

score: the fraud risk score evaluated by CashBox for this payment method. If you specified 
minChargebackProbability of less than 100, CashBox will evaluate the risk score for 
this payment method.

scoreCodes: an array of code numbers and corresponding explanatory text that explains 
the score evaluated by CashBox

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

201 VS/CVN policy not evaluated. 

Returned to indicate that the AutoBill was created, but the AVS policy 
was not evaluated, due to a lack of response from the Payment 
Processor.

400 One of the following:

• Invalid parameters: error-description.
• Error-description. 
Returned if CashBox encounters a general error while mapping the 
object to a CashBox database object.

407 AVS policy evaluation failed.

408 CVN policy evaluation failed.

409 AVS and CVN policy evaluations failed.

410 AVS and CVN policy evaluations could not be performed.

501 Validation not implemented for payment-method-type ac-
counts.
© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 269



CashBox 5.0: API Reference Guide validate
Example // To validate a credit card based payment method

// Create a payment method object to make the call
$paymentMethod = new PaymentMethod();

$paymentMethod->setType('CreditCard');
$paymentMethod->setAccountHolderName('Jane Doe');
$paymentMethod->setCustomerSpecifiedType('Visa');
$paymentMethod->setCurrency('USD');
$paymentMethod->setActive(true);

$cc = new CreditCard();
$cc->setAccount('411111111111111');
$cc->setExpirationDate('201208');

$paymentMethod->setCreditCard($cc);

// customer's ip address not necessary since we 
// do not want to do risk scoring

$sourceIp = null;

// risk score threshold set to 100 since we 
// do not want to do risk scoring

$minChargebackProbability = 100;

$response = 
$paymentMethod->validate($sourceIp, $minChargebackProbability);

if($response['returnCode'] == 200) {
if($response['validated']) {

print('Payment method is valid');
// get AVS code
$txStatus = $response['authStatus'];
$avsCode = $txStatus->creditCardStatus->avsCode;
// examine AVS return code here

}
else {

print('Payment method is invalid');
}

}
else {

print('Error encountered during validation');
}

© 2014 Vindicia, Inc. Table of Contents The PaymentMethod Object 270



CashBox 5.0: API Reference Guide validate
12 The PaymentProvider Object

The PaymentProvider object serves as a wrapper to contain static information required 
by a payment provider for payment processing.
© 2014 Vindicia, Inc. Table of Contents The PaymentProvider Object 271



CashBox 5.0: API Reference Guide PaymentProvider Data Members
12.1 PaymentProvider Data Members

The following table lists and describes the data members of the PaymentProvider object. 

Table 12-1 PaymentProvider Object Data Members

Data Member Data Type Description

authCurrency-
Override

string The currencies for which authorization currency may 
be overridden by USD.

auth-
ExpirationDays

int The number of days before the payment provider ex-
pires authorizations.

disputeAddress Address The payment provider’s dispute address.

See Section 3.1: Address Data Members.

disputeEmail string The payment provider’s email address for disputes.

disputeUri anyURI The payment provider’s URI for disputes.

name string The name of the provider. 

nameValues NameValuePair An optional array of name-value pairs to associate 
with the payment provider.

See Section 10: The NameValuePair Object.
© 2014 Vindicia, Inc. Table of Contents The PaymentProvider Object 272



CashBox 5.0: API Reference Guide PaymentProvider Methods
12.2 PaymentProvider Methods

The following table summarizes the methods for the PaymentProvider object.

Table 12-2 PaymentProvider Object Methods

Method Description

dataRequest Performs a generic query on the PaymentProvider object.

fetchByName Loads a PaymentProvider object by name.
© 2014 Vindicia, Inc. Table of Contents The PaymentProvider Object 273



CashBox 5.0: API Reference Guide dataRequest
dataRequest

The dataRequest method performs a generic query on a PaymentProvider object. 

Note: CashBox currently supports BOKU for this method.

For more dataRequest examples, please see Section 6.3.3: Using CashBox to query 
BOKU in the CashBox Programming Guide.

Input paymentProvider: the PaymentProvider against which the query will be performed.

requestType: the type of query to be performed. CashBox currently supports the BOKU 
price and service-price calls.

requestArguments: an array of name/value pairs used to construct the query. 

Note: The following price/service-price parameters are not allowed (Vindicia will include 
authentication information for the query): merchant-id, password, sig, and timestamp.

Output return: an object of type Return that indicates the success or failure of the call.

paymentProvider: the PaymentProvider object against which the query was performed.

request: the formatted query input in payment provider-native format.

response: the formatted query output in payment provider-native format.

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $provider = new paymentProvider();
$rc = $provider->dataRequest('price',

[
NameValuePair->new(name => 'reference-currency',

value => 'USD'),
NameValuePair->new(name => 'service-id',

value => '140ba94f2c24e44b5cb85730')
]

);
© 2014 Vindicia, Inc. Table of Contents The PaymentProvider Object 274



CashBox 5.0: API Reference Guide fetchByName
fetchByName

The fetchByName method fetches a PaymentProvider object by name.

Input name: the name of the PaymentProvider object.

Output return: an object of type Return that indicates the success or failure of the call.

paymentProvider: the PaymentProvider object requested.

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $providerName = 'GiganticPicklesRuS';
// Create a SOAP caller object
$provider = new PaymentProvider();
$response = $provider->fetchByName($providerName);
if($response['returnCode'] == 200)
{

$fetchedProvider = $response['data']->paymentProvider;
// process fetched paymentProvider here

}

© 2014 Vindicia, Inc. Table of Contents The PaymentProvider Object 275



CashBox 5.0: API Reference Guide fetchByName
13 The Product Object

A Product object represents a product or service available for purchase on your site. 
Product objects contain a description of the product, its entitlements, and a default price.

A Product may be a single item, or may be a bundled collection of multiple products. For 
example, a Product may be a monthly magazine subscription, or may include a monthly 
subscription, a new customer gift, and a one-time purchase. 

Use Product objects to:

• Define a product, including its default price, and its associated Entitlements. (See also 
Section 3.1: Creating Products in the CashBox Programming Guide.)

• Define a bundled product, using pre-existing Product objects to create a new group of 
products, made available with its own Entitlements and default price. (See also Section 
3.2: Creating Bundled Products in the CashBox Programming Guide.)

• Create a Tokens for Cash system, in which customers may purchase Products which 
grant their Account Token credits. Tokens may be used as currency in proprietary 
transaction systems (such as the purchase of a sword in an online game), or may be 
used to allocate minutes in time-based transactions (for use in phone contracts, or 
website access). (See also Chapter 10: Working with Tokens in the CashBox 
Programming Guide.)
© 2014 Vindicia, Inc. Table of Contents The Product Object 276



CashBox 5.0: API Reference Guide Product Data Members
13.1 Product Data Members

The following table lists and describes the data members of the Product object. 

Table 13-1 Product Object Data Members

Data Member Data Type Description

billingStatement-
Identifier

string Optional. The transaction description on the customer’s billing 
statement that is sent by the bank when the customer is 
charged through this Product object. This field’s value and 
format are set by your payment processor; consult with Vindi-
cia Client Services before setting the value.

If GlobalCollect, Chase Paymentech, MeS, or Litle is your pay-
ment processor, see Appendix A: Custom Billing Statement 
Identifier Requirements in the CashBox Programming 
Guide.

Note: If this identifier is also defined in a BillingPlan object 
associated with the AutoBill object for this Product object, 
the billing statement identifier on BillingPlan takes prece-
dence.

bundledProducts Product Zero or more products “bundled” or grouped with this Product.

creditGranted Credit The credit(s) to be granted upon purchase of this Product.

See the Credit Subobject.

defaultBillingPlan BillingPlan Optional. Recurring pricing is governed by this attribute if a 
billing plan is not explicitly associated with the AutoBill ob-
ject for this Product object.

defaultRatePlan RatePlan Optional. A default Rate Plan for the Product.

descriptions ProductDescription Optional. Zero or more language/product description pairs.

Note: In the absence of a product description, the merchant-
ProductId will be used.

endOfLifeTimestamp dateTime Optional. A timestamp that specifies the expiration date for 
this Product object. Use this attribute to filter your product 
list, and present only those products with future expiration 
dates as currently available for subscription.

(This attribute is for your information only, and does not affect 
CashBox operations.)
© 2014 Vindicia, Inc. Table of Contents The Product Object 277



CashBox 5.0: API Reference Guide Product Data Members
merchant-
EntitlementIds

MerchantEntitle-
mentId

An array of identifiers that determine the customer’s entitle-
ments. Use these IDs within your application to grant access to 
products or services. These IDs are returned to you inside En-
titlement objects along with the dates until which they are 
valid for a given customer. The status of a customer’s Auto-
Bill object with which this product is associated determines 
the date until which the Entitlement objects are valid. 

Note: Entitlements are available to customers through 
Product, BillingPlan, and Account objects. When add-
ing Products to an AutoBill, Entitlements are cumula-
tive, unless otherwise defined.

See Section 8.1: Entitlement Data Members.

merchantProductId string Your unique identifier for the product. If you track your products 
internally by SKU, use the SKU as your merchantProduc-
tId, to allow you to map your local records to CashBox Trans-
actions that have this Product as a line item.

nameValues NameValuePair Optional. An array of name–value pairs, each of which en-
ables you to add additional product information, not included in 
this Product object’s other attributes.

See Section 10: The NameValuePair Object.

prices ProductPrice An array of ProductPrice objects, one per currency (or To-
ken) code. 

See the ProductPrice Subobject.

status ProductStatus An enumerated string value that describes the current status of 
the Product object. See the ProductStatus Subobject for 
the values.

For example, use this value to determine whether to make a 
Product object available for subscription purchase.

(This attribute is for your information only, and does not affect 
CashBox operations.) 

See the ProductStatus Subobject.

taxClassification string A string that defines your tax classification for this Product. 

VID string Vindicia's Globally Unique Identifier (GUID) for this object. 
When creating a new Product object, leave this field blank; it 
will be automatically populated by CashBox.

Table 13-1 Product Object Data Members  (Continued)

Data Member Data Type Description
© 2014 Vindicia, Inc. Table of Contents The Product Object 278



CashBox 5.0: API Reference Guide Product Subobjects
13.2 Product Subobjects

The Product object has several subobjects:

• ProductDescription Subobject

• ProductPrice Subobject

• ProductStatus Subobject

ProductDescription Subobject

Defines a language/product description pair. 

ProductPrice Subobject

Lists a currency and/or Token value for the product. 

Table 13-2 ProductDescription Object Data Members

Data Members Data Type Description

description string A description of this product written in language. A 
free-form string of less than 256 characters.

language string The language in which the product description is writ-
ten.

Table 13-3 ProductPrice Object Data Members

Data Members Data Type Description

amount decimal Value of the currency amount.

currency string ISO 4217 currency code to be used for this Pro-
ductPrice Amount. Defaults to USD.

token Token Details of pricing using tokens.
© 2014 Vindicia, Inc. Table of Contents The Product Object 279



CashBox 5.0: API Reference Guide Product Subobjects
ProductStatus Subobject

Defines whether the product is Active or Suspended. Suspended products may not be 
renewed through AutoBills. 

Table 13-4 ProductStatus Object Data Members

Data Member Data Type Description

Active string Product is currently active (available to the custom-
er).

Suspended string Product is inactive (unavailable to the customer), a 
state that cannot be renewed. Customers must start a 
new purchase process and reorder a suspended 
product as a brand-new billing plan.
© 2014 Vindicia, Inc. Table of Contents The Product Object 280



CashBox 5.0: API Reference Guide Product Methods
13.3 Product Methods

The following table summarizes the methods for the Product object.

Table 13-5 Product Object Methods

Method Description

fetchAll Returns all the Product objects. 

fetchByAccount Returns one or more Product objects whose Account object 
matches the input.

fetchByMerchantEntitle-
mentId

Returns all the Product objects whose entitlement ID assigned by 
you (merchantEntitlementId) matches the input.

fetchByMerchantProductId Returns the Product object whose merchantProductId match-
es the input.

fetchByVid Returns a Product object whose VID matches the input.

update Creates or updates a Product object.
© 2014 Vindicia, Inc. Table of Contents The Product Object 281



CashBox 5.0: API Reference Guide fetchAll
fetchAll

The fetchAll method returns all the Product objects.

This method supports paging to limit the number of records returned per call. Returning a 
large number of records in one call may swamp buffers, and might cause a failure. Vindicia 
recommends that you call this method in a loop, incrementing the page for each loop 
iteration with an optimal page size (number of records returned in one call) until the page 
contains a number of records that is less than the given page size.

Input page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to display per page per call. This value must be greater 
than 0.

Output return: an object of type Return that indicates the success or failure of the call.

products: an array of returned Product objects.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $product = new Product();
$page = 0;
$pageSize = 10;
do {

$ret = $product->fetchAll($page, $pageSize);
$count = 0;
if ($ret['returnCode'] == 200) {

$fetchedProducts = $ret['products'];
if ($fetchedProducts != null) {

$count = sizeof($fetchedProducts);
foreach ($fetchedProducts as $prod) {

// process a fetched product here …
$page++;

}
}

} while ($count > 0);
}

Return Code Return String

404 No products found for merchant.
© 2014 Vindicia, Inc. Table of Contents The Product Object 282



CashBox 5.0: API Reference Guide fetchByAccount
fetchByAccount

The fetchByAccount method returns one or more Product objects to which the 
Account object specified in the input is subscribed. That is, this method returns all the 
Product objects that are associated with the AutoBill objects that are also associated 
with the specified Account object. 

Input account: the Account object that serves as the search criterion. Use the 
merchantAccountId or VID to identify the object.

includeChildren: an optional Boolean flag that, if set to true, includes all children 
associated with this Account. If this flag is omitted, CashBox will interpret it as false, and 
will not include children in the query. 

Output return: an object of type Return that indicates the success or failure of the call.

products: an array of one or more Product objects associated with the AutoBill objects 
that are also associated with the Account object specified in the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example // Create a SOAP caller product object
$prod = new Product();

// Create an Account object to fetch products by
$acct = new Account();
$acct->setMerchantAccountId('jdoe101');

$response = $prod->fetchByAccount($acct);

if($response['returnCode'] == 200) {
$fetchedProducts = $response['data']->products;

// process fetched products here
if ($fetchedProducts != null) {

foreach ($fetchedProducts as $fetchedProd) {
// process a fetched product here

}
}

}

Return Code Return String

404 One of the following:

• Unable to load account to search by: error-description.
• Unable to load account by: No matches.
© 2014 Vindicia, Inc. Table of Contents The Product Object 283



CashBox 5.0: API Reference Guide fetchByMerchantEntitlementId
fetchByMerchantEntitlementId

The fetchByMerchantEntitlementId method returns one or more Product objects 
whose entitlement ID assigned by you (merchantEntitlementId) matches the input. For 
example, call this method in response to a customer request for a list of all your products 
that offer a certain privilege on your site. 

Input merchantEntitlementId: your entitlement ID (merchantEntitlementId), which serves 
as the search criterion. 

Output return: an object of type Return that indicates the success or failure of the call.

products: an array of one or more Product objects whose entitlement ID assigned by you 
(merchantEntitlementId) matches the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example // Create a SOAP caller product object
$prod = new Product();

$response = $prod->fetchByMerchantEntitlementId
('PremiumVideoContentAccess');

if($response['returnCode'] == 200) {
$fetchedProducts = $response['data']->products;

// process fetched products here
if ($fetchedProducts != null) {

foreach ($fetchedProducts as $fetchedProd) {
// process a fetched product here

}
}

}

Return Code Return String

400 Must specify entitlement id.

404 Could not load product for entitlement id input-merchant-
EntitlementId.
© 2014 Vindicia, Inc. Table of Contents The Product Object 284



CashBox 5.0: API Reference Guide fetchByMerchantProductId
fetchByMerchantProductId

The fetchByMerchantProductId method returns the Product object whose product ID 
assigned by you (merchantProductId) matches the input. 

Input merchantProductId: your product ID (merchantProductId), which serves as the search 
criterion.

Output return: an object of type Return that indicates the success or failure of the call.

product: the Product object whose merchantProductId matches the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $prodMerchantId = '5w3320dj';

// Create a SOAP caller product object
$prod = new Product();

$response = $prod->fetchByMerchantProductId($prodMerchantId);

if($response['returnCode'] == 200) {
$fetchedProduct = $response['data']->product;
// process fetched product here

}

Return Code Return String

400 One of the following:

• Unable to load product by sku input-merchantProductId: 
No match.

• Unable to load product by merchantProductId input-
merchantProductId: error-description.

• Must specify merchantProductId to load by!
© 2014 Vindicia, Inc. Table of Contents The Product Object 285



CashBox 5.0: API Reference Guide fetchByVid
fetchByVid

The fetchByVid method returns a Product object whose VID matches the input.

Input vid: the Product object’s Vindicia unique identifier, which serves as the search criterion.

Output return: an object of type Return that indicates the success or failure of the call.

product: the Product object whose VID matches the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $prodVid = '079e770ca81ab5f4cd40a2dec6d4c72832ce8dd0';

// Create a SOAP caller product object
$prod = new Product();

$response = $prod->fetchByVid($prodVid);

if($response['returnCode'] == 200) {
$fetchedProduct = $response['data']->product;
// process fetched product here

}

Return Code Return String

400 One of the following:

• Unable to load product by VID input-vid: error-description.
• Must specify VID to load by!

404 Unable to load product by VID input-vid: No match.
© 2014 Vindicia, Inc. Table of Contents The Product Object 286



CashBox 5.0: API Reference Guide update
update

The update method creates or updates a Product object. 

To create a Product object, initialize the object and set the values for its data members, as 
appropriate, and then call the update() method to store the changes. During the process, 
do not set a value for VID because CashBox automatically generates that when you call 
update(). When updating an existing Product object, identify it with its VID or your 
product ID (merchantProductId).

Because products are typically stable company offerings, and are updated or created only 
rarely, Products are usually created using the CashBox Portal, rather than the API. 

Input product: the Product object to create or update. Identify this object using either its VID or 
your product ID (merchantProductId).

duplicateBehavior: an enumerated string that is currently not supported by CashBox.

Output return: an object of type Return that indicates the success or failure of the call.

product: the Product object that was created or updated.

created: a Boolean flag that, if set to true, indicates that this method has created a new 
Product object. A false setting indicates that update has updated an existing Product 
object.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 One of the following:

• Error-description. 
• CashBox encountered a general error while mapping the 

input Product object to the CashBox database.
• Unable to save product: error-description.
• Unable to retrieve saved product: error-description.
© 2014 Vindicia, Inc. Table of Contents The Product Object 287



CashBox 5.0: API Reference Guide update
Example // to create a new product object

$product = new Product();

// Identify the product by your unique identifier, etc.
$product->setMerchantProductId('gold12345');
$product->setStatus('Active');
$product->setDescription('Premium Video Access');

$meId = new MerchantEntitlementId();
$meId->setId('PremiumVideoAccess2010');
$meId->setDescription('Premium video access privilege for 2010');

$product->setMerchantEntitlementIds(array($meId));

$response = $product->update(DuplicateBehavior::SucceedIgnore);

if($response['returnCode'] == 200 && $response['created']) {
$createdProduct = $response['data']->product;
print "Created product with VID " . $createdProduct->getVID();

}

© 2014 Vindicia, Inc. Table of Contents The Product Object 288



CashBox 5.0: API Reference Guide update
14 The RatePlan Object

The RatePlan object defines the logic by which the pricing structure for Rated Products will 
be determined.
© 2014 Vindicia, Inc. Table of Contents The RatePlan Object 289



CashBox 5.0: API Reference Guide RatePlan Data Members
14.1 RatePlan Data Members

The following table lists and describes the data members of the RatePlan object. 

Table 14-1 RatePlan Object Data Members

Data Member Data Type Description

description string Optional. A description for the Rate Plan.

hasEvent-
Recorded

Boolean Read-only field that indicates whether or not this 
RatePlan has had any Events recorded against it.

includedUnits decimal The number of Rated Units automatically included with 
each Billing Cycle.

maximumFee RatePlanPrice An array of Prices for the maximum charge for this plan, 
per Billing Cycle. If this field is defined, customers will nev-
er be charged more than this amount per Billing Cycle, re-
gardless of their reported use.

The RatePlanPrice object is an (amount, currency) pair 
used in a RatePlan, and contains two members:

amount: the number of currency units.

currency: the ISO 4217 currency code to be used for 
this Fee.

merchantRate-
PlanId

string Required. Your unique ID for this Rate Plan.

minimumFee RatePlanPrice An array of Prices for the minimum charge for this plan, 
per Billing Cycle. If this field is defined, customers will be 
charged at least this amount per Billing Cycle, regardless 
of their use.

The RatePlanPrice object is an (amount, currency) pair 
used in a RatePlan, and contains two members:

amount: the number of currency units.

currency: the ISO 4217 currency code to be used for 
this Fee.
© 2014 Vindicia, Inc. Table of Contents The RatePlan Object 290



CashBox 5.0: API Reference Guide RatePlan Data Members
multiplyRated-
UnitsBy

MultiplyRated-
UnitsBy

The calculation method by which this RatePlan will de-
termine the price to bill for a Billing Cycle.

The MultiplyRatedUnitsBy object contains two val-
ues:

EachRespectiveTier: multiplies the number of 
Events for the Billing Cycle by the ratePrice for the 
Tier in which they occurred.

HighestApplicableTier: multiplies the total 
number of Events for the Billing Cycle by the price for 
the highest Tier in which any reported Event occurred.

EachRespectiveTier calculates the charge by Tier 
use. That is, if a Tiered Plan is defined as $2 for 0-9 units, 
and $1 for 10-100 units, a customer who uses 15 units will 
be charged $2*9 + $1*6 = $24.

For the same use, HighestApplicableTier would cal-
culate the charge by multiplying 15 units by $1, for a total 
charge of $15.

nameValues NameValuePair Optional. An array of name-value pair items specific to 
this RatePlan.

See Section 10: The NameValuePair Object.

ratedUnit RatedUnit Required. The names for the Unit included in this Rate 
Plan.

The RatedUnit object contains two data members:

nameSingular (string): defines the singular name for 
the Unit, as displayed in CashBox pages, reports, and 
customer emails.

namePlural (string): defines the plural name for the 
Unit.

ratePlanModel RatePlanModel Required. Defines the mode of use for the RatePlan. 

The RatePlanModel object contains one of two values:

UsageBased: calculates the fee per Billing Cycle 
based on the number of Rated Units consumed during 
the Billing Cycle.

LicenseBased: calculates the fee per Billing Cycle 
based on a defined number of licenses per Billing 
Cycle.

Note: If no new Events are reported for a Billing Cycle, 
LicenseBased AutoBillItems will repeat the previ-
ous Billing Cycle’s Use level; UsageBased AutoBillI-
tems will be reset to zero.

Table 14-1 RatePlan Object Data Members  (Continued)

Data Member Data Type Description
© 2014 Vindicia, Inc. Table of Contents The RatePlan Object 291



CashBox 5.0: API Reference Guide RatePlan Data Members
rounding-
Decimals

integer Defines the rounding logic for returned Unit values. 

Enter the decimal place to which you wish returned values 
to be rounded. Positive numbers round to the right of the 
decimal point; negative numbers round to the left of the 
decimal point. For example, given a return of 346.26961:

0: rounds to the nearest integer. (346)

2: rounds to the nearest hundredth. (346.27)

-2: rounds to the nearest hundred. (300)

status RatePlanStatus Defines the status of the RatePlan:

Active: the Rate Plan is available for use.

Suspended: the Rate Plan is not available for use.

tier RatePlanTier An array of pricing levels used in the Rate Plan.

See the RatePlanTier Subobject.

VID string Vindicia's Globally Unique Identifier (GUID) for this object. 
When creating a new RatePlan object, leave this field 
blank; it will be automatically populated by CashBox.

Table 14-1 RatePlan Object Data Members  (Continued)

Data Member Data Type Description
© 2014 Vindicia, Inc. Table of Contents The RatePlan Object 292



CashBox 5.0: API Reference Guide RatePlan Subobjects
14.2 RatePlan Subobjects

The RatePlan object has three subobjects:

• Event Subobject

• RatedUnitSummary Subobject

• RatePlanTier Subobject

Event Subobject

Defines a single reported Rate Plan Event, including the timestamp and billing status, and 
the Account, AutoBill, AutoBillItem, or Product with which the Event is associated.

Events are associated with AutoBillItems, in that a single AutoBillItem may contain 
an array of Events, but each Event is contained in only one AutoBillItem.

When defining an Event, associate it with a single, unique AutoBillItem. The 
AutoBillItem may be identified using any combination of the following objects’ identifiers: 
Account, AutoBill, AutoBillItem, or Product. CashBox requires that at least one of 
the following three data members be specified: Account, AutoBill, or AutoBillItem. 

When an Event object is returned, CashBox will populate both the VID and the ID for each 
of the four objects listed above, from the information contained in the database for the 
specified AutoBillItem.

If, when reporting an Event, more than one AutoBillItem fits the description, CashBox 
will return an error.

Table 14-2 Event Object Values

Value Data Type Description

accountVid string Lists the VID for the Account associated with the 
Event. (Returned for Event fetches.)

amount decimal The number of Rated Units (as defined by the Rate 
Plan) used by this Event .

autoBillItem-
Vid

string Vindicia's unique name (VID) for the AutoBillItem.

Either merchantAutoBillItemId or autoBill-
ItemVid must be defined for each Event.

autoBillVid string Vindicia's unique name (VID) for the AutoBill.

billedStatus BilledStatus A read-only object of type BilledStatus, which de-
scribes whether the Event has been billed, and 
which includes one of two values:

Billed: the Event has been included in a Billing 
Statement.

Unbilled: the Event has not yet been included in 
a Billing Statement.
© 2014 Vindicia, Inc. Table of Contents The RatePlan Object 293



CashBox 5.0: API Reference Guide RatePlan Subobjects
dateReceived dateTime A read-only field which lists the date/time that Cash-
Box received the Event. 

description string Optional. A description of the Event.

merchantAc-
countId

string Lists the merchantAccountId associated with the 
Event. (Returned for Event fetches.)

merchantAuto-
BillId

string Your unique ID for the AutoBill associated with the 
Event.

merchantAuto-
BillItemId

string Your unique ID for the AutoBillItem associated 
with the Event.

Either merchantAutoBillItemId or autoBill-
ItemVid must be defined for each Event.

merchantPro-
ductId

string Your unique ID for the Product associated with the 
Event.

merchantEvent-
Id

string Optional. Your unique ID for the Event. Each 
merchantEventId must be unique. If omitted, 
CashBox will automatically populate this field.

nameValues NameValuePair Optional. An array of name-value pair items specific 
to this Event.

See Section 10: The NameValuePair Object.

productVid string Vindicia's unique name (VID) for the Product.

eventDate dateTime The date/time that the Event was (or will be) consid-
ered billable. By default, this field is populated with 
the date/time from dateReceived. Enter a different 
date if necessary.

recordMethod EventRecord-
Method

(This data member is not in use.)

VID string Vindicia's Globally Unique Identifier (GUID) for this 
object. When creating a new Event object, leave 
this field blank; it will be automatically populated by 
CashBox.

Table 14-2 Event Object Values  (Continued)

Value Data Type Description
© 2014 Vindicia, Inc. Table of Contents The RatePlan Object 294



CashBox 5.0: API Reference Guide RatePlan Subobjects
RatedUnitSummary Subobject

Provides a (temporary) summary of Event charges for a single rated AutoBillItem, 
including related information about the Item to which these charges refer. 

Note: This object does not have an associated VID because it is temporary, 
created specifically for the fetch call that requests it. The 
RatedUnitSummary object is not permanently written to the 
database, and therefore does not require a VID.

Table 14-3 RatedUnitSummary Object Values

Value Data Type Description

accountVid string Vindicia’s unique identifier for the Account.

(Returned for Event fetches.)

autoBillItem-
Vid

string Vindicia's unique identifier for the AutoBillItem.

autoBillVid string Vindicia’s unique identifier for the AutoBill.

currentTier string The Rate Plan Tier to which the summary refers. (The 
top Tier for which an Event is recorded at the moment 
of the query.)

currentTotal-
RatedUnitsBill

decimal The total current charge for the Billing Cycle, in the 
currency specified on the AutoBill.

eventCount int The number of Events included in this summary for 
this AutoBillItem.

merchantAc-
countId

string Your unique identifier for the Account.

This is a read-only field. (Returned for RatedUnit-
Summary fetches.)

merchantAuto-
BillId

string Your unique identifier for the AutoBill.

merchantAuto-
BillItemId

string Your unique identifier for the AutoBillItem.

merchantPro-
ductId

string Your unique identifier for the Product. 

merchantRate-
PlanId

string Your unique identifier for the RatePlan.

productVid string Vindicia’s unique identifier for the Product.

ratedUnit ratedUnit The name of the Rated Unit for which the summary is 
returned.
© 2014 Vindicia, Inc. Table of Contents The RatePlan Object 295



CashBox 5.0: API Reference Guide RatePlan Subobjects
RatePlanTier Subobject

The RatePlanTier object describes a single Tier of a RatePlan, including its price, 
whether to charge by individual Unit or by stepped Tier Price, and the lower limit of the Tier. 

ratedUnitTotal decimal The total number of all Rated Units included in this 
summary.

ratePlanVid string Vindicia’s unique identifier for the RatePlan.

Table 14-3 RatedUnitSummary Object Values  (Continued)

Value Data Type Description

Table 14-4 RatePlanTier Object Values

Value Data Type Description

name string Required. The descriptive name for the Tier.

ratePrice RatePlanPrice Required. An array of RatePlanPrice objects, 
which define the Price (or prices) for this Tier (one 
price for each currency used).

The RatePlanPrice object is an (amount, curren-
cy) pair, which contains two data members:

amount: the number of currency units.

currency: the ISO 4217 currency code to be 
used for this ratePrice.

chargeCustomer ChargeCustomer An object of type ChargeCustomer, which may be 
one of two types:

FlatFee: charges the customer a defined price 
per Tier.

PerUnit: charges the customer a defined price 
per Rated Unit.

FlatFee defines a stepped pricing structure, in 
which the customer is charged the ratePrice per 
Tier.

PerUnit defines a graduated pricing structure, in 
which the customer is charged the number of units 
accessed, multiplied by the ratePrice per Tier.

beginsAtLevel decimal The number of Units at which this Tier’s pricing struc-
ture takes effect. The number of Units defined for 
each Tier runs from the minimum value of the Tier, to 
one Unit less than the minimum value of the next 
higher Tier. 

Typically the first tier would have beginsAtLevel = 
1. The final, highest tier is unbounded (infinite).
© 2014 Vindicia, Inc. Table of Contents The RatePlan Object 296



CashBox 5.0: API Reference Guide RatePlan Methods
14.3 RatePlan Methods

The following table summarizes the methods for the RatePlan object.

Table 14-5 RatePlan Object Methods

Method Description

deductEvent Deducts Events from the unbilled Unit balance.

fetchAll Fetches all existing Rate Plans.

fetchByMerchantRatePlanId Fetches an existing RatePlan by its merchantRatePlanId.

fetchByVid Fetches an existing RatePlan by its VID.

fetchEventById Fetches an Event by its merchantEventId.

fetchEventByVid Fetches an Event by its VID.

fetchEvents Fetches all Events by the specified Account, AutoBill, 
RatePlan, or Product.

If none of these are specified, fetches all Events.

fetchUnbilledEvents Returns unbilled Events for the input AutoBill, Account, 
Product, or RatePlan.

If none of these are specified, fetches all unbilled Events.

fetchUnbilledRatedUnits-
Total

Returns an array of RatedUnitSummary objects, broken out by 
AutoBillItem.

recordEvent Records Events against a defined Account, AutoBill, or Au-
toBillItem.

reverseEvent Reverses one or more existing unbilled Events.

update (Vindicia best practices recommendation is to use the CashBox 
GUI interface, rather than the API, to create or update a 
RatePlan.)
© 2014 Vindicia, Inc. Table of Contents The RatePlan Object 297



CashBox 5.0: API Reference Guide deductEvent
deductEvent

The deductEvent method reduces a customer’s unbilled Event balance.

Use this method to pass in a number of Events to subtract from a customer’s balance. To 
pass in a specific, existing Event, use reverseEvent.

Input event: an array of Event objects.

Output return: an object of type Return that indicates the success or failure of the call.

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $rateplan = new RatePlan;
$event = new Event;

$event->setMerchantEventId('rating_129');
$event->setMerchantAutoBillId('ab_715');
$event->setAmount(2);

$response = $rateplan->deductEvent(array($event));
// check $response

Note: This method may not be used against a billed Event.
© 2014 Vindicia, Inc. Table of Contents The RatePlan Object 298



CashBox 5.0: API Reference Guide fetchAll
fetchAll

The fetchAll method returns all available RatePlan objects.

Input page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to display per page per call. This value must be greater 
than 0.

Output return: an object of type Return that indicates the success or failure of the call.

ratePlans: an array of returned RatePlan objects.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $rp = new RatePlan();
$page = 0;
$pageSize = 10;
do {

$ret = $rp->fetchAll($page, $pageSize);
$count = 0;
if ($ret['returnCode'] == 200) {

$fetchedPlans = $ret['ratePlans'];
$count = sizeof($fetchedPlans);
foreach ($fetchedPlans as $plan) {

// process a fetched plan here …
}

$page++;
}

} while ($count > 0);

Return Code Return String

400 Must specify page and pageSize!
© 2014 Vindicia, Inc. Table of Contents The RatePlan Object 299



CashBox 5.0: API Reference Guide fetchByMerchantRatePlanId
fetchByMerchantRatePlanId

The fetchByMerchantRatePlanId method fetches an existing RatePlan by its 
merchantRatePlanId.

Input merchantRatePlanId: your Rate Plan ID (merchantRatePlanId), which serves as the 
search criterion. (Optional.)

Output return: an object of type Return that indicates the success or failure of the call.

ratePlan: the specified RatePlan. (Optional.)

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $rateplan = new RatePlan;
$response = $rateplan->fetchByMerchantRatePlanId('rp_46');
if ($response['returnCode'] == 200) {

$fetchedRatePlan = $response['data']->ratePlan;
// process fetched RatePlan here

}

© 2014 Vindicia, Inc. Table of Contents The RatePlan Object 300



CashBox 5.0: API Reference Guide fetchByVid
fetchByVid

The fetchByVid method fetches an existing RatePlan by its VID.

Input vid: the Vindicia ID for the RatePlan you wish to fetch. 

Output return: an object of type Return that indicates the success or failure of the call.

ratePlan: the returned RatePlan. (Optional.)

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $rateplan = new RatePlan;
$response = 

$rateplan->fetchByVid('2a99928a749ac05cdc8041aee3cacedcb4b6962e');
if ($response['returnCode'] == 200) {

fetchedRatePlan = $response['data']->ratePlan;
// process fetched RatePlan here

}
// check $response
© 2014 Vindicia, Inc. Table of Contents The RatePlan Object 301



CashBox 5.0: API Reference Guide fetchEventById
fetchEventById

The fetchEventById method returns the Event for the input merchantEventId.

Input merchantEventId: your Event ID (merchantEventId), which serves as the search 
criterion.

Output return: an object of type Return that indicates the success or failure of the call.

event: the returned Event. (Optional.)

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $event = new Event;
$response = $event->fetchEventById('rating_129');

if ($response['returnCode'] == 200) {
$fetchedEvent = $response['data']->event;
// process fetched event here

}

© 2014 Vindicia, Inc. Table of Contents The RatePlan Object 302



CashBox 5.0: API Reference Guide fetchEventByVid
fetchEventByVid

The fetchEventByVid method returns the Event for the input VID.

Input vid: the Event’s VID, which serves as the search criterion.

Output return: an object of type Return that indicates the success or failure of the call.

event: the returned Event. (Optional.)

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $event = new Event;

$response = $event->fetchEventByVid(
'a5cfac6ef6da4a3b49a89011e98d5a9731104c63');

if ($response['returnCode'] == 200) {
$fetchedEvent = $response['data']->event;

// process fetched event here
}

© 2014 Vindicia, Inc. Table of Contents The RatePlan Object 303



CashBox 5.0: API Reference Guide fetchEvents
fetchEvents

The fetchEvents method returns all Events for the specified Account, AutoBill, 
Product, or RatePlan.

If no input parameters are specified, this call will return the first 50 of ALL Events in your 
CashBox system. (Default pageSize is 50.)

Input account: the Account for which Events should be fetched. 

autobill: the AutoBill for which Events should be fetched. 

product: the Product for which Events should be fetched. 

ratePlan: the RatePlan for which Events should be fetched. (Optional.)

startTimestamp: the starting timestamp (lower limit) for the range of Events you wish to 
retrieve.

endTimestamp: the ending timestamp (upper limit) for the range of Events you wish to 
retrieve. 

page: (optional) the page number, starting at 0, for which to return the results. For example, 
if the total number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: (optional) the number of records to display per page per call. This value must be 
greater than 0.

Output return: an object of type Return that indicates the success or failure of the call.

event: an array of Event objects that match the input constraints.

Returns This method returns the codes listed in Table 1: Standard Return Codes. 
© 2014 Vindicia, Inc. Table of Contents The RatePlan Object 304



CashBox 5.0: API Reference Guide fetchEvents
Example // For a specific product on a specific AutoBill
// fetch all Events on all RatePlans
// within a specific date range.

$rateplan = new RatePlan;
$response = $rateplan->fetchEvents(

null, # account
$myAutoBill, #
$myProduct, #
null, # ratePlan
'2012-03-01', # start
'2012-03-31', # end
0, # page
50, # pageSize

);
if ($response['returnCode'] == 200) {

$events = $response->['data']->event;
foreach ($events as $ev) {

print $ev->amount;
print $ev->description;
print $ev->eventDate;
print $ev->billedStatus;
print $ev->VID;

}
}

© 2014 Vindicia, Inc. Table of Contents The RatePlan Object 305



CashBox 5.0: API Reference Guide fetchUnbilledEvents
fetchUnbilledEvents

The fetchUnbilledEvents method returns the Events for the specified Account, 
AutoBill, Product, RatePlan, or combination thereof, for which the Account has not yet 
been billed.

This method returns an array of Events. For example, if you specify the AccountVid for 
the query, your return will be an array of Events, one for each rated AutoBillItem listed 
for the Account.

If no input parameters are specified, this call will return the first 50 of ALL Events in your 
CashBox system. (Default pageSize is 50.)

Input account: the Account for which Events should be fetched. 

autobill: the AutoBill for which Events should be fetched. 

product: the Product for which Events should be fetched. 

ratePlan: the RatePlan for which Events should be fetched. 

startTimestamp: the starting timestamp (lower limit) for the range of Events you wish to 
retrieve. 

endTimestamp: the ending timestamp (upper limit) for the range of Events you wish to 
retrieve. 

page: (optional) the page number, starting at 0, for which to return the results. For example, 
if the total number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: (optional) the number of records to display per page per call. This value must be 
greater than 0.

Output return: an object of type Return that indicates the success or failure of the call.

event: the array of specified Event objects.

Returns This method returns the codes listed in Table 1: Standard Return Codes. 
© 2014 Vindicia, Inc. Table of Contents The RatePlan Object 306



CashBox 5.0: API Reference Guide fetchUnbilledEvents
Example // For a specific product on a specific AutoBill
// fetch all Unbilled Events on all RatePlans
// within a specific date range.

$rateplan = new RatePlan;
$response = $rateplan->fetchUnbilledEvents(

null, # account
$myAutoBill, #
$myProduct, #
null, # ratePlan
'2012-03-01', # start
'2012-03-31', # end
0, # page
50, # pageSize

);
if ($response['returnCode'] == 200) {

$events = $response->['data']->event;
foreach ($events as $ev) {

print $ev->amount;
print $ev->description;
print $ev->eventDate;
print $ev->billedStatus;
print $ev->VID;

}
}

© 2014 Vindicia, Inc. Table of Contents The RatePlan Object 307



CashBox 5.0: API Reference Guide fetchUnbilledRatedUnitsTotal
fetchUnbilledRatedUnitsTotal

The fetchUnbilledRatedUnitsTotal method returns the total number and currency 
value for the specified unbilled Events.

Input account: the Account for which Events should be fetched. 

autobill: the AutoBill for which Events should be fetched. 

product: the Product for which Events should be fetched. 

ratePlan: the RatePlan for which Events should be fetched. 

startTimestamp: the starting timestamp (lower limit) for the range of Events you wish to 
retrieve. (Optional.)

endTimestamp: the ending timestamp (upper limit) for the range of Events you wish to 
retrieve. (Optional.)

page: (optional) the page number, starting at 0, for which to return the results. For example, 
if the total number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: (optional) the number of records to display per page per call. This value must be 
greater than 0.

Output return: an object of type Return that indicates the success or failure of the call.

ratedUnitSummary: the array of specified RatedUnitSummary objects, broken out by 
AutoBillItem.

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Note: If no input parameters are specified, this method will return the total 
for all unbilled Events in your CashBox system. Specifying any of 
the input parameters is additive, in that you may specify any 
combination of listed parameters to narrow your return.
© 2014 Vindicia, Inc. Table of Contents The RatePlan Object 308



CashBox 5.0: API Reference Guide fetchUnbilledRatedUnitsTotal
Example // For a specific product on a specific AutoBill
// fetch the array of ratedUnitSummary objects
// for all RatePlans within a specific date range.

$rateplan = new RatePlan;
$response = $rateplan->fetchUnbilledRatedUnitsTotal(

null, # account
$myAutoBill, #
$myProduct, #
null, # ratePlan
'2012-03-01', # start
'2012-03-31', # end
0, # page
50, # pageSize

);
if ($response['returnCode'] == 200) {

$summaries = $response->['data']->ratedUnitSummary;
foreach ($summaries as $sum) {

print $sum->ratedUnitTotal;
print $sum->currentTotalRatedUnitsBill;

}
}

© 2014 Vindicia, Inc. Table of Contents The RatePlan Object 309



CashBox 5.0: API Reference Guide recordEvent
recordEvent

The recordEvent method records Events against a defined Account, AutoBill, or 
AutoBillItem.

recordEvent will return an error if you attempt to pass in a negative amount.

Input event: the array of Event objects that you wish to record.

Output return: an object of type Return that indicates the success or failure of the call.

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $rateplan = new RatePlan;
$event = new Event;

$event->setMerchantEventId('rating_129');
$event->setMerchantAutoBillId('ab_715');
$event->setAmount(2);

$response = $rateplan->recordEvent(array($event));
// check $response

Note: This method is a bulk interface, which allows up to 50 Events to be 
recorded in a single call.
© 2014 Vindicia, Inc. Table of Contents The RatePlan Object 310



CashBox 5.0: API Reference Guide reverseEvent
reverseEvent

The reverseEvent method reverses an unbilled Event.

Use this method to reverse a specific Event. To simply subtract unbilled Units from a 
customer’s balance, use deductEvent.

Input event: the array of Event objects you wish to reverse.

Output return: an object of type Return that indicates the success or failure of the call.

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $rateplan = new RatePlan;

$event = new Event;
$event->setMerchantEventId('rating_129');

$response = $rateplan->reverseEvent(array($event));
// check $response

Note: This method may not be used against a billed Event.
© 2014 Vindicia, Inc. Table of Contents The RatePlan Object 311



CashBox 5.0: API Reference Guide reverseEvent
15 The Refund Object

The Refund object encapsulates the data on the funds that you returned to a customer for a 
previously conducted Transaction, in which the customer paid you for a product or service.

The Refund object in CashBox may be generated in one of two ways:

• A Refund may be issued through CashBox, to reverse a one-time or recurring 
Transaction, using either the CashBox API or Portal.

• A refund may be created to report a transaction that occurred outside the CashBox 
system, to allow Vindicia’s ChargeGuard team to effectively dispute a chargeback 
against the transaction for which you issued a refund. In this case, the refund was 
issued (and the original transaction might have occurred) outside of CashBox.
© 2014 Vindicia, Inc. Table of Contents The Refund Object 312



CashBox 5.0: API Reference Guide Refund Data Members
15.1 Refund Data Members

The following table lists and describes the data members of the Refund object. 

Table 15-1 Refund Object Data Members

Data Member Data Type Description

amount decimal A decimal representation of a monetary amount for the re-
fund. Even though amount is a financial unit, its actual 
value and meaning depend on the value you set in the 
currency data member. This amount must not exceed that 
on the Transaction for which you are issuing this re-
fund.

credit Credit A credit(s) reversed as part of the refund. This is a read-
only field.

See the Credit Subobject.

currency string The ISO 4217 currency code (see www.xe.com/
iso4217.htm) for this transaction.

merchantRefun-
dId

string A string of a maximum of 255 characters that represents 
your unique identifier for this Refund object. For refunds 
issued through the CashBox Portal, CashBox automati-
cally generates this ID, with a prefix provided Vindicia 
when CashBox was initially configured for your company. 
Vindicia recommends that you use a different prefix for 
this ID to avoid collision with CashBox-generated IDs.

note string An optional memo regarding the refund.

referenceString string The data returned from the payment processor, such as 
the latter’s ID for the refund. This field is only for refunds 
that are processed outside of CashBox, and that are re-
ported to Vindicia for chargeback processing only. For re-
funds processed through CashBox, leave this field blank.

timestamp dateTime A timestamp that specifies the date and time of the refund. 
For refunds processed through CashBox, leave this field 
blank. CashBox will fill it in the Refund object returned to 
you in response to a fetch call or the perform() call.

tokenAction RefundTokenAc-
tion

The CashBox action for handling the Token grant when 
processing the refund. Specify this attribute when issuing 
a refund for a Transaction that granted Tokens to a cus-
tomer’s Account. 

See the RefundTokenAction Subobject.
© 2014 Vindicia, Inc. Table of Contents The Refund Object 313



CashBox 5.0: API Reference Guide Refund Data Members
transaction Transaction The original Transaction to which this refund applies, 
which must have been successfully captured through 
CashBox. 

To process this Refund through CashBox, populate this 
field with the VID or your transaction ID (merchant-
TransactionId) to identify the transaction. 

If you are reporting the refund to Vindicia for chargeback 
processing only, and have already reported this transac-
tion, identify it with the merchantTransactionId. If you 
have not yet reported the Transaction with this ID, Cash-
Box creates a stub Transaction object that contains 
only the merchantTransactionId value, with the as-
sumption that the Transaction information will be complet-
ed at a later date.

See Section 18.1: Transaction Data Members.

VID string Vindicia's Globally Unique Identifier (GUID) for this object. 
When creating a new Refund object, leave this field 
blank; it will be automatically populated by CashBox.

Table 15-1 Refund Object Data Members  (Continued)

Data Member Data Type Description
© 2014 Vindicia, Inc. Table of Contents The Refund Object 314



CashBox 5.0: API Reference Guide Refund Subobject
15.2 Refund Subobject

The Refund object has one subobject: the RefundTokenAction Subobject.

RefundTokenAction Subobject

Describes the action taken on a Transaction refund, which caused a customer to be granted 
or to receive tokens. 

Table 15-2 RefundTokenAction Object Values

Value Description

CancelNegative-
Balance

Reverses the token grants made by the Transaction that is being re-
funded. If this action causes the Token balance to drop below zero, sub-
sequent Transactions will fail until the balance is positive.

CancelZeroBal-
ance

Reverses the Token grants made by the Transaction that is being re-
funded. If this action causes the token balances to drop below zero, 
CashBox sets the balance to zero.

None Leaves the token grants made by the transaction that is being refunded 
as is, as if the Transaction had not been refunded. This value is the de-
fault.
© 2014 Vindicia, Inc. Table of Contents The Refund Object 315



CashBox 5.0: API Reference Guide Refund Methods
15.3 Refund Methods

The following table summarizes the methods for the Refund object.

Table 15-3 Refund Object Methods

Method Description

fetchByAccount Returns one or more Refund objects that represent the refunds for 
the Transactions whose Account object matches the input.

fetchByTransaction Returns one or more Refund objects that are associated with the 
Transaction object specified in the input.

fetchByVid Returns a Refund object whose VID matches the input.

fetchDeltaSince Returns one or more Refund objects whose timestamp falls on or 
after the timestamp specified in the input.

perform Issues one or more refunds.

report Reports the refunds to Vindicia for chargeback processing.
© 2014 Vindicia, Inc. Table of Contents The Refund Object 316



CashBox 5.0: API Reference Guide fetchByAccount
fetchByAccount

The fetchByAccount method returns one or more Refund objects that represent refunds 
made for Transactions whose Account object matches the input. Call this method for a list 
of all the refunds that have been issued to a certain customer.

Input account: the Account object that serves as the search criterion. Use the 
merchantAccountId or VID to identify the object.

includeChildren: an optional Boolean flag that, if set to true, includes any children 
associated with this Account. If null or false, CashBox will construct the query without 
including children accounts.

Output return: an object of type Return that indicates the success or failure of the call.

refunds: an array of one or more Refund objects associated with the Transaction 
objects that are, in turn, associated with the Account object specified in the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $account = new Account();
$account->setMerchantAccountId('jdoe101');

$refund = new Refund();
$response = $refund->fetchByAccount($account);
if($response['returnCode'] == 200) {

$fetchedRefunds = $response['data']->refunds;

// process fetched refunds here
if ($fetchedRefunds != null) {

foreach ($fetchedRefunds as $fetchedRef) {
// process a fetched refund here
print "Refund VID " . $fetchedRef->getVID();
print "Refund amount ". $fetchedRef->getAmount();
print "Refund timestamp ". $fetchedRef->getTimestamp();

}
}

}

Return Code Return String

400 One of the following:

• Unable to load account to search by: No matches.
• No account specified to load refunds by!

404 Unable to load account to search by: error-description.
© 2014 Vindicia, Inc. Table of Contents The Refund Object 317



CashBox 5.0: API Reference Guide fetchByTransaction
fetchByTransaction

The fetchByTransaction method returns one or more Refund objects associated with 
the Transaction object specified in the input.

With CashBox, you can issue multiple partial refunds against a Transaction as long as 
the amount of each refund is less than the Transaction amount, and the sum of all 
refunds does not exceed the Transaction amount.

If you are reporting refunds to Vindicia for chargeback processing only, multiple partial 
refunds may have been issued, and reported, against a single Transaction. Use this method 
to return all refunds listed against a specific Transaction.

Input transaction: the Transaction object that serves as the search criterion. Identify this 
object with either its VID or your transaction ID (merchantTransactionId). 

Output return: an object of type Return that indicates the success or failure of the call.

refunds: an array of one or more Refund objects associated with the Transaction object 
specified in the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $txn = new Transaction();
$txn->setMerchantTransactionId('MRCH49229492');

$refund = new Refund();
$response = $refund->fetchByTransaction($txn);

if($response['returnCode'] == 200) {
$fetchedRefunds = $response['data']->refunds;

// process fetched refunds here
if ($fetchedRefunds != null) {

foreach ($fetchedRefunds as $fetchedRef) {
// process a fetched refund here
print "Refund VID " . $fetchedRef->getVID();
print "Refund amount ". $fetchedRef->getAmount();
print "Refund timestamp ". $fetchedRef->getTimestamp();

}
}

}

Return Code Return String

400 No transaction specified to load by!

404 Unable to load refund: No match for transaction.
© 2014 Vindicia, Inc. Table of Contents The Refund Object 318



CashBox 5.0: API Reference Guide fetchByVid
fetchByVid

The fetchByVid method returns a Refund object whose VID matches the input. 

The VID is assigned by CashBox when creating a new Refund object, in response to a 
refund issued with a report() or perform() call, or through the CashBox Portal. When 
constructing a Refund object to pass into a report() or perform()call, leave the VID 
field blank so that CashBox can assign the object a VID when it adds the object to the 
database. The VID is available in the Refund object returned to you.

Input vid: the Refund object’s Vindicia unique identifier, which serves as the search criterion.

Output return: an object of type Return that indicates the success or failure of the call.

refund: the Refund object whose VID matches the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $vid='cdbdab93f509e2bf8c6d0e7918b0cee2e03cc175'

$refund = new Refund();

$response = $refund->fetchByVid($vid);

if($response['returnCode'] == 200) {
$fetchedRef = $response['data']->refund;

// process fetched refunds here
if ($fetchedRef != null) {

print "Refund VID " . $fetchedRef->getVID();
print "Refund amount ". $fetchedRef->getAmount();
print "Refund timestamp ". $fetchedRef->getTimestamp();

}
}

Return Code Return String

400 No VID specified to load refund by.

404 One of the following: 

• Unable to load refund: No match for VID input-vid.
• Unable to load refund by VID input-vid: error-description.
© 2014 Vindicia, Inc. Table of Contents The Refund Object 319



CashBox 5.0: API Reference Guide fetchDeltaSince
fetchDeltaSince

The fetchDeltaSince method returns one or more Refund objects whose timestamp 
falls on or after the timestamp specified in the input. Limit the number of objects returned by 
specifying an upper limit on the timestamp as well, using the endTimestamp parameter.

Input timestamp: the search criterion for selecting Refund objects to be returned. The 
timestamps of those selected objects are less than or equal to this value.

endTimestamp: the end-date and timestamp. Refunds with timestamps greater than this 
value will not be returned.

paymentMethod: an optional constraint that, if included, restricts the return to only those 
Refund objects whose original Transactions were conducted with this payment method. 
Specify this parameter with either the paymentMethod VID or 
merchantPaymentMethodId.

Output return: an object of type Return that indicates the success or failure of the call.

refunds: an array of one or more Refund objects whose timestamp falls on or after 
timestamp but before endTimestamp (if specified) in the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $refund = new Refund();
$pm = null;
$startTimeStamp = '2009-11-28T12:40:51-0800';
$endTimeStamp = '2009-12-28T12:40:50-0800';

$response = $refund->fetchDeltaSince($startTimestamp,$endTimestamp, $pm);

if($response['returnCode'] == 200) {
$fetchedRefunds = $response['data']->refunds;

// process fetched refunds here
if ($fetchedRefunds != null) {

foreach ($fetchedRefunds as $fetchedRef) {
// process a fetched refund here
print "Refund VID " . $fetchedRef->getVID();
print "Refund amount ". $fetchedRef->getAmount();
print "Refund timestamp ". $fetchedRef->getTimestamp();

}
}

}

Return Code Return String

404 Unable to find payment method in database.

400 Must specify a timestamp to find refunds newer than …
© 2014 Vindicia, Inc. Table of Contents The Refund Object 320



CashBox 5.0: API Reference Guide perform
perform

The perform method enables you to issue one or more refunds for Transactions that were 
processed through CashBox. Not all CashBox Transactions are refundable. If CashBox 
cannot process some of the refunds in your input, you are informed through the return code 
in this call’s Return object. 

CashBox can refund a transaction only if it meets all of the following criteria:

• The transaction status is one of the following:

• Captured.

• Refunded (if a partial refund has occurred).

• Authorized. The Transaction is scheduled for capture but is not yet captured with 
your payment processor. Refunding such a Transaction essentially cancels it.

• AuthorizedPending or DepositRetryPending for ECP or Direct Debit-based 
transactions. Refunding such a Transaction essentially cancels it.

• The Transaction has an associated authorization response code.

• The Transaction was not paid through the Boleto Bancário payment method.

• The Transaction is not an outbound Transaction, conducted to pay a customer through 
the ECP-based payment method.

• The sum of all the Transaction’s past refunds is less than the original Transaction 
amount.

Also note that you cannot grant partial refunds if:

• The Transaction used a Token payment method that resulted in the granting of tokens 
to a customer’s Account.

• Your payment processor is GlobalCollect and the authorization code is 800, which 
means that the Transaction has been captured but not yet settled.

CashBox processes refunds submitted through this call asynchronously with your payment 
processor in batches. Because CashBox ensures that the refunds submitted are indeed 
refundable when you call perform(), payment processors rarely reject refunds accepted 
by CashBox. To monitor refund status, log into the CashBox Portal and use the Transaction 
Details page, which displays the most up-to-date status of your refund-.

Input refunds: an array of one or more Refund objects, each corresponding to a refund that you 
would like to process through CashBox. Because this call creates a Refund object in 
CashBox, leave the VID field blank. If CashBox accepts the refund for processing, it 
populates the VID field in the corresponding Refund object in the array of returned refunds.

Output return: an object of type Return that indicates the success or failure of the call.

If the return code is 200, all the Refund objects in this array have Vindicia-assigned VIDs, 
indicating that CashBox has accepted these objects for processing. A return code of 206 
indicates that only some of the Refund objects have been accepted by CashBox and 
have VIDs. The Refund objects without VIDs have been rejected by CashBox because 
they do not meet the criteria described above. Reasons for rejection are included in the 
note attribute of the Refund objects.

refunds: an array of one or more Refund objects, which corresponds to your input array.
© 2014 Vindicia, Inc. Table of Contents The Refund Object 321



CashBox 5.0: API Reference Guide perform
Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $refundVid = 'MyVindiciaRefundVID';

// Create a refund object
$refund1 = new Refund();
$refund1->setMerchantRefundId('REF101');

$transaction1 = new Transaction();
// merchant ID of a successful transaction that we wish to refund
$transaction1->setMerchantTransactionId('TX101');

$refund1->setTransaction($transaction1);
$refund1->setAmount(5.99);
$refund1->setNote('Refunding due to customer complaint about outage');

// Create another refund object
$refund2 = new Refund();
$refund2->setMerchantRefundId('REF102');

$transaction2 = new Transaction();
// merchant ID of a successful transaction that we wish to refund
$transaction1->setMerchantTransactionId('TX102');

$refund2->setTransaction($transaction2);
$refund2->setAmount(10.99);
$refund2->setNote('Customer charged twice');
$soap_refund = new Refund();
$response = $soap_refund->perform(array($refund1, $refund2));
if($response['returnCode'] == 200) {

print ("All refunds submitted successfully");
}
else if($response['returnCode'] == 206) {

$resultRefunds = $response['data']->refunds;

// process fetched refunds here
if ($resultRefunds != null) {

foreach ($resultRefunds as $resultRef) {
// process a fetched refund here
if($resultRef->getVID() != null) {

print "Refund id " 
. $resultRef->getMerchantRefundId()
. " submitted successfully";

}
else {

print "Refund id " 
. $resultRef->getMerchantRefundId()
. " was unsuccessful because "
. $resultRef->getNote();

}
}

}
}

Return Code Return String

206 Some (or all) refunds failed; check VIDs, notes.

404 Cannot refund transaction: error-description.
© 2014 Vindicia, Inc. Table of Contents The Refund Object 322



CashBox 5.0: API Reference Guide report
report

Call the report method to report refunds that were issued outside of CashBox. Use this 
method to report ChargeGuard information to Vindicia for chargeback disputes. Unlike the 
perform() call, report() does not process refunds with your payment processor, but 
simply stores the Refund objects reported in the Vindicia database.

If the Refund object passed in this call refers to a Transaction that does not exist in the 
CashBox database, this call creates and stores the Transaction there. CashBox expects 
that, as a ChargeGuard customer, if you are reporting a refund on a transaction, you have 
previously reported that transaction to Vindicia. If you have not done so, however, this call 
creates a Transaction object in CashBox according to the information you include in the 
call. 

Input refunds: an array of one or more Refund objects to report. Leave the VID attribute blank 
because CashBox will assign VIDs when creating the corresponding database records, and 
will return them to you with the Refund objects in the output.

Output return: an object of type Return that indicates the success or failure of the call.

refunds: an array of one or more Refund objects. This array corresponds to your input 
array. If the return code is 200, all Refund objects in this array have CashBox-assigned 
VIDs, because CashBox has created records in its database for each of those objects.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Note For ChargeGuard customers: If a chargeback against a transaction 
exists, be sure to report the refund you issued for it. Doing so 
automatically means that you have won the chargeback.

Return Code Return String

400 Unable to save refunds: error-description.
© 2014 Vindicia, Inc. Table of Contents The Refund Object 323



CashBox 5.0: API Reference Guide report
Example // to report a refund issued outside of CashBox

$refundVid = 'MyVindiciaRefundVID';

// Create a refund object
$refund1 = new Refund();
$refund1->setMerchantRefundId('REF101');

$transaction1 = new Transaction();
// merchant ID of a previously reported transaction
$transaction1->setMerchantTransactionId('TX101');

$refund1->setTransaction($transaction1);
$refund1->setAmount(5.99);
$refund1->setNote('Refunded due to service outage');
// Payment Processor's refund id when you processed
// this refund with it directly – if available
$refund1->setReferenceString('2033992');

// Create another refund object
$refund2 = new Refund();
$refund2->setMerchantRefundId('REF102');

$transaction2 = new Transaction();
// merchant ID of a previously reported transaction
$transaction1->setMerchantTransactionId('TX102');

$refund2->setTransaction($transaction2);
$refund2->setAmount(10.99);
$refund2->setNote('Customer did not receive delivery);

$soap_refund = new Refund();
$response = $soap_refund->report(array($refund1, $refund2));
if($response['returnCode'] == 200) {

print ("All refunds submitted successfully");
}

© 2014 Vindicia, Inc. Table of Contents The Refund Object 324



CashBox 5.0: API Reference Guide report
16 The SeasonSet Object

A SeasonSet object allows you to create groups of time intervals, which may be used with 
Billing Plans to define both Billing Cycles, and Entitlement grants.

Season Sets are best described using the CashBox user interface, rather than the API.
© 2014 Vindicia, Inc. Table of Contents The SeasonSet Object 325



CashBox 5.0: API Reference Guide SeasonSet Data Members
16.1 SeasonSet Data Members

The SeasonSet object defines an array of seasons, with an identifier.

The following table lists and describes the data members of the SeasonSet object.

Table 16-1 Token Object Data Members

Data Member Data Type Description

merchantSeason-
SetID

string Your unique ID for this SeasonSet. Free-form string 255 
characters or fewer.

nameValues NameValuePair An array of name-value pairs to associate with the Sea-
sonSet.

seasons Season An array of Seasons that make up the SeasonSet. 

The Season object contains three values:

description: your description for the Season.

startDate: its start date.

endDate: its end date.

VID string Vindicia's Globally Unique Identifier (GUID) for this object. 
When creating a new SeasonSet object, leave this field 
blank; it will be automatically populated by CashBox.
© 2014 Vindicia, Inc. Table of Contents The SeasonSet Object 326



CashBox 5.0: API Reference Guide SeasonSet Methods
16.2 SeasonSet Methods

The following table lists and summarizes the methods for the SeasonSet object. 

Table 16-2 SeasonSet Object Methods

Method Description

fetchAll Returns all SeasonSets.

fetchAllInSeason Returns all in season SeasonSets.

fetchAllOffSeason Returns all off-season SeasonSets.

fetchByMerchantSea-
sonSetId

Returns the SeasonSet specified by the input Merchant ID. 

fetchByVid Returns the SeasonSet specified by the input VID. 

fetchCurrentSeason Returns the current Season for the input SeasonSet.

fetchNextSeason Returns the next Season for the input SeasonSet.

isInSeason Returns a Boolean flag, which indicates whether the input SeasonSet is in 
season.

update Creates a new SeasonSet or updates an existing one.
© 2014 Vindicia, Inc. Table of Contents The SeasonSet Object 327



CashBox 5.0: API Reference Guide fetchAll
fetchAll

The fetchAll method returns all existing SeasonSets.

Input page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to display per page per call. This value must be greater 
than 0.

Output return: an object of type Return that indicates the success or failure of the call.

seasonSets: an array of returned SeasonSet objects.

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $ss_factory = new SeasonSet();
$page = 0;
$pageSize = 10;
do {

$ret = $ss_factory ->fetchAll($page, $pageSize);
$count = 0;
if ($ret['returnCode'] == 200) {

$fetchedSets = $ret['seasonSets'];
$count = sizeof($fetchedSets);
foreach ($fetchedSets as $set) {

// process a fetched Season Set here …
}

$page++;
}

} while ($count > 0);
© 2014 Vindicia, Inc. Table of Contents The SeasonSet Object 328



CashBox 5.0: API Reference Guide fetchAllInSeason
fetchAllInSeason

The fetchAllInSeason method returns all existing SeasonSet objects that are in season 
during the input nowDate.

Input page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to display per page per call. This value must be greater 
than 0.

nowDate: the (optional) date to query. (Defaults to today.)

Output return: an object of type Return that indicates the success or failure of the call.

seasonSets: an array of returned SeasonSet objects.

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $ss_factory = new SeasonSet();
$page = 0;
$pageSize = 10;
do {

$ret = $ss_factory ->fetchAllInSeason($page, $pageSize);
$count = 0;
if ($ret['returnCode'] == 200) {

$fetchedSets = $ret['seasonSets'];
$count = sizeof($fetchedSets);
foreach ($fetchedSets as $set) {

// process a fetched Season Set here …
}

$page++;
}

} while ($count > 0);
© 2014 Vindicia, Inc. Table of Contents The SeasonSet Object 329



CashBox 5.0: API Reference Guide fetchAllOffSeason
fetchAllOffSeason

The fetchAllOffSeason method returns all existing SeasonSet objects that are off-
season during the input nowDate.

Input page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to display per page per call. This value must be greater 
than 0.

nowDate: the (optional) date to query. (Defaults to today.)

Output return: an object of type Return that indicates the success or failure of the call.

seasonSets: an array of returned SeasonSet objects.

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $ss_factory = new SeasonSet();
$page = 0;
$pageSize = 10;
do {

$ret = $ss_factory ->fetchAllOffSeason($page, $pageSize);
$count = 0;
if ($ret['returnCode'] == 200) {

$fetchedSets = $ret['seasonSets'];
$count = sizeof($fetchedSets);
foreach ($fetchedSets as $set) {

// process a fetched Season Set here …
}

$page++;
}

} while ($count > 0);
© 2014 Vindicia, Inc. Table of Contents The SeasonSet Object 330



CashBox 5.0: API Reference Guide fetchByMerchantSeasonSetId
fetchByMerchantSeasonSetId

The fetchByMerchantSeasonSetId method returns an existing Season object that 
matches the input merchantSeasonSetId.

Input merchantSeasonSetId: the input SeasonSet ID.

Output return: an object of type Return that indicates the success or failure of the call.

seasonSet: the returned SeasonSet object.

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $ss_factory = new SeasonSet();
$response - $ss_factory->fetchByMerchantSeasonSetId ('Summer Volleyball');

// check $response

$volleyball seasonSet = $response['Season Set'];
© 2014 Vindicia, Inc. Table of Contents The SeasonSet Object 331



CashBox 5.0: API Reference Guide fetchByVid
fetchByVid

The fetchByVid method returns an existing SeasonSet object that matches the input 
VID.

Input vid: the Vindicia ID to query.

Output return: an object of type Return that indicates the success or failure of the call.

seasonSet: the returned SeasonSet object.

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $ss = new SeasonSet();
$response = 

$ss->fetchByVid('8367ae7148d071a4e25c24bef856f68f71ee03e3');

// check $response

$seasonSet = $response['seasonSet'];
print "got SeasonSet " . $seasonSet->name() . "\n";
© 2014 Vindicia, Inc. Table of Contents The SeasonSet Object 332



CashBox 5.0: API Reference Guide fetchCurrentSeason
fetchCurrentSeason

The fetchCurrentSeason method returns the current Season for the input SeasonSet.

Input seasonSet: the SeasonSet object to query.

nowDate: the (optional) date to query. (Defaults to today.)

Output return: an object of type Return that indicates the success or failure of the call.

season: the current Season, or null if not currently in season.

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $ss = new SeasonSet();
$response = $ss->fetchCurrentSeason();

// check $response

$season = $response['season'];
© 2014 Vindicia, Inc. Table of Contents The SeasonSet Object 333



CashBox 5.0: API Reference Guide fetchNextSeason
fetchNextSeason

The fetchNextSeason method returns the next Season for the input SeasonSet.

Input seasonSet: the SeasonSet object to query.

nowDate: the (optional) date to query. (Defaults to today.)

Output return: an object of type Return that indicates the success or failure of the call.

season: the next Season, or null if none exist.

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $ss = new SeasonSet();
$response = $ss->fetchNextSeason();

// check $response

$season = $response['season'];
© 2014 Vindicia, Inc. Table of Contents The SeasonSet Object 334



CashBox 5.0: API Reference Guide isInSeason
isInSeason

The isInSeason method returns a Boolean flag which indicates whether the input 
SeasonSet is in season.

Input seasonSet: the SeasonSet object to query.

nowDate: the (optional) date to query. (Defaults to today.)

Output return: an object of type Return that indicates the success or failure of the call.

inSeason: true if the SeasonSet is in season; false if it is not.

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example # Given $my_ss, which we want to ask about:
$ss_factory = new SeasonSet();
$response = $ss_factory->isInSeason($my_ss);

// check $response

if($response['inSeason']) {
print "My Season Set has a Season that is in effect now.";

} 

else {
print "My Season Set has no Season that is in effect now.";

}

Note: This method will return all Season Sets which include a Season 
which is currently active. This method will not return any Season 
Sets which are currently off-season, even if that set includes a 
Season which will be active in the future.
© 2014 Vindicia, Inc. Table of Contents The SeasonSet Object 335



CashBox 5.0: API Reference Guide update
update

The update method creates a new, or updates an existing SeasonSet object.

To create a SeasonSet object, initialize the object, set the values for its data members, and 
then call the update method to store the changes in the Vindicia database. Do not set a 
value for VID; CashBox automatically generates a VID when you call update(). When 
updating an existing SeasonSet object, identify it with either its VID or your SeasonSet ID 
(merchantSeasonSetId).

Input seasonSet: the SeasonSet object to create or update. To update an existing SeasonSet 
object, identify it with either its VID or your SeasonSet ID (merchantSeasonSetId). If you 
specify a new value for merchantSeasonSetId, CashBox will create a new SeasonSet.

Output return: an object of type Return that indicates the success or failure of the call.

seasonSet: the SeasonSet object that was created or updated.

created: returns true if a new object was created; false if an existing object was updated.

Returns This method returns the codes listed in Table 1: Standard Return Codes. 

Example $summer_ss = new SeasonSet();
$summer_ss->setMerchantSeasonSetId('Summers');

$s2013 = new Season();
$s2013->setStartDate('2013-06-22');
$s2013->setEndDate('2013-09-22');

$s2014 = new Season();
$s2014->setStartDate('2014-06-21');
$s2014->setEndDate('2014-09-20');

$summer_ss->setSeasons(array($s2013, $s2014));

$ss_factory = new SeasonSet();
$response = $ss_factory->update($summer_ss);
// check $response
© 2014 Vindicia, Inc. Table of Contents The SeasonSet Object 336



CashBox 5.0: API Reference Guide update
17 The Token Object

A Token object represents a metering or virtual-currency unit of a certain type, which is 
identified by the object’s unique ID (merchantTokenId).

Token objects enable you to define a credit system in your application without conducting 
actual monetary transactions. For example, a cell-phone company can use a Token object 
to represent a one-minute phone call; an online game company can have a Token object 
represent a player’s game time, and another Token object represent virtual goods. An 
airline might use a Token object to represent 1000 frequent-flier miles earned by a 
customer.

Token objects are meaningful when associated with Account objects. A certain number of 
Token objects of a certain type associated with an Account object define the customer’s 
credit recognized by your application and allow the customer access to resources within the 
application.

With a TokenAmount object (see the Account object), you can couple a token type with a 
quantity, and then associate various token amounts with an Account. For example:

• While creating an Account object, populate its tokenBalances attribute with 
TokenAmount objects to grant Tokens of various types to the customer. The Account 
object supports incrementTokens() and decrementTokens() calls, which allow 
you to manipulate the quantities of token types. To grant or revoke tokens owned by an 
Account object, you may also conduct a token-based Transaction with the object’s 
tokenTransaction() call. For more information, see Section 1: The Account Object.

• You may also define one or more TokenAmount objects on a Product object. When a 
customer acquires a product through an AutoBill instance, CashBox adds the Token 
amounts defined on the Product to the customer’s Account. For more information, see 
Section 13: The Product Object.

Because Token objects are meaningful only when attached to Account objects, most of the 
token-related methods are defined on the Account object. The Token object itself offers 
methods only for creating new token types and for fetching tokens.
© 2014 Vindicia, Inc. Table of Contents The Token Object 337



CashBox 5.0: API Reference Guide Token Data Members
17.1 Token Data Members

The following table lists and describes the data members of the Token object.

Table 17-1 Token Object Data Members

Data Member Data Type Description

description string Optional. A description of this token type in your applica-
tion.

merchantTokenId string Required. Your unique identifier for this Token object. 
This ID is also referred to as the token type. For example, 
an airline might identify a Token object with the ID 
FREQ_FLIER_MILES_2010 to denote the number of fre-
quent-flier miles accumulated by a customer account in 
2010. 

A cell-phone company might use 
ANYTIME_PHONE_MINUTES to identify Token objects 
that specify a customer’s balance of anytime minutes.

VID string Vindicia's Globally Unique Identifier (GUID) for this object. 
When creating a new Token object, leave this field blank; 
it will be automatically populated by CashBox.
© 2014 Vindicia, Inc. Table of Contents The Token Object 338



CashBox 5.0: API Reference Guide Token Methods
17.2 Token Methods

The following table lists and summarizes the methods for the Token object. 

Table 17-2 Token Object Methods

Method Description

fetch Returns an existing Token object.

update Creates or updates a Token object.
© 2014 Vindicia, Inc. Table of Contents The Token Object 339



CashBox 5.0: API Reference Guide fetch
fetch

The fetch method returns an existing Token object that matches your token ID 
(merchantTokenId) or the VID for the object as specified in the input.

Input token: the Token object that serves as the search criterion. Identify this object with either its 
VID or your token ID (merchantTokenId).

Output return: an object of type Return that indicates the success or failure of the call.

token: the returned Token object.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $soapCaller = new Token();

$tok = new Token();
$tok->setMerchantTokenId("ANY_TIME_PHONE_MINUTES");
$response = $tok->fetch();

if($response['returnCode'] == 200) {
$fetchedToken = $response['data']->token;
print "Fetched token with id: " . 

$fetchedToken->merchantTokenId . " and VID: ";
print $fetchedToken->VID . " and description: " . 

$fetchedToken->description;
print "\n";

}

Return Code Return String

400 No token specified to load!
© 2014 Vindicia, Inc. Table of Contents The Token Object 340



CashBox 5.0: API Reference Guide update
update

The update method creates or updates a Token object.

To create a Token object, initialize the object, set the values for its data members, and then 
call the update method to store the changes in the Vindicia database. Do not set a value 
for VID; CashBox automatically generates a VID when you call update. When updating an 
existing Token object, identify it with either its VID or your token ID (merchantTokenId).

Input token: the Token object to create or update. To update an existing Token object, identify it 
with either its VID or your token ID (merchantTokenId). If you specify a new value for 
merchantTokenId, CashBox will create a new Token type.

Output return: an object of type Return that indicates the success or failure of the call.

token: the updated or created Token object.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $soapCaller = new Token();

$tok = new Token();
$tok->setMerchantTokenId("ANY_TIME_PHONE_MINUTES");
$tok->setDescription("Any time phone minutes for 2010");

// Make the SOAP call to create the token
$response = $tok->update();
if($response['returnCode'] == 200) {

print "Created token type with id " . 
$tok->merchantTokenId . " and vid ";

print $response['token']->VID . "\n";
}

Return Code Return String

400 Unable to save token: error-description.

501 Error-description.
(Returned if the call cannot map the SOAP Token object to CashBox’s 
database representation of the token.)
© 2014 Vindicia, Inc. Table of Contents The Token Object 341



CashBox 5.0: API Reference Guide update
18 The Transaction Object

The Transaction object encapsulates information about a financial transaction processed 
through CashBox. In addition to standard transaction content, such as customer information 
(Account), payment information (PaymentMethod), line items (TransactionItem), and 
amount, this object contains a rich set of attributes that support CashBox services.

A Transaction object might represent a financial transaction conducted through CashBox 
for recurring or one-time billing, or one conducted outside of CashBox, but reported to 
Vindicia for chargeback dispute through ChargeGuard. Please note that Refund objects, 
rather than Transaction objects encapsulate information on refunds to your customers.

CashBox processes Transaction objects with your payment processor and updates their 
status during the process. The Transaction object includes an array of 
TransactionStatus subobjects that form a log of statuses through the Transaction 
processing sequence.

When migrating a Transaction to CashBox, be certain to include the latest or final status 
information within the Transaction object (such as the reason code returned by your 
payment processor). The status cycle of a Transaction object and the reason codes will 
vary, depending on the payment method and your processor. 

A Transaction object might also represent a potential, rather than a completed, financial 
transaction. For example, you may score a Transaction and screen it for fraud risk before 
moving funds through your payment processor. (For more information on risk screening, see 
Chapter 14: Common ChargeGuard Programming Tasks in the CashBox Programming 
Guide.) If the scoring result reflects a high fraud probability, you might decide to abandon 
the Transaction, in which case the corresponding Transaction object remains in CashBox 
in the New status, which means that it was never processed. 

When Vindicia downloads chargebacks from your payment processor for ChargeGuard, it 
matches them to your transactions in its database. If you have conducted one of those 
transactions outside of Vindicia but have not yet migrated it, CashBox creates a stub 
Transaction object in its database with the Transaction information in the chargeback 
that was downloaded. After you’ve reported that transaction to CashBox, the object is 
populated with the remaining information.

The following table lists and describes cases in which a Transaction object should be used.

Note: The "Transaction Types" listed in this table are not formal types, but 
simply general classifications.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 342



CashBox 5.0: API Reference Guide update
Table 18-1 Uses for the Transaction Object

Transaction 
Type

Description Initiated 
By

Transaction API Call

Migrated Transactions generated by a billing system other than 
CashBox, that have been migrated into CashBox by 
either the AutoBill.migrate or Transac-
tion.migrate calls. Once imported, these Trans-
actions will behave as if they were Recurring/Real-
time Transactions generated within CashBox.

You, the 
merchant

AutoBill.migrate
Transaction.migrate

Real-time (one-
time)

A one-time purchase by a customer. CashBox autho-
rizes this transaction with your payment processor in 
real time in response to your call. Depending on the 
call, the transaction may be captured with the pay-
ment processor later in batch mode. A captured 
transaction means that monies will be exchanged. 
This type of transaction goes through status changes 
until it is eventually captured.

You, the 
merchant

Transaction.auth()
Transaction.capture()
Transaction.authCap-
ture()

Recurring billing Periodic transactions generated by CashBox for an 
instance of an AutoBill object. These are recurring 
transactions for a customer’s subscription, with the 
frequency, amount, and other content determined by 
the Product and BillingPlan objects in the Au-
toBill object. To create an AutoBill instance for 
a customer’s subscription, either make an API call, or 
create the instance on the CashBox Portal. CashBox 
captures these transactions in batch mode. The sta-
tus of the entitlements offered by the corresponding 
AutoBill object depends on whether the transac-
tion is captured successfully.

CashBox None. An active AutoBill 
object must exist.

Reported A transaction conducted outside of CashBox, and re-
ported to Vindicia for chargeback dispute. CashBox 
does not process this transaction with a payment pro-
cessor, nor does the transaction go through changes 
in status.

You, the 
merchant

Transaction.report()
Transaction.score()

Stub A transaction with minimal data. If you are a Charge-
Guard customer, Vindicia downloads your charge-
backs from your payment processor and matches 
them to their corresponding Transactions in the Vindi-
cia database to capture all information available for 
chargeback disputes. 

If the original transaction is not in the database (was 
conducted outside of CashBox but not yet migrated), 
CashBox creates a stub Transaction object that 
contains the minimal data obtained from the charge-
back, and stores the object in the database. 

Once you have migrated the transaction, CashBox 
will enter the missing details.

Indirectly by 
you, the 
merchant

None.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 343



CashBox 5.0: API Reference Guide update
When creating and processing a Transaction object through CashBox, reporting it to 
Vindicia for ChargeGuard, or scoring it for risk screening, be sure to include all related 
information. The more detail you provide, the more effective Vindicia will be in disputing 
chargebacks on your behalf should they occur.

Validation A transaction to validate a payment method. When 
you make an API call or perform a task on the Cash-
Box Portal to validate a payment method, CashBox 
generates a Transaction that uses that payment 
method for an amount of one currency unit (US$1 if 
the payment method specifies USD as the currency), 
and authorizes it with your payment processor. 

If the Transaction is authorized, the payment method 
is considered valid, and the transaction status be-
comes AuthorizedForValidation; if not, the sta-
tus is Cancelled.

Not all payment methods may be validated this way. 
(See Section 11: The PaymentMethod Object for de-
tails.) Because CashBox only authorizes such a 
transaction with your processor but never captures it, 
the customer is not charged for the transaction. 

CashBox None.

Table 18-1 Uses for the Transaction Object  (Continued)

Transaction 
Type

Description Initiated 
By

Transaction API Call
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 344



CashBox 5.0: API Reference Guide Transaction Data Members
18.1 Transaction Data Members

The following table lists and describes the data members of the Transaction object. 

Table 18-2 Transaction Object Data Members

Data Member Data Type Description

account Account The Account object that represents the customer to which this Trans-
action object applies. 

See Section 1.2: Account Data Members.

amount decimal Required. The monetary amount for this Transaction object, that is, 
the total cost of one or more line items purchased. When you process 
the transaction through CashBox by calling auth or authCapture, 
CashBox fills in this attribute based on the total of the line items (see the 
TransactionItem attributes) added to the transaction. When report-
ing the transaction to Vindicia, ensure that the transaction amount 
matches the total of the line items.

For CashBox-generated Transactions, this field is automatically gener-
ated.

autoBillCycle int The AutoBill Billing Cycle during which this Transaction occurred.

billingPlan-
Cycle

int The zero-based number of times the AutoBill has been billed for the cur-
rent Billing Plan. One-time transactions will have the same value as the 
most recent recurring billing event, as determined by the AutoBill and its 
BillingPlan.

Note: This data member will increment for free cycles.

billingState-
mentIdentifier

string The string that is displayed on a customer’s billing statement. For one-
time transactions, CashBox supports this value for only certain payment 
processors. Because this value and its format are constrained by your 
payment processor, consult with Vindicia Client Services before setting 
its value. 

If GlobalCollect, MeS, Chase Paymentech or Litle is your payment pro-
cessor, see Appendix A: Custom Billing Statement Identifier Require-
ments in the CashBox Programming Guide.

currency string The ISO 4217 currency code (see www.xe.com/iso4217.htm) for this 
Transaction object. The default is USD. To determine the actual 
monetary value, set the values for both amount and currency.

destPayment-
Method

PaymentMethod The payment method for  deposits to a customer account for this 
Transaction object. This field is used to make outbound ECP pay-
ments or transfers.

See Section 11.1: PaymentMethod Data Members.

divisionNumber string The number of your division or group with your payment processor for 
this Transaction. Chase Paymentech refers to this number as the Divi-
sion Number; Litle calls it the Report Group; MeS calls it the Profile ID. 
Do not specify this attribute for one-time transactions.

If you subscribe to ChargeGuard, complete this field when reporting 
transactions to CashBox. CashBox will use this value to match the 
Transaction to the appropriate chargeback from the payment processor.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 345



CashBox 5.0: API Reference Guide Transaction Data Members
ecpTransaction-
Type

ECPTransaction-
Type

The ECP transaction mode for the Transaction object, for example, 
Inbound or Outbound. If this value is Outbound or Transfer, you 
must set a value for destPaymentMethod. Specify this attribute for 
ECP-based transactions only.

merchantAffili-
ateId

string Optional. Your unique identifier for the partner or affiliate who directed 
this Transaction object to you. Track this information if, for example, 
you pay a service fee to affiliates who generate business and revenue 
for you. To implement affiliate tracking, fill in this attribute when report-
ing or processing one-time Transactions through CashBox. For recur-
ring transactions, CashBox fills in this attribute if it is specified in the 
corresponding AutoBill object.

merchantAffili-
ateSubId

string Optional. Your sub-ID for (and additional information on) the partner or 
affiliate who directed this Transaction to you. To implement affiliate 
tracking, fill in this attribute when reporting or processing one-time 
transactions through CashBox. For recurring Transactions, CashBox 
fills in this attribute if it is specified in the corresponding AutoBill ob-
ject.

merchantTrans-
actionId

string Your unique identifier for this Transaction object. CashBox automati-
cally generates this value for rebilling transactions with the prefix you 
specified during initial configuration. Vindicia recommends that this pre-
fix differ from the one specified for recurring transactions.

For real-time transactions that you authorize or capture by making a call 
to CashBox, for example, with Transaction.capture(), you must 
fill in this attribute.

If you are reporting this transaction to Vindicia for ChargeGuard only, 
ensure that this ID matches the order number you sent to the payment 
processor. That way, ChargeGuard can match this transaction with a 
chargeback received for this transaction from the processor.

Table 18-2 Transaction Object Data Members  (Continued)

Data Member Data Type Description
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 346



CashBox 5.0: API Reference Guide Transaction Data Members
nameValues NameValuePair[] Optional. An array of name–value pairs, which are useful in tracking 
the associated AutoBill object.

CashBox provides four name-value pairs for use with European Direct 
Debit (EDD) payment methods:

Use name vin:MandateFlag and value 1 to associate the EDD 
Payment Method with the AutoBill. 

Use name vin:MandateVersion and value 1.0.1, to associate a 
mandate document of version 1.0.1 with the object. 

Use name vin:MandateID to pass the Mandate ID field of the 
EDD Extension record to Chase Paymentech.

Use name vin:MandateApprovalDate to pass the Signature 
Date field of the EDD Extension Record to Chase Paymentech.

Note: All name-value pairs included with the Transaction-generating 
AutoBill will be automatically copied to the resultant Transaction.

The following name-value pairs are automatically populated by Cash-
Box for AutoBill-generated Transactions:

• vin:AutoBillVID: the VID of the AutoBill for which this 
Transaction was generated.

• vin:ignoreCredits: if set to true, specifies that 
Transaction.auth, Transaction.capture, and 
Transaction.authCapture calls ignore Credits available on an 
Account to pay for a one-time purchase. If set to false, these calls 
will use available credits for the Transaction. (This name-value pair 
enables customers to make purchases, without using available 
Credits to pay for them.)

• vin:MerchantAutoBillIdentifier: your unique ID for the 
AutoBill for which this Transaction was generated.

• vin:RetryNumber: the attempt number (in retry cycles) of the 
Transaction.

• vin:Type: the type of Transaction. CashBox will automatically 
populate this name-value pair with value = modify for Transactions 
which are the result of a Transaction.modify call.

See Section 10: The NameValuePair Object.

note string An optional description of the Transaction object. 

originalAmount decimal In the event of a partial payment, this read-only field reflects the original 
amount of the Transaction, as a decimal value.

paymentProces-
sor

string The payment processor for this Transaction object. This string will be 
available to you in the Transaction object CashBox returns to you in 
response to your call.

Note: If CashBox handles the billing, do not fill in this field. 

preferredNoti-
ficationLan-
guage

string The language (specified as an ISO language string) CashBox uses in 
email notifications when creating a real-time (one-time) Transaction 
(see the authCapture method), assuming that a template for this lan-
guage and the email notification type have been uploaded to the Cash-
Box database as part of your configuration. This value overrides any 
language setting in the Account object for this transaction.

Table 18-2 Transaction Object Data Members  (Continued)

Data Member Data Type Description
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 347



CashBox 5.0: API Reference Guide Transaction Data Members
previousMer-
chantTransac-
tionId

string Your unique identifier for a previous transaction referenced by this 
Transaction object.

salesTaxAddress Address The corrected billing or shipping address CashBox uses to calculate 
sales tax for this Transaction object. CashBox fills it in automatically. 
This field is optional for migrated transactions.

Note: If CashBox calculates sales tax for you, leave this field empty.

See Section 3.1: Address Data Members.

shippingAddress Address Optional. The customer’s shipping address for this Transaction ob-
ject. For one-time transactions, CashBox uses this address first to cal-
culate taxes, if any, that are to be added to this transaction’s total.

See Section 3.1: Address Data Members.

sourceIp string Optional. The IP address from which this Transaction object origi-
nated. This attribute is required for reporting transactions for Charge-
Guard, and for scoring transactions for risk screening. With this 
information, CashBox can pinpoint the geographical location at which 
the transaction was made. For CashBox-generated recurring transac-
tions, this is the IP address specified on the corresponding AutoBill 
object.

sourceMac-
Address

string Optional. The Media Access Control (MAC) address of the customer 
computer or router, from which this Transaction object originated. 
This information can be useful in chargeback disputes. 

sourcePayment-
Method

PaymentMethod The payment method through which this Transaction object will de-
duct funds. CashBox uses this payment method for actual billing. For 
one-time transactions, except for outbound ECP-based, specify this at-
tribute. If the payment method is not already attached to the account for 
this Transaction object, CashBox attaches it when saving this object 
in the database. To turn off this behavior, set the PaymentMethod ob-
ject’s active attribute to false.

For one-time transactions, if shippingAddress is not specified on the 
Transaction object, CashBox uses the billing address specified on 
the payment method for calculating taxes, if any.

For recurring transactions generated by CashBox, this attribute is the 
PaymentMethod object associated with the corresponding AutoBill 
object.

When reporting a transaction for ChargeGuard, partially mask the pay-
ment method’s data members, for added security.

See Section 11.1: PaymentMethod Data Members.

sourcePhoneNum-
ber

string Optional. The phone number from which this Transaction object 
originated. This information may be useful in chargeback disputes.

Table 18-2 Transaction Object Data Members  (Continued)

Data Member Data Type Description
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 348



CashBox 5.0: API Reference Guide Transaction Data Members
statusLog TransactionSta-
tus()

An array of the statuses this Transaction object has gone through, 
with the first entry being the most recent status. Each Transaction-
Status object contains a CashBox enumerated status type (for exam-
ple, Authorized or Captured) and the responses from the payment 
processor, depending on how CashBox processed the Transaction. 
You need not specify this attribute when creating Transaction objects 
for risk screening.

Because CashBox sets this value for real-time (one-time) transactions, 
leave this field empty when creating a Transaction object to be pro-
cessed through CashBox. When your API call completes, CashBox re-
turns to you the Transaction object with this attribute filled in. Be sure 
to examine this attribute in the returned object to verify that the transac-
tion has been approved by the payment processor.

For recurring transactions, CashBox sets this attribute when capturing 
the transaction with the payment processor.

When reporting transactions for ChargeGuard, specify a value for this 
field. After status updates, report the transaction again and include the 
reason codes (auth codes or other return codes) received from the 
payment processor.

See the TransactionStatus Subobject. 

taxExemptions TaxExemption An array of tax exemptions to be applied by CashBox to this Transac-
tion object. Specify this attribute for one-time transactions for which 
CashBox calculates and adds applicable taxes, if any, and adjusts the 
total transaction amounts accordingly. 

See the TaxExemption Subobject.

timestamp dateTime A timestamp that specifies the date and time of when this transaction 
occurred. CashBox sets this value for one-time and recurring transac-
tions. Be sure to include this attribute in migrated transactions; other-
wise, it defaults to the current time.

transaction-
Items

TransactionItem A TransactionItem array that lists the line items that comprise this 
Transaction object. Each item is a separate data structure of type 
TransactionItem. 

For migrated transactions, CashBox does not validate that the subitem 
amounts listed here add up to the total transaction amount (see the 
amount attribute).

For one-time transactions, CashBox adds the subitem amounts and 
sets this Transaction object’s amount attribute. CashBox also adds 
applicable taxes, such as city tax and state tax, as subitems.

For CashBox-generated recurring transactions, this attribute consists of 
a TransactionItem that refers to the Product object on the corre-
sponding AutoBill object and the applicable tax items.

To add sales tax when migrating transactions, include the tax as a line 
item here.

See the TransactionItem Subobject.

userAgent string Optional. Your customer’s user agent from whom this Transaction orig-
inated.

Table 18-2 Transaction Object Data Members  (Continued)

Data Member Data Type Description
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 349



CashBox 5.0: API Reference Guide Transaction Data Members
verification-
Code

string The response from a payment verification system, for example, Visa 
(VbV) or MasterCard SecureCode, for this Transaction object. If you 
report transactions to Vindicia for ChargeGuard, populate this field with 
the information on the payment verification performed while conducting 
this transaction.

VID string Vindicia’s unique identifier for this Transaction object. When creating 
a Transaction object, leave this field empty. Vindicia assigns it a VID 
when saving the object in the database and make the VID available in 
the Transaction object returned to you in response to your call. After-
wards, you can refer to the object by specifying either the VID or mer-
chantTransactionId.

Note: In the absence of an existing VID or merchantTransactionId, 
Vindicia treats a Transaction object as a new object for any API call, 
and assigns the object a new VID.

Table 18-2 Transaction Object Data Members  (Continued)

Data Member Data Type Description
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 350



CashBox 5.0: API Reference Guide Transaction Subobjects
18.2 Transaction Subobjects

The Transaction object has several subobjects: 

• AVSMatchType Subobject

• MigrationTaxItem Subobject

• MigrationTransaction Subobject

• MigrationTransactionItem Subobject

• MigrationTransactionType Subobject

• TransactionItem Subobject

• TransactionStatus Subobject

• TransactionStatusBoleto Subobject

• TransactionStatusCreditCard Subobject

• TransactionStatusECP Subobject

• TransactionStatusHostedPage Subobject

• TransactionStatusPayPal Subobject

• TransactionStatusType Subobject

• TransactionValidationResponse Subobject

AVSMatchType Subobject

Defines the AVS Match type.

Table 18-3 AVSMatchType Object Data Members

Data Members Data Type Description

FullMatch string The billing address from the customer matches the 
one on file with the bank.

IssuerError string The payment processor or card issuer has returned 
an error. For credit-card-based transactions, you may 
retrieve the payment processor’s response code from 
the creditCardStatus attribute.

NoMatch string The billing address from the customer does not 
match the one on file with the bank.

NoOpinion string CashBox cannot classify a new AVS return code from 
the payment processor, and will update its database 
to classify this code for future transactions. For credit-
card-based transactions, you may retrieve the pay-
ment processor’s response code from the credit-
CardStatus attribute.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 351



CashBox 5.0: API Reference Guide Transaction Subobjects
MigrationTaxItem Subobject

Defines a tax line-item in a MigrationTransactionItem. 

MigrationTransaction Subobject

Defines a Transaction migrated to CashBox from a different billing system. 

NotSupported string The AVS match type requested is not supported.

PartialMatch string The billing address from the customer partially match-
es the one on file with the bank. For credit-card-
based transactions, you may retrieve the payment 
processor’s actual response code from the credit-
CardStatus attribute.

Table 18-3 AVSMatchType Object Data Members  (Continued)

Data Members Data Type Description

Table 18-4 MigrationTaxItem Object Data Members

Data Members Data Type Description

amount decimal Tax amount in the currency of the overall transaction.

jurisdiction string Sales tax jurisdiction for the Transaction.

name string Sales tax name.

Table 18-5 MigrationTransaction Object Data Members

Data Members Data Type Description

account Account The Account associated with this Transaction. If 
this migrationTransaction is included in an Au-
toBill migration request, the Account on the Auto-
Bill will be used instead of this field. 

When calling AutoBill.migrate, the Account on 
the AutoBill passed in will be associated with all of 
the Transactions created. When calling Trans-
action.migrate, the Account on the 
MigrationTransaction object will be used. In 
both cases, you may create Accounts on the fly by 
passing in an Account that does not yet exist in 
CashBox. 

amount decimal Required. The amount of the transaction, as a deci-
mal.  Must be non-negative, and add up to the total 
value of the all the associated TransactionItems . 
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 352



CashBox 5.0: API Reference Guide Transaction Subobjects
autoBillCycle int Required. The billing sequence number for the 
Transaction within the life of the AutoBill. (Note: The 
first CashBox billing = 0.) 

billingDate dateTime Required. The AutoBill’s Billing Plan Period start 
date/time associated with the Transaction. 

billingPlan-
Cycle

int Required. The billing sequence for the Transaction 
within the specified Billing Plan. 

currency string Required. The ISO 4217 currency code used for this 
Transaction. Defaults to USD if not specified. 

divisionNumber string The division or group with which this Transaction 
should be associated with your payment processor. 
Chase Paymentech refers to this number as the Divi-
sion Number; Litle calls it the Report Group; MeS 
calls it the Profile ID.

merchantAffil-
iateId

string Optional. Your ID (a free-form string of 128 charac-
ters or less) for the affiliate that submitted this 
Transaction object, if any.

merchantAffil-
iateSubId

string Optional. Your ID (a free-form string of 128 charac-
ters or less) for the sub-affiliate that submitted this 
Transaction object, if any.

merchantBill-
ingPlanId

string Required. Your unique identifier for the Billing-
Plan associated with this Transaction. The Billing-
Plan must exist within CashBox prior to migrating 
Transactions that reference it. This field is required 
for Transactions included in an AutoBill.migrate 
request. 

For more information, see Section 5: The BillingPlan 
Object.

merchantTrans-
actionId

string Optional. Your unique identifier for the Transaction (a 
free-form string of 128 characters or less, with no val-
idation) . If not specified, this field will be populated by 
CashBox.

Note: For PayPal transactions, this value must be the 
INVNUM or INVOICEID field sent to PayPal for the 
transaction.

migration-
Transaction-
Items

Migration-
Transaction-
Item

Required. An array of MigrationTransaction-
Items included with the Transaction.

For more information, see the Migration-
TransactionItem Subobject.

Table 18-5 MigrationTransaction Object Data Members  (Continued)

Data Members Data Type Description
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 353



CashBox 5.0: API Reference Guide Transaction Subobjects
nameValues NameValuePair An optional array of name-value pairs you wish to as-
sociate with the Transaction.

Transactions generated as a result of the Auto-
Bill.modify call will include a name-value pair 
with name vin:type and value modify.

See Section 10: The NameValuePair Object.

paymentMethod PaymentMethod Required. The Payment Method (e.g., a credit card) 
used for this Transaction.

paymentProces-
sor

string The payment processor for this Transaction.

Possible values include FDMS, GlobalCollect, In-
Comm, Litle, MeS, Orbital, PayFlowPro, PayPal, Pay-
mentech, and Other.

If the Payment Processor is not supported by Cash-
Box, the migrationTransaction will be imported, 
but other actions (i.e. refunds) will not be supported. 
If a value is not provided for this field, then CashBox 
will attempt to deduce the Payment Processor from 
your routing rules. 

payment-
Processor-
TransactionId

string The identifier assigned to this Transaction by your 
Payment Processor.

preferredNoti-
ficationLan-
guage

string Optional. The language (specified as an ISO lan-
guage string) for CashBox to use in email notifica-
tions for this Transaction. This value overrides any 
language setting in the Account object for this trans-
action.

retryNumber integer Optional. 0-based index indicating the billing attempt 
for a given Billing Period. For example, if this is the 
first billing attempt for a given Billing Period, the value 
will be 0.  If the first billing attempt fails, and a second 
Transaction is attempted for the same Billing Period, 
the value will be 1.

If the migrationTransaction is included in an 
AutoBill.migrate request, but retryNumber is 
not specified, this field will default to 0. 

salesTaxAd-
dress

Address The address used to calculate sales tax on this trans-
action. This field should be included if you include 
taxes in the Transaction. 

shippingAd-
dress

Address Optional. The shipping address for this Transac-
tion object. 

Note: While optional, this field is useful in resolving 
chargebacks.

See Section 3.1: Address Data Members.

Table 18-5 MigrationTransaction Object Data Members  (Continued)

Data Members Data Type Description
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 354



CashBox 5.0: API Reference Guide Transaction Subobjects
sourceIp string Optional. The IP address (in standard dotted-quad 
form) of the machine from which the customer re-
quested the creation of this Transaction. This attri-
bute is required if you wish to score the Transaction 
for risk screening. Some payment methods, such as 
European Direct Debit, also require this attribute.

statusLog Transaction-
Status

Required. A log of TransactionStatus entries 
(with accurate timestamps) associated with this 
Transaction. At least one TransactionStatus ob-
ject with a timestamp and status set to Cancelled, 
Captured or Settled must be included with every 
AutoBill.migrate call.

For CreditCard and ECP PaymentMethod objects, 
enter the avsCode and cvnCode to help the Cash-
Box Chargeback team fight Chargebacks.

See the TransactionStatus Subobject.

taxExemptions TaxExemption An array of Exemptions that apply to this Transaction. 
Multiple tax exemptions may be defined.

See the TaxExemption Subobject.

taxInclusive Boolean A Boolean flag which defines whether the price listed 
for the Transaction is inclusive or exclusive of tax. If 
true, CashBox treats the Migration-
TransactionItem price value as inclusive of the 
tax amount(s) when calculating the total cost of the 
Transaction. If false, CashBox adds the tax 
amount(s) to the MigrationTransactionItem 
price value when calculating the total cost of the 
Transaction.

type Migration-
Transaction-
Type

The Transaction type: credit, recurring or non-recur-
ring. For MigrationTransactions included in an 
AutoBill.Migrate request this will default to Re-
curring. For MigrationTransactions included 
in a Transaction.Migrate request, this value will 
default to NonRecurring.

verification-
Code

string The response from your verification system for this 
transaction (for example: Verified by Visa (VbV) or 
MasterCard SecureCode). Populate this field with 
your most recent payment verification information.

Table 18-5 MigrationTransaction Object Data Members  (Continued)

Data Members Data Type Description
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 355



CashBox 5.0: API Reference Guide Transaction Subobjects
MigrationTransactionItem Subobject

A line-item in a MigrationTransaction. All line-items added together should add up to 
the total Transaction amount. 

Table 18-6 MigrationTransactionItem Object Data Members

Data Members Data Type Description

itemType Migration-
Transaction-
ItemType

The Migrated Transaction Item’s type, which may be 
one of three values:

• Credit: a one-time charge (not necessarily 
associated with an AutoBillItem).

• NonRecurringCharge: an after tax Credit 
applied to a Transaction.

• RecurringCharge: a one-time charge (not 
necessarily associated with an AutoBillItem).

If unspecified the type will default to Recur-
ringCharge.

merchantAuto-
BillItemId

string Optional. Your unique identifier for the AutoBillI-
tem associated with this MigrationTransaction-
Item. Use this data member to distinguish between 
two or more AutoBillItems for the same Product.

migrationTax-
Items

MigrationTax-
Item

Optional. An array of tax line-items in a 
MigrationTransactionItem.

The MigrationTaxItems subobject contains three 
data members:

• amount: Tax amount in the currency of the 
overall transaction. (Required decimal.) 

• jurisdiction: Sales tax jurisdiction. (Optional 
string.) 

• name: Sales tax name. (Optional string.) 

name string Required. A description of the item, which should 
match an existing Product description field. This is a 
free-form string of 256 or fewer characters.

price decimal Required. The price of the item, in the currency of 
the overall transaction.

Currencies may not be mixed on a single Transac-
tion. This value must be zero or positive.

servicePerio-
dEndDate

dateTime Required. The entitlement end date for this item 
(generally associated with an AutoBill item). 

servicePeriod-
StartDate

dateTime Required. The entitlement start date for this item 
(generally associated with an AutoBill item).

If unspecified, defaults to the MigrationTrans-
action’s billingDate.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 356



CashBox 5.0: API Reference Guide Transaction Subobjects
MigrationTransactionType Subobject

Defines the migrated Transaction’s type.

sku string Required. Your unique identifier for the product or 
service purchased with this Migration-
TransactionItem. This value should match the 
merchantProductId for an existing Product , but it 
is not required to do so.

This is a free-form string of 256 or fewer characters. 

taxClassifica-
tion

string The Item’s tax classification.

Table 18-6 MigrationTransactionItem Object Data Members  (Continued)

Data Members Data Type Description

Table 18-7 MigrationTransactionType Object Data Members

Data Members Data Type Description

nonRecurring string A one-time charge (not necessarily associated with 
an AutoBill).

recurring string A recurring charge (associated with an AutoBill).
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 357



CashBox 5.0: API Reference Guide Transaction Subobjects
TransactionItem Subobject

A line-item in a Transaction. Line items may be goods sold, sales tax, or other charges or 
credits. All line-items added together should add up to the total Transaction amount.

Table 18-8 TransactionItem Object Data Members

Data Members Data Type Description

autoBillItem-
Vid

string Vindicia's unique identifier for the associated Auto-
BillItem.

campaignCode string Campaign code redeemed on this Transaction. To 
apply a Campaign, use this field to pass in a valid 
Coupon or Promotion code.

Note: This data member will not be returned.

campaignId string Read only. The unique identifier for a Campaign ap-
plied to this Transaction. This is a read-only field re-
turned by CashBox for informational purposes. 
Values sent in with a SOAP call will be ignored.

merchantAuto-
BillItemId

string Your identifier for the associated AutoBillItem.

name string A description of the item. For CashBox-generated re-
bill transactions in which this Transaction item is 
derived from a Product object used with an Auto-
Bill object, this value maps to the Product object’s 
description attribute.

For TransactionItems which reflect Campaign 
discounts, this data member will be populated by 
CashBox with the text "Discount for description," 
where description is the description data mem-
ber for the ProductDescription subobject of the 
Product receiving the discount. 

price decimal The item price, denominated by the currency data 
member of this Transaction object.

quantity int The number of items sold. If migrating quantity 
does not make sense, such as for a sales-tax line 
item, set quantity to 1, not 0.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 358



CashBox 5.0: API Reference Guide Transaction Subobjects
servicePerio-
dEndDate

dateTime The start date for the service provided by this 
TransactionItem.

For standard AutoBills, these dates will coincide with 
the Billing Plan’s bill dates. For AutoBills which in-
clude Season Sets, or other variants, these dates 
might be the same for multiple Transactions.

Blank indicates that the entitlement has no end date, 
and is valid forever, or that the Transaction resulted 
from a Transaction.auth, capture, or migrate 
call, in which case this value has no meaning.

Note: Service period start and end dates may not co-
incide with Billing Dates. For example, with install-
ment-like Billing Plans, the start and end dates of 
every transaction are the dates of the full installment 
period, regardless of when billing occurs.

servicePeriod-
StartDate

dateTime The start date for the time period reflected by this 
TransactionItem.

sku string Optional. Your SKU or other tracking key for this 
item. For CashBox-generated rebill transactions in 
which this transaction item is derived from a Prod-
uct object used with an AutoBill object, this value 
maps to the Product object’s merchantProduc-
tId attribute.

For TransactionItems which reflect Campaign 
discounts, this data member will be populated by 
CashBox with the text "Discount for merchantPro-
ductId," where merchantProductId is the mer-
chantProductId data member for the Product 
object receiving the discount. 

tax Tax() An array of Tax objects, which include the following 
data members:

• jurisdiction: (string) the TransactionItem 
sku for the tax.

• name: (string) the description for the tax.
• amount: (decimal) the amount for the tax.

taxClassifica-
tion

string A string that defines the tax classification for this 
TransactionItem. 

Table 18-8 TransactionItem Object Data Members  (Continued)

Data Members Data Type Description
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 359



CashBox 5.0: API Reference Guide Transaction Subobjects
TransactionStatus Subobject

Lists the current Status for the Transaction.

taxType string This data member will be automatically populated by 
CashBox with applied tax information for the Trans-
actionItem.

Possible values include Inclusive Sales, Ex-
clusive Sales, Inclusive Use, and Exclu-
sive Use.

tokens TokenAmount() An array of TokenAmount objects granted to the Ac-
count on this Transaction for purchasing this item (if 
CashBox tokens are in use). Each object in the array 
specifies the quantity of a specific type of token. This 
is a read-only attribute when CashBox returns the 
TransactionItem object to you in response to a 
call.

See Section 17.1: Token Data Members.

Table 18-8 TransactionItem Object Data Members  (Continued)

Data Members Data Type Description

Note: This subobject is required for the AutoBill and 
Transaction.migrate calls. With these calls, you must record 
at least one TransactionStatus object, with the timestamp 
and a status of Cancelled, Captured, or Settled.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 360



CashBox 5.0: API Reference Guide Transaction Subobjects
Table 18-9 TransactionStatus Object Data Members

Data Members Data Type Description

boletoStatus Transaction-
StatusBoleto

The status of a Boleto Bancário-based transaction. 
This field is populated with the uri received for this 
Transaction (the URL your payment processor re-
ceived in response to a presentment of the fiscal 
number for the Transaction).

Note: CashBox does not support the Boleto Payment 
method for migrated Transactions.

See the TransactionStatusBoleto Subobject.

carrier-
BillingStatus

Transaction-
StatusCarrier-
Billing

The status for a Carrier Billing based Transaction.

This object contains two data members:

authCode: Result code for the requested action.

buyUrl: URL which (when sourced on a 
customer’s browser) generates HTML elements to 
facilitate processing of a CarrierBilling 
payment.

Note: CashBox does not support the Carrier Billing 
payment method for migrated Transactions.

creditCardSta-
tus

Transaction-
StatusCredit-
Card

The most recently returned status of the credit-card-
based transaction. 

For migrated Transactions, populate this field with the 
payment-processor-specific details, such as the au-
thorization code. 

When reporting transactions to Vindicia for Charge-
Guard, specify this attribute to help Vindicia dispute 
chargebacks.

See the TransactionStatusCreditCard Subob-
ject.

directDebit-
Status

Transaction-
StatusDirect-
Debit

(This data member is not in use.)

ecpStatus Transaction-
StatusECP

The status of an ECP-based transaction. 

For migrated Transactions, populate this field with the 
most recent status received from your Payment Pro-
cessor. 

When reporting transactions to Vindicia for Charge-
Guard, specify this attribute, to help Vindicia dispute 
chargebacks.

See the TransactionStatusECP Subobject.

fundingSource-
Balance

decimal The outstanding available balance on the submitted 
PaymentMethod.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 361



CashBox 5.0: API Reference Guide Transaction Subobjects
hostedPageSta-
tus

Transaction-
StatusHosted-
Page

Status details for a HostedPage Transaction.

Note: The customer’s Account must exist before any 
Hosted Page related call references that Account. 

See the TransactionStatusHostedPage Subob-
ject.

paymentMethod-
Type

PaymentMethod-
Type

Optional. The type of payment method for this 
Transaction object. Depending on this value, you 
must also populate other TransactionStatus data 
members. For example, if you set the value of this 
data member to CreditCard, you must also popu-
late the creditCard data member with the appropri-
ate information.

If no value is entered for this data member with a 
Transaction or AutoBill.migrate call, Cash-
Box will automatically populate it based on the 
MigrationTransaction object’s payment-
Method data member.

See the PaymentMethodType Subobject.

payPalStatus Transaction-
StatusPayPal

The status of a PayPal-based transaction. For one-
time transactions, included in this attribute is the URL 
you must present to your customer for a visit to PayP-
al’s site to complete the transaction process. 

See the TransactionStatusPayPal Subobject.

status Transaction-
StatusType

An enumerated string that specifies the transaction 
status. 

For transactions processed through CashBox, this 
status is Vindicia’s interpretation of a specific reason 
code received from your payment processor. Reason 
codes from payment processors vary from processor 
to processor, and are numerous. For one-time trans-
actions, check this value in the Transaction object 
returned to you in response to your call to ensure that 
the processor has authorized the transaction.

See the TransactionStatusType Subobject.

timestamp dateTime A timestamp that specifies the date and time of when 
the Transaction status changed.

Required for migrated Transactions.

vinAVS AVSMatchType For transactions processed by CashBox, this value is 
Vindicia’s interpretation of the AVS code returned by 
your payment processor. 

For this field to be valid, you must enable AVS with 
your payment processor. 

See the AVSMatchType Subobject.

Table 18-9 TransactionStatus Object Data Members  (Continued)

Data Members Data Type Description
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 362



CashBox 5.0: API Reference Guide Transaction Subobjects
TransactionStatusBoleto Subobject

Defines the status for a Credit Card transaction. 

TransactionStatusCreditCard Subobject

Defines the status for a Credit Card transaction.

TransactionStatusECP Subobject

Defines the status for a Boleto Bancario transaction. 

Table 18-10 TransactionStatusBoleto Object Data Member

Data Member Data Type Description

uri string The URL returned by the payment processor in re-
sponse to a presentment of the fiscal number. Send 
this string to the customer for further processing of 
the related transaction that uses the Boleto Bancário 
payment method.

Table 18-11 TransactionStatusCreditCard Object Data Members

Data Members Data Type Description

authCode string The reason code returned by the payment processor 
when this Transaction object is authorized, cap-
tured, or cancelled.

avsCode string The AVS code returned by the payment processor 
when authorizing this Transaction object for one-
time and migrated transactions. To receive this code, 
enable AVS with the payment processor.

cvnCode string The response sent by the payment processor for ver-
ification of the security code (the three- or four-digit 
number on the front or back of a credit card) for one-
time and migrated transactions.

Table 18-12 TransactionStatusECP Object Data Member

Data Member Data Type Description

authCode string The reason code returned by the payment processor 
when this Transaction object is authorized, cap-
tured, or cancelled.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 363



CashBox 5.0: API Reference Guide Transaction Subobjects
TransactionStatusHostedPage Subobject

Defines the status for a Hosted Page transaction. 

TransactionStatusPayPal Subobject

Defines the status for a PayPal transaction. 

Table 18-13 TransactionStatusHostedPage Object Data Member

Data Member Data Type Description

authCode string The result code for the status update.

redirectUrl string The Hosted Pages URL to which your customer 
should be redirected to complete a HostedPage 
Transaction.

Table 18-14 TransactionStatusPayPal Object Data Members

Data Members Data Type Description

authCode string The success or failure return code received from Pay-
Pal after authorization is finalized.

payerId string Unique PayPal customer account identification num-
ber in PayPal’s ExpressCheckout 

redirectUrl string The PayPal URL to which you must redirect your cus-
tomer to complete a PayPal transaction.

token string The token issued by PayPal Express Checkout. This 
token means that PayPal has tentatively accepted the 
transaction, and is awaiting further customer action. 
The token and the corresponding transaction will re-
main valid for a limited amount of time, during which 
the customer must complete the payment process on 
the PayPal site.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 364



CashBox 5.0: API Reference Guide Transaction Subobjects
TransactionStatusType Subobject

Defines the Transaction Status.

Table 18-15 TransactionStatusType Object Data Members

Data Members Data Type Description

AuthExpired string The transaction was not captured and the auth has 
expired. The transaction must be re-authorized and 
then captured.

Authorization-
Pending

string A PayPal-based transaction in CashBox that is await-
ing further action by the customer on the PayPal site. 

Do not interpret this status as authorization of pay-
ment. When a transaction is in this status, you should 
have sent your customer the PayPal URL at which to 
complete the payment process.

Authorized string A transaction authorized by the payment processor. 
This status indicates that the payment processor has 
approved this transaction but that the customer has 
not yet been charged. The actual charge will occur af-
ter transaction capture.

AuthorizedFor-
Validation

string A CashBox-generated transaction that is authorized 
to validate a payment method but that will not be cap-
tured, nor is the customer charged. CashBox gener-
ates transactions for small amounts (such as $1) and 
authorizes them with a payment processor to ensure 
the validity of a payment method, most commonly a 
credit card. These transactions may be ignored.

Authorized-
Pending

string A transaction that has passed initial validation but 
that has not yet been fully processed. This status is 
primarily for PayPal, ECP, and Boleto payment-based 
transactions that are awaiting action from the bank or 
the customer.

Cancelled string A cancellation, such as a rejection by the payment 
processor prior to capture, possibly before authoriza-
tion. You may examine the reason code returned by 
the payment processor in the corresponding status 
object, for example, the creditCardStatus attri-
bute. You can also cancel a transaction that is not yet 
captured by calling cancel().

Captured string A captured status, which indicates that the payment 
processor has charged the customer. A captured 
transaction means that the payment processor has 
accepted it and that money transfer will take place. 
For most successful transactions processed by Cash-
Box, this is the terminal status.

New string A brand-new transaction to be processed through 
CashBox with no past status. This status is often tran-
sient and soon changes if normal processing of the 
transaction continues.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 365



CashBox 5.0: API Reference Guide Transaction Subobjects
TransactionValidationResponse Subobject

Returned from the Transaction.migrate call, this object describes a specific validation 
issue with a submitted transaction.

Pending string An incomplete transaction or one that is awaiting ad-
ditional data. This status is mostly for internal use by 
CashBox.

Refunded string A CashBox-issued partial or full refund for this 
Transaction object.

Settled string A settled transaction. After the money transfer initiat-
ed by a captured transaction succeeds, the transac-
tion is considered settled. Set this status when 
reporting a transaction to Vindicia for ChargeGuard. 
For transactions processed through CashBox, Cash-
Box never sets this status because settlement is be-
tween you and the card-issuing bank, and is outside 
the scope of Vindicia’s service.

Void string When a merchant cancels an auth, it becomes Void 
in the system.

Table 18-15 TransactionStatusType Object Data Members  (Continued)

Data Members Data Type Description

Table 18-16 TransactionValidationResponse Object Data Members

Data Members Data Type Description

code string Required. A numerical code indicating the type of is-
sue that was encountered. 

Specific codes are listed below.

description string Required. A human readable description of the issue 
encountered.

merchantTrans-
actionId

string Required. Your unique ID for the submitted transac-
tion.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 366



CashBox 5.0: API Reference Guide Transaction Subobjects
Table 18-17 TransactionValidationResponse Return Codes

Return Code Description 

200 The call succeeded.

400 Your call failed, which could be due to an authentication failure or a CashBox 
failure to find any objects that match your input. 

400 may also be one of the following:

• Billing has already been attempted for Transaction ID 
merchantTransactionId.

• Failed to deserialize Transaction.
• Invalid Arguments - No transaction object.

403 The Vindicia server cannot authenticate your request. 

404 One of the following:

• Unable to load transaction: no match for 
merchantTransactionId merchantTransactionId.

• Unable to load transaction: no match for VID vid.

405 Unable to save transaction.

500 The Vindicia server encountered an internal error. That error could occur for 
various reasons, the most common being an incorrectly populated input 
object, especially when you are making the call from a client library whose 
language does not support strict data-type checking. For resolution, 
especially during the development phase, contact Vindicia Technical 
Support. 

503 A Vindicia back-end service, such as a database, is un-
available. Retry your call later.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 367



CashBox 5.0: API Reference Guide Transaction Methods
18.3 Transaction Methods

The following table summarizes the methods for the Transaction object. 

Table 18-18 Transaction Object Methods

Method Description

addressAndSalesTaxFrom-
PayPalOrder

Allows you to fetch the billing and shipping addresses from PayPal.

auth Sends this Transaction object to the payment processor for pre-
authorization.

authCapture Authorizes and captures this Transaction object in one call.

calculateSalesTax Calculates the sales tax for this Transaction object.

cancel Cancels a batch of previously authorized but not yet captured 
Transaction objects.

capture Captures a batch of previously authorized Transaction objects.

fetchByAccount Returns one or more Transaction objects whose Account ob-
ject matches the input.

fetchByAutobill Returns all the Transaction objects for an AutoBill object.

fetchByMerchantTransac-
tionId

Returns a Transaction object whose transaction ID assigned by 
you (merchantTransactionId) matches the input.

fetchByPaymentMethod Returns all the Transaction objects whose payment method 
matches the input. Identify the payment method with its VID, your 
payment method ID, or the payment-method-specific string, such 
as a credit-card account number.

fetchByVid Returns a Transaction object whose VID matches the input.

fetchByWebSessionVid Returns a Transaction object whose WebSession VID matches 
the input.

fetchDelta Returns the Transaction objects whose status has changed 
since the last fetchDelta call.

fetchDeltaSince Returns the Transaction objects that have been modified since 
the specified timestamp. (An endTimeStamp may also be speci-
fied.)

finalizeBokuAuthCapture (This method is not in use.)

finalizeCustomerAction Completes Transaction processing after your customer finishes 
payment activities at the payment provider-hosted web pages and 
is redirected to your site.

finalizePayPalAuth Informs CashBox about the final authorization status of a transac-
tion paid for with a PayPal-based payment method.

migrate Allows you to migrate Transactions from a previous billing system 
to CashBox.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 368



CashBox 5.0: API Reference Guide Transaction Methods
report (This method is not in use. Use Transaction.migrate to report 
Transactions to CashBox that have been processed in other billing 
systems.)

score Evaluates the risk score or chargeback probability score for this 
Transaction object.

Table 18-18 Transaction Object Methods  (Continued)

Method Description
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 369



CashBox 5.0: API Reference Guide addressAndSalesTaxFromPayPalOrder
addressAndSalesTaxFromPayPalOrder

The addressAndSalesTaxFromPayPalOrder method allows you to fetch the billing and 
shipping addresses from PayPal, and apply tax to Transactions

This call will calculate taxes using the billing address obtained from PayPal, and is 
recommended for merchants who do not collect this address information from their 
customers. 

Billing and shipping addresses are only applied to the current Transaction and will not be 
stored in CashBox for use in subsequent Transactions. If you wish these values to be stored 
for use in later one-time or recurring PayPal transactions, you must do so manually.

Input payPalTransactionId: Vindicia’s ID for the PayPal payment method validation 
Transaction, generated when you called AutoBill.update. Retrieve this ID from the 
value associated with the name: vindicia_vid in the name–value pairs attached to the 
redirect URL.

Output return: an object of type Return that indicates the success or failure of the call.

transaction: an object of type Transaction 

SalesTaxAddress: an object of type Address that describes the PayPal listed sales tax 
address for the Transaction.

BillingAddress: an object of type Address that describes the PayPal listed billing address 
for the Transaction.

ShippingAddress: an object of type Address that describes the PayPal listed shipping 
address for the Transaction.

taxItems: an object of type SalesTax that describes the total amount for taxable items 
included with the Transaction.

totalTax: the total amount of tax levied against the Transaction.

subtotalAmount: the pre-taxed total for the Transaction.

totalAmount: the post-tax total for the Transaction.

Returns This method returns the codes listed in Table 1: Standard Return Codes.

Note: You must be approved by PayPal, and your Seller Account enabled 
for the Billing Address feature, to use this method successfully. 
Once you have established this relationship with PayPal, please 
work with your Vindicia Client Services representative to enable the 
feature for your CashBox account.

The Shipping Address will be always returned by this call, even 
without completing these required steps for the Billing Address 
return.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 370



CashBox 5.0: API Reference Guide addressAndSalesTaxFromPayPalOrder
Examples The following examples are for One-Time and Recurring Transactions. Both of these 
examples should be called on your PayPal Success page, after your Buyer has approved 
the Transaction.

One-Time Transactions may use the same Transaction object for both 
Transaction.addressAndSalesTaxFromPayPalOrder and finalizePayPalAuth.

One-Time The following example demonstrates use of this method for a One-Time Transaction.

$transaction = new Transaction();

// Obtain the id of the PayPal transaction from the redirect URL.

$payPalTxId = $_GET['vindicia_vid'];

// For a successfully authorized PayPal transaction,
// set the success input parameter to true.

$success = true;

// Fetch the Billing and Shipping Addresses from PayPal, 
// and apply Tax to the Transaction using the returned addresses.

$response = 
$transaction->addressAndSalesTaxFromPayPalOrder($payPalTxId);

// Update the PaymentMethod.billingAddress with the 
// Billing Address returned by PayPal so it will be used 
// to apply Tax to subsequent Transactions based on the Billing Address.

// (Optional.) Update Account.shippingAddress with 
// the returned Shipping Address, so it will be used 
// to apply Tax to subsequent Transactions 
// (if there is not an existing Account.shippingAddress stored).

// To obtain Buyer confirmation of the modified 
// Transaction amount, which now includes Tax, 
// you must first interact with the Buyer in the User Interface, 
// then, after Buyer approval, proceed to complete the Transaction.

// Finalize the Transaction

$response =
$response->finalizePayPalAuth($payPalTxId, $success);

if($response['returnCode'] == 200) {
$txId = $response['transaction']->getMerchantTransactionId();
printLog "Transaction authorized: " . $txId;

}

Note: These examples differ only in that Recurring Transactions require 
that a separate object be created for the AutoBill to use to call 
finalizePayPalAuth.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 371



CashBox 5.0: API Reference Guide addressAndSalesTaxFromPayPalOrder
Recurring The following example demonstrates use of this method for a Recurring (AutoBill) 
Transaction.

$autobill = new AutoBill();
$transaction = new Transaction();

// Obtain the id of the PayPal transaction from the redirect URL.

$payPalTxId = $_GET['vindicia_vid'];

// For a successfully authorized PayPal transaction,
// set the success input parameter to true.

$success = true;

// Fetch the Billing and Shipping Addresses from PayPal, 
// and apply Tax to the Transaction using the returned addresses.

$response =
$transaction->addressAndSalesTaxFromPayPalOrder($payPalTxId);

// Update the PaymentMethod.billingAddress with the 
// Billing Address returned by PayPal so it will be used 
// to apply Tax to subsequent Transactions based on the Billing Address.

// (Optional.) Update Account.shippingAddress with 
// the returned Shipping Address, so it will be used 
// to apply Tax to subsequent Transactions 
// (if there is not an existing Account.shippingAddress stored).

// To obtain Buyer confirmation of the modified 
// Transaction amount, which now includes Tax, 
// you must first interact with the Buyer in the User Interface, 
// then, after Buyer approval, proceed to complete the Transaction.

//Finalize the Transaction:

$response =
$autobill->finalizePayPalAuth($payPalTxId, $success);

if($response['returnCode'] == 200) {
$txId = $response['transaction']->getMerchantTransactionId();
printLog "Transaction authorized: " . $txId;

}

© 2014 Vindicia, Inc. Table of Contents The Transaction Object 372



CashBox 5.0: API Reference Guide auth
auth

The auth method sends a transaction to a payment processor for authorization before a 
capture operation. Call this method for one-time transactions when you want to bill a 
customer for a specific purchase. Used with the capture() call, this call is useful if the 
purchase involves shipping of physical goods. For such purchases and in some other 
situations, payment processors typically mandate that you not receive payment until you 
have shipped the goods to the customer. Before shipping or beginning the delivery, call 
auth() to determine the customer’s ability to pay and, after shipment, call capture() to 
receive payment.

You may also call auth() to simply validate a payment method, because the call does not 
charge the customer. However, because auth() requires CashBox to call your payment 
processor on your behalf, a cost is involved. For each transaction authorized, the payment 
processor typically charges a fee as stipulated in your contract. To avoid this fee, Vindicia 
recommends that you prescreen transactions for fraud risk before authorizing them with 
your payment processor. You can do so by specifying an acceptable risk score (less than 
100) in the minChargebackProbability parameter of this call. For details on fraud risk 
screening, see Chapter 14: Common ChargeGuard Programming Tasks in the CashBox 
Programming Guide and the score method.

Note: The chargeback risk score is evaluated first, and, if it fails, is returned first.

Note that this call only authorizes the transaction with your payment processor. The 
processor’s approval, indicated by the Authorized status set in the Transaction object 
returned by this call, means that the payment processor will initiate a fund transfer when you 
make a call to capture the transaction. Note: the Authorized status does not mean that 
the customer will be charged for this transaction. If a transaction involves the shipment of 
goods, call auth() after receiving the order. The Authorized status indicates that the 
customer will be able to pay. After shipping the order, call capture() (typically in batch 
mode, to process multiple transactions authorized over a period of time) to charge the 
customers in question.

Calling auth() also enables you to further validate a transaction before its capture. For 
example, for credit-card-based one-time transactions, auth() returns a Transaction 
object that contains a TransactionStatus object, which not only indicates whether the 
payment processor has approved the transaction, but also includes the processor’s 
responses to AVS (address verification) and CVN (credit-card security code) verifications, 
assuming that you have enabled those services with the processor. If the responses are not 
satisfactory to you, you can make a call to cancel the transaction and thus never capture it.

For more detail on AVS and CVN Return Codes, please work with your Vindicia Client 
Services representative.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 373



CashBox 5.0: API Reference Guide auth
The meaning of a transaction’s authorization varies from payment method to payment 
method. For example:

• If you are conducting an ECP-based inbound transaction, the authorization returned by 
your payment processor in response to the auth() call means that the processor has 
only verified that the bank account and routing number specified by the customer on the 
payment method are not in the negative file (“blacklist”) maintained by the processor. 
auth() does not guarantee that the customer has enough funds in their bank account 
to pay for the transaction.

• CashBox does not support the auth() call for one-time transactions whose payment 
method is Boleto Bancário.

• For PayPal-based transactions, the auth() call returns a PayPal URL in the 
TransactionStatus object, which you must present to your customer. The 
transaction is considered authorized only after the customers has visited the URL, and 
successfully completed the payment process required by PayPal.

The authorization that you obtain from your payment processor through the auth() call is 
usually valid for only a few days. To charge the customer and collect the funds associated 
with an authorized transaction, you must call capture() on it. For some payment 
processors, CashBox explicitly voids authorized transactions that have not been captured 
within a certain period of time.

The auth() call also adds applicable sales-tax line items to your Transaction before 
authorizing it and, if it is authorized, scheduling it for capture. For tax calculation, you must 
work with Vindicia Client Services to define and capture your tax nexus, that is, the state and 
local governments that can legally tax your sales. Also, be certain to indicate the appropriate 
tax classification on your Transaction items. 

The auth call will handle a tax-based timeout, returning a 202 error if the tax calculation has 
timed out. Given this error, you may choose to abandon or cancel the Transaction. If you 
ignore this error, the related capture will recognize the failed timeout, and recalculate 
based on tax-inclusive prices. 

Input transaction: the Transaction object for preauthorization. Identify this object using either 
its VID or your transaction ID (merchantTransactionId). 

Note: Transaction.auth allows you to set your own 
minChargebackProbability threshold, while 
Transaction.authCapture uses the built-in CashBox AVS/
CVN policy evaluation. Use Transaction.auth, rather than 
Transaction.authCapture, only with compelling reason.

Note: PaymentMethods may not be duplicated for an Account. Passing 
in an existing credit card number and expiration date (in the 
sourcePaymentMethod for the Transaction) in an attempt to 
create a new PaymentMethod for an Account will return the pre-
existing PaymentMethod instead.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 374



CashBox 5.0: API Reference Guide auth
minChargebackProbability: a number between 0 and 100 by which you specify your fraud 
risk score tolerance level. A chargeback probability (also called the risk-screening score or 
risk score) of 100 indicates that CashBox is 100% certain that a transaction is fraudulent and 
will result in a chargeback. Specify your acceptable threshold for chargeback possibility with 
this parameter. If the score evaluates to be more than your tolerance level, the auth call will 
fail.

If you do not specify this parameter, it defaults to a value of 100, meaning no risk 
screening, in which case the Transaction is always acceptable to you (unless it fails). In 
order for Vindicia to successfully evaluate a transaction’s risk score, the transaction must 
have certain minimum information, such as the IP address, billing city, state, and country. 
For details on Vindicia’s risk-screening features, see Chapter 14: Common ChargeGuard 
Programming Tasks in the CashBox Programming Guide.

sendEmailNotification: a Boolean flag that, if set to true, triggers an email notification 
from CashBox to the Account object for this Transaction object. Use the Transaction 
data member preferredNotificationLanguage to set the language for the notification. 
(For more information, see Section 9.1: Setting the Preferred Language in the CashBox 
Programming Guide.)

campaignCode: the Coupon or Promotion Code used to obtain a discount on this 
Transaction. (This discount will be applied to all eligible Transaction items.)

dryrun: a Boolean flag that, if set to true, will return the updated Transaction, without 
recording the result in the CashBox database. Use this method to compute the cost of a 
Transaction without committing to the change. 

If the Transaction did not exist before, it will not exist afterward; if it did exist before, it 
will not change. (No payment method validations, authorizations or charges will be 
performed if dryrun is true.)

Output return: an object of type Return that indicates the success or failure of the call.

transaction: the original Transaction object, with several attributes added by CashBox 
during processing, including the Transaction’s latest status, which will list the success or 
failure of the auth.

score: the Transaction object’s risk score, which represents the estimated probability 
that this transaction will result in a chargeback. This number ranges from 0 (best) to 100 
(worst). It can also be -1, meaning that Vindicia has no opinion. (-1 indicates a transaction 
with no originating IP addresses, an incomplete addresses, or both. -2 indicates an error; 
retry later.)

If the score is not acceptable, contact the customer for more information and then re-call 
this method for a new score.

scoreCodes: an array of ScoreCode objects that explain the score. Each object contains 
two attributes: id and description. See Table 18-21: Score Code Descriptions.

Returns If successful, the auth() call returns a returnCode value of 200 along with the 
transaction status in the first (and latest) entry in the statusLog array. A 200 code does 
not necessarily mean that your transaction has been approved by the payment processor. 
For example, if your processor denies the transaction, CashBox sets a status of Cancelled 
in the latest entry in the statusLog array in the returned Transaction object, but the 
return code still remains 200. 
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 375



CashBox 5.0: API Reference Guide auth
In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example // to authorize a credit card-based transaction 
// with risk screening enabled

$tx = new Transaction();
$tx->setAmount('9.90');
$tx->setCurrency('USD');
$tx->setMerchantTransactionId('txid-123456');
$tx->setSourceIp('189.201.45.7');

// Reference an existing account by its ID
$account = new Account();
$account->setMerchantAccountId('9876-5432');
$tx->setAccount($account);

// Different shipping address from Account?
$shippingAddress = new Address();
$shippingAddress->setName('Jane Doe');
$shippingAddress->setAddr1('44 Elm St.');
$shippingAddress->setAddr2('Apt 55');

Return Code Return String

202 Taxes temporarily unavailable.

400 One of the following:
• Must specify line items in transaction to calculate 

sales tax for auth!
• Data validation error error-description.
• Must specify transaction to authorize!
• Auth attempt failed to return a valid Transaction.
• Vindicia fault fault-code encountered.
• Internal-error-description.
• Data validation error Failed to create Payment-Type-

Specific Payment Record: Credit Card conversion 
failed: Credit Card failed Luhn check.

407 Failed AVS policy evaluation.

408 Failed CVN policy evaluation.

402 One of the following:

• Can't call auth on Boleto associated transaction. 
Please call authCapture!

• The transaction ID merchantTransactionId collides with 
reserved Vindicia namespace, which is: namespace.

• Unable to create transaction ID consistent with 
reserved Vindicia namespace, which is: namespace.

• No payment method found in transaction or account.
• Transaction already previously authorized!

406 Chargeback risk score is higher than minChargebackProb-
ability, transaction not authorized.

(Vindicia saves the unauthorized transaction as a cancelled transaction, 
and returns a SOAP transaction object in $rc.)
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 376



CashBox 5.0: API Reference Guide auth
$shippingAddress->setCity('San Mateo');
$shippingAddress->setDistrict('CA');
$shippingAddress->setPostalCode('94403');
$shippingAddress->setCountry('US');
$shippingAddress->setPhone('650-555-3444');
$shippingAddress->setFax('650-555-3445');

$tx->setShippingAddress($shippingAddress);

// The line items of the transaction
$tx_item = new TransactionItem();
$tx_item->setSku('sku-1234');
$tx_item->setName('Widget');
$tx_item->setPrice('3.30');
$tx_item->setQuantity('3');
$tx->setTransactionItems(array($tx_item));

$paymentMethod = new PaymentMethod();
$paymentMethod->setType('CreditCard');

// Populate rest of the payment method object here.
// Make sure payment method has full billing address
// in it or the risk screen will not work

…

$tx->setSourcePaymentMethod($paymentMethod);

// make the auth call here. We can tolerate a risk score below
// 70 and do not want to send an email notification to 
// the customer
$response = $tx->auth(70, false);

if($response['returnCode']==200) {
$ret_tx = $response['data']->transaction;

if($ret_tx->statusLog[0]->status=='Authorized') {
print "Transaction approved";

}
else if($ret_tx->statusLog[0]->status=='Cancelled') {

print "Transaction not approved \n";
print "Reason code is: ";
print $ret_tx->statusLog[0]->creditCardStatus->authCode; 
print "\n";

}
else {

print "Error: Unexpected transaction status\n";
}

}
else if ($response['returnCode']==403) {

print "Transaction cannot be processed due to high fraud potential\n";
}
else {

print "Error while making call to Vindicia CashBox\n";
}

© 2014 Vindicia, Inc. Table of Contents The Transaction Object 377



CashBox 5.0: API Reference Guide authCapture
authCapture

The authCapture method combines auth and capture functionality. It authorizes a 
transaction with your payment processor in real time, and schedules it for capture 
simultaneously. CashBox performs the capture with your payment processor in batch mode 
at periodic intervals. AVS and CVN policy settings determine whether or not the 
authCapture call will succeed. 

The authCapture call also adds applicable sales-tax line items to your Transaction 
before authorizing it and, if it is authorized, scheduling it for capture. Work with Vindicia 
Client Services to define which state and local governments can legally tax your sales. Be 
certain to indicate the appropriate tax classification on your transaction items.

The authCapture call will handle a tax-based timeout, returning a 202 error if the tax 
calculation has timed out. Given this error, the automatic capture is postponed by a 
configurable delay which defaults to one hour, during which you may explicitly cancel the 
Transaction. If you ignore this error, the related capture will recognize the failed timeout, 
and recalculate based on tax-inclusive prices. 

This call is used to process one-time (real-time) transactions through CashBox. Call auth() 
to preauthorize a customer’s order before shipment and, after shipment, call capture() to 
capture the transaction. If the order does not involve shipment of physical goods, you may 
call authCapture to both authorize and capture the transaction.

This call returns the Transaction object with a TransactionStatus object (first entry in 
the array in the statusLog attribute) populated with results of the real-time authorization 
obtained from your payment processor. If the authorization result is positive (Authorized 
status), CashBox schedules the transaction for capture. Otherwise, CashBox sets the status 
to Cancelled. 

By default, authCapture examines the AVS and CVN return codes, issued by your 
payment processor in response to the auth call, to determine whether to process the call. 
To ignore the CashBox evaluation of the AVS/CVN return code, and process the 
Transaction regardless of their result, set the ignoreAvsPolicy and 
ignoreCvnPolicy flags to true.

If there is a policy failure, the capture will be aborted. 

Note: For more information on AVS and CVN Return Codes, please work 
with your Vindicia Client Services representative.

Note: The customer’s Account must exist before any Hosted Page related 
call references that Account.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 378



CashBox 5.0: API Reference Guide authCapture
Input transaction: the Transaction object to authorize and capture. Identify this object with 
either its VID or your transaction ID (merchantTransactionId). 

sendEmailNotification: a Boolean flag that, if set to true, triggers an email notification 
from CashBox to the Account object for the Transaction object. Use the Transaction 
data member preferredNotificationLanguage to set the language for the notification. 
(For more information, see Section 9.1: Setting the Preferred Language in the CashBox 
Programming Guide.)

ignoreAvsPolicy: a Boolean flag that, if set to true, will override the AVS policy, and 
update the paymentMethod, regardless of the AVS return code. If set to false or null, 
the AVS return code will be used to determine whether to update the paymentMethod.

ignoreCvnPolicy: an optional Boolean flag that, if set to true, will override the CVN policy, 
and update the paymentMethod, regardless of the CVN return code. If set to false or 
null, the CVN return code will be used to determine whether to update the 
paymentMethod.

campaignCode: the Coupon or Promotion Code used to obtain a discount on this 
Transaction. (This discount will be applied to all eligible Transaction items.)

dryrun: a Boolean flag that, if set to true, will return the updated Transaction, without 
recording the result in the CashBox database. Use this method to compute the cost of a 
Transaction without committing to the change. 

If the Transaction did not exist before, it will not exist afterward; if it did exist before, it 
will not change. (No payment method validations, authorizations or charges will be 
performed if dryrun is true.)

Output return: an object of type Return that indicates the success or failure of the call.

transaction: the Transaction object that contains a TransactionStatus object, which 
encapsulates the results of real-time authorization (also called online authorization) obtained 
from the payment processor. If this transaction is approved by the processor, CashBox has 
already scheduled it for batch capture.

Note: PaymentMethods may not be duplicated for an Account. Passing 
in an existing credit card number and expiration date (in the 
sourcePaymentMethod for the Transaction) in an attempt to 
create a new PaymentMethod for an Account will return the pre-
existing PaymentMethod instead.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 379



CashBox 5.0: API Reference Guide authCapture
Returns If successful, the authCapture() call returns a returnCode value of 200 along with the 
transaction status in the first (and latest) entry in the statusLog array. That 200 code does 
not necessarily mean that your transaction has been approved by the payment processor. 
For example, if your processor denies the transaction, CashBox sets a status of Cancelled 
in the latest entry in the statusLog array in the returned Transaction object, but the 
return code still remains 200. 

In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

202 Taxes temporarily unavailable.

400 One of the following:

• Must specify line items in transaction to calculate 
sales tax for auth!

• Data validation error error-description.
• Must specify transaction to authorize!
• Auth attempt failed to return a valid Transaction.
• Vindicia fault fault-code encountered.
• Internal-error-description.
• Data validation error Failed to create Payment-Type-

Specific Payment Record: Credit Card conversion 
failed: Credit Card failed Luhn check.

402 One of the following:

• The transaction ID merchantTransactionId collides with 
reserved Vindicia namespace, which is: namespace.

• Unable to create transaction ID consistent with 
reserved Vindicia namespace, which is: namespace.

• No payment method found in transaction or account.
• Transaction already previously authorized!

409 AVS and CVN policy evaluations failed.

410 AVS and CVN policy evaluations could not be performed.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 380



CashBox 5.0: API Reference Guide authCapture
Examples The following examples are for credit card, Boleto Bancário, ECP, and PayPal.

Credit-Card 
Payment 
Method

The following example creates, populates, authorizes, and captures a Transaction object 
with CreditCard as the payment method. The code checks if the Transaction status 
after an authCapture() call is Authorized. If so, the payment processor has authorized 
the transaction, and CashBox has marked it for capture with the processor. However, if the 
status is Cancelled, it means that the payment processor has denied the transaction.

$tx = new Transaction();
$tx->setAmount('9.90');
$tx->setCurrency('USD');
$tx->setMerchantTransactionId('txid-123456');

$paymentMethod = new PaymentMethod();
$paymentMethod->setBillingAddress($address);
$paymentMethod->setType('CreditCard');

$card = new CreditCard();
$card->setAccount('4444222211113333');
$card->setExpirationDate('xxxxxx'); // Use YYYYMM format for date
$paymentMethod->setCreditCard($card);

$nv = new NameValuePair();
$nv->setName("CVN");
$nv->setValue("123"); // this is the card security code provided by customer

// set the card security code inside the payment method
$paymentMethod->setNameValues(array($nv));

$tx->setSourcePaymentMethod($paymentMethod);

// set other transaction attributes here

// make the authCapture call
$sendEmailNotification = true;
$ignoreAvsPolicy = true;
$ignoreCvnPolicy = true;
$response = $tx->authCapture($sendEmailNotification, $ignoreAvsPolicy,

$ignoreCvnPolicy);

if ($response['returnCode'] == 200) {
if ($tx->statusLog[0]->status == 'Authorized') {

print "Card approved.\n";
}
else ($tx->statusLog[0]->status == 'Cancelled') {

// The transaction did not go through
print "Declined. Reason code received from

payment processor: ";
print $tx->statusLog[0]->status->creditCardStatus->authCode . "\n";

}
}

© 2014 Vindicia, Inc. Table of Contents The Transaction Object 381



CashBox 5.0: API Reference Guide authCapture
Boleto 
Bancário 
Payment 
Method

For the Boleto Bancário payment method, the transaction success status after an 
authCapture() call is Authorized. That means that CashBox has validated the fiscal 
number and the payment processor has accepted it. In response, the payment processor 
returns a URL in the TransactionStatus object. That URL contains further instructions 
for completing the transaction and is actually a payment document the customer must print 
and take to their bank. After the call is complete, CashBox changes the transaction status to 
AuthorizedPending to indicate that CashBox is awaiting customer action and further 
response from the payment processor. 

Present the URL returned by this call to your customer. When the transaction is complete, 
the payment processor notifies CashBox, which then updates the status to Captured or 
Cancelled, depending on the success or failure of the transaction. This step might take 
several days, because it requires that the customer physically present the payment 
document to the bank.

The following example creates, populates, and sets a fiscal number for a Transaction 
object with Boleto Bancário as the payment method.

$txn = new Transaction();

// Populate the transaction as shown in the previous example.
// When associating a customer account with this transaction ensure
// that the account has language preference indicated. This will set 
// the language to be used in the payment instructions 
// displayed to the customer

$tx->setAccount($account);

$paymentMethod = new PaymentMethod();

// For Boleto payment make sure country is specified in the address

$paymentMethod->setBillingAddress($address); 

$paymentMethod->setType('Boleto');
$blt = new Boleto();
$blt->setFiscalNumber('123456789');
$paymentMethod->setBoleto($blt);
// populate payment method billing address, country must be specified

$tx->setSourcePaymentMethod($paymentMethod);
$sendEmailNotification=false;

$response = $tx->authCapture($sendEmailNotification);

if($response['returnCode']==200) {
$ret_tx = $response['data']->transaction;
if($ret_tx->statusLog[0]->status=='Authorized') {

print "Successful\n";
display(print $ret_tx->statusLog[0]->status->boletoStatus ->uri);

}
else if($ret_tx->statusLog[0]->status=='Cancelled') {

// The transaction was denied
}

}

© 2014 Vindicia, Inc. Table of Contents The Transaction Object 382



CashBox 5.0: API Reference Guide authCapture
ECP 
Payment 
Method

For the ECP payment method, the status of a Transaction immediately after an 
authCapture() call is Authorized, which means that the payment processor has 
performed a real-time validation of the payment information to ensure, for example, that the 
bank routing number is not blacklisted. To configure this validation for a more thorough 
check, contact Vindicia Client Services.

Next, CashBox submits the transaction to the payment processor for deposit or withdrawal 
from the specified bank, and changes Transaction status to AuthorizedPending, 
meaning that processing of the Transaction has begun.

Six banking days must elapse before CashBox sets the status to Captured. During that 
time, if CashBox receives notice from the payment processor that the transaction has failed, 
CashBox changes the Transaction status to Cancelled.

If the reason code indicates that the payment processor will attempt a retry (for example, 
due to insufficient funds), CashBox changes the Transaction status to RetryPending. 
The retry date depends on the retry schedule that the payment processor has previously 
defined with you according to your division ID. Be certain to provide Vindicia with your 
division ID’s retry schedule.

If CashBox does not receive any decline codes for six banking days after the retry, CashBox 
sets the Transaction status to Captured. The following code example creates and 
populates a Transaction object with ECP as the payment method.
$txn = new Transaction();

// populate the transaction as shown in the previous example
$paymentMethod = new PaymentMethod();
$paymentMethod->setBillingAddress($address); 
$paymentMethod->setType('ECP');

$ecp = new ECP();

// specify account number where funds will be with withdrawn from 
$ecp->setAccount('123456789'); 

// specify bank routing number
$ecp->setRoutingNumber('3409284043');
$ecp->setAccountType('ConsumerChecking');
$paymentMethod->setECP($ecp);

// If this is an inbound payment i.e. a withdrawal from specified 
// bank account and deposit into merchant's account set source 
// payment method in the transaction.
// For paying out i.e. a deposit into specified bank account 
// and withdrawal from merchant's bank account, set destination 
// PaymentMethod attribute of the transaction

$tx->setSourcePaymentMethod($paymentMethod);
$tx->setEcpTransactionType('Inbound');

Note For the Boleto Bancário payment method, be certain to specify the 
country in the payment method billing address, and the language 
preference in the customer account. Those two attributes set the 
language used in customer communications.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 383



CashBox 5.0: API Reference Guide authCapture
$sendEmailNotification = false;
$response = $tx->authCapture($sendEmailNotification);

if($response['returnCode']==200) {
$ret_tx = $response['data']->transaction;
if($ret_tx->statusLog[0]->status=='Authorized') {

print "Successful\n";
}
else if($ret_tx->statusLog[0]->status=='Cancelled') {

// The transaction did not go through
print "Declined. 

Reason code received from payment processor: ";
print $ret_tx->statusLog[0]->status->ecpStatus->authCode 

. "\n";
}

}

PayPal 
Payment 
Method

For the PayPal payment method, the transaction status after an authCapture() call is 
AuthorizationPending. The payment flow for PayPal-based real-time transactions 
proceeds as follows: 

1. When a customer clicks the PayPal button on your site, create a Transaction object 
that specifies PayPal as the payment method and makes a Transaction-
>authCapture() call to CashBox. 

2. When that call returns, examine the status of the returned Transaction object. If the 
status is not a failure (Cancelled), it is AuthorizationPending, meaning that the 
transaction is in the CashBox and PayPal systems, and that it requires further action 
from the customer for completion. 

3. PayPal notifies CashBox of the successful creation of the transaction by issuing a 
PayPal token, which keeps the transaction valid for the next few hours. 

4. The returned Transaction object contains a PayPal-specific status along with a URL, 
which contains the token information. Redirect the customer to that URL to complete 
PayPal’s payment sequence. 

5. Depending on the customer’s success or failure in completing the payment process, 
PayPal redirects the customer to a success or failure URL on your site. (Provide 
CashBox with the success and failure URLs as attributes named returnUrl and 
cancelUrl, respectively, of the PayPal payment method for the Transaction.) 
From this page, make a call to CashBox to finalize the PayPal authorization so that 
CashBox can update the status of the Transaction. This call requires you to pass in 
the ID of the Transaction, which you can find in redirected URL. It is value 
associated with the name vindicia_vid in the redirect URL
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 384



CashBox 5.0: API Reference Guide authCapture
The following example illustrates the process.

$tx = new Transaction();

// populate the transaction as shown in earlier examples

$paymentMethod = new PaymentMethod();
$paymentMethod->setType('PayPal');

$payPal = new PayPal();

// This is the URL the customer will be redirected to after they 
// arrive at the Vindicia landing page after completing the payment 
// process at PayPal's site
$payPal->setReturnUrl('http://myshoppingcart.merchant.com'); 

// specify bank routing number
$payPal->setCancelUrl('http://tryagain.merchant.com');
$paymentMethod->setPayPal($payPal);
$tx->setSourcePaymentMethod($paymentMethod);
$sendEmailNotification = false;
$response = $tx->authCapture($sendEmailNotification);

if($response['returnCode']==200) {

if($tx->statusLog[0]->status=='AuthorizationPending') {
$payPalUrl = $tx->statusLog[0]->payPalStatus->redirectUrl;

// send customer to this URL for completion of payment 
// process at PayPal's site

}
}

After successfully completing the payment process, the customer is redirected to the URL 
www.myshoppingcart.merchant.com, which is the return URL in the PayPal-based 
PaymentMethod object. From this page, finalize the Transaction so that CashBox will 
acquire its status. 

$soap_caller = new Transaction();

// obtain id of the PayPal transaction from the redirect URL. 
// It is the value associated with name 'vindicia_vid'

$payPalTxId = … ;

// if calling from the return URL reached when the PayPal
// transaction is successfully authorized, set the
// success input parameter to true, from the cancelUrl, set the 
// success input parameter to false. Let's assume success here:

$success = true;
$response = 

$soap_caller->finalizePayPalAuth($payPalTxId, $success);

if($response['returnCode'] == 200) {
printLog "Transaction authorized";

}

Upon completion, CashBox updates the Transaction status to Authorized, which 
changes to Captured after CashBox batch-processes this and other PayPal transactions.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 385



CashBox 5.0: API Reference Guide calculateSalesTax
calculateSalesTax

The calculateSalesTax method calculates the sales tax of a Transaction object. 

Transactions may be taxable by several local and state governments. For example, in the 
United States, depending on the address, a transaction might be taxable by the city, county, 
and state. For each applicable tax, this method adds a line item to your Transaction (see 
the Transaction object’s items data member).

The CashBox sales-tax engine works as follows:

1. Taxes are collected according to the buyer’s address. If the shipping address is 
specified on the Transaction, CashBox considers that address for tax calculation 
first. If not, CashBox uses the billing address on the payment method. In the absence of 
those two addresses, CashBox cannot calculate the taxes. For U.S. and Canadian 
addresses, be sure to provide full address information since taxes vary from state to 
state and, in many cases, from city to city.

2. CashBox “cleans up” the address chosen to apply taxes. For example, CashBox 
converts SAINT FORT, SAINTE FORT, or STE FORT to ST FORT, discards punctuation 
marks, and converts dashes to spaces.

3. CashBox “fixes up” the address in question, by correcting misspelled street or city 
names, and by applying the correct postal code according to the street address. 
CashBox does not change the actual address in the Transaction object; instead, 
CashBox stores the corrected address in the Transaction object’s 
salesTaxAddress data member when returning the object to you. This step enables 
the CashBox sales-tax engine to pinpoint the correct final jurisdiction (country, district, 
county, city, and postal code) to calculate taxes.

4. CashBox looks in a database for the applicable tax rates for the jurisdiction. That 
database is continually updated with the latest information.

Customize the applicable tax rates as follows:

• Upload overriding tax rules to the Vindicia database. In those rules, you may define 
a specific tax rate for CashBox to apply to your transactions if the customer address is in 
a specific city, county, state, or other location. You may also specify a date range for 
applying those tax rules. For more information, contact your Vindicia Client Services 
representative.

• Specify your tax nexus. In the United States, your tax nexus is the set of local and 
state governments that may collect sales tax on your transactions. This nexus depends 
on the physical location of your business registration. For example, if your company is 
registered only in California, only the State of California may collect sales tax on your 
transactions, and CashBox applies sales tax only if your customer’s address is also in 
California. Contact your Vindicia Client Services representative for more information.

• Define the tax exemptions on your customer accounts. See the taxExemptions 
attribute in Section 1: The Account Object.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 386



CashBox 5.0: API Reference Guide calculateSalesTax
• Define the tax classification on your Product and TransactionItem objects. The 
tax classification enables you to specify the categories, such as physical goods and 
electronic data, to which your sales items belong. If your nexus specifies that an item is 
taxable, CashBox applies sales tax accordingly. See the taxClassification 
attribute in Section 13: The Product Object, and in the TransactionItem Subobject. 

CashBox includes sales-tax items added to your Transaction as new items in the returned 
Transaction object. The names of those transaction items begin with the prefix VIN, for 
example, VIN_SALES_TAX_STATE. CashBox also adds a line item that contains the total 
amount of all the tax items with the name VIN_SALES_TAX.

Note that the calculateSalesTax method does not save the transaction sent for tax 
calculation in the CashBox database. When a customer makes a one-time purchase on your 
site, create a Transaction object and call calculateSalesTax on it to calculate the 
applicable taxes. CashBox will return the total amount of the purchase after adding the 
applicable taxes. Then present the amount to your customer. Once the customer has 
finalized the purchase, capture the transaction by calling authCapture on the original 
Transaction.

The authCapture() and auth() methods automatically calculate and add taxes to a 
transaction before processing it with the payment processor. CashBox also adds applicable 
sales tax to recurring billing transactions generated for AutoBill objects.

Input transaction: the Transaction object for which to calculate sales tax. This object must 
have an address and a line item that describes the product sold, as well as a price. Identify 
this object with either its VID or your merchantTransactionId.

Output return: an object of type Return that indicates the success or failure of the call.

transaction: the Transaction object that contains the added tax line items, the total 
amount with the total sales tax added, and the salesTaxAddress attribute filled in with the 
(corrected) address used to compute taxes.

addressType: the address CashBox chose to calculate sales tax. This parameter has a 
value of either Shipping or Billing.

originalAddress: the original value of the address chosen by CashBox for tax calculation.

correctedAddress: the final value of the selected address, after CashBox has corrected 
inconsistencies.

taxItems: an array of SalesTax objects, each of which contains a description attribute, 
which describes a specific type of tax added (for example, city tax); and a tax attribute, 
which contains the amount of the tax calculated by CashBox.

totalTax: the total sales tax calculated by CashBox.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 387



CashBox 5.0: API Reference Guide calculateSalesTax
Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

404 One of the following:

• Address not specified on transaction, and unable to 
load it from customer accounts - unable to calculate 
sales tax! 

• Must specify line items in transaction to calculate 
sales tax!
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 388



CashBox 5.0: API Reference Guide calculateSalesTax
Example $tx = new Transaction();
$tx->setAmount('29.90');
$tx->setCurrency('USD');
$tx->setMerchantTransactionId('txid-123456');

$tx->setSourceIp('35.45.123.158');

$account = new Account();
$account->setMerchantAccountId('9876-5432');
$account->setEmailAddress('jdoe@mail.com');
$account->setName('J Doe');
$tx->setAccount($account);

$shippingAddress = new Address();
$shippingAddress->setName('Jane Doe');
$shippingAddress->setAddr1('44 Elm St.');
$shippingAddress->setCity('San Mateo');
$shippingAddress->setDistrict('CA');
$shippingAddress->setPostalCode('94403');
$shippingAddress->setCountry('US');

$tx->setShippingAddress($shippingAddress);

// The line items of the transaction
$tx_item = new TransactionItem();
$tx_item->setSku('sku-1234');
$tx_item->setName('Widget');
$tx_item->setPrice('3.30');
$tx_item->setQuantity('3');
$tx->setTransactionItems(array($tx_item));

$paymentMethod = new PaymentMethod();
$ccCard = new CreditCard();
$ccCard->setAccount('4111111111111111');
$ccCard->setExpirationDate('201109');
$paymentMethod->setType('CreditCard');
$paymentMethod->setCreditCard($ccCard);
$paymentMethod->setBillingAddress($shippingAddress);

$tx->setSourcePaymentMethod($paymentMethod); 

$response = $tx->calculateSalesTax();
if ($response['returnCode'] == 200) {

print "Address type used for computing tax: ";
print $response['addressType'] . "\n";
print "Taxes added: \n";
$taxes = $response['taxItems'];
foreach($taxes as $tax) {

print $tax->getDescription() . " : " ;
print $tax->getTax() . "\n";

}
print "Total tax: " . $response['totalTax'];
print "Total transaction amount: " ;
print $response['transaction']->getAmount() . "\n";

} 
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 389



CashBox 5.0: API Reference Guide cancel
cancel

The cancel method cancels a batch of previously authorized (but not yet captured) one-
time Transaction objects, so that CashBox does not attempt to capture them with your 
payment processor. See the auth and capture methods for details.

For certain payment processors, who charge a fee if you do not capture an authorized 
transaction, Cashbox also reverses the authorization. For other processors, CashBox simply 
deletes its internal to-be-captured flag so that the Transaction is no longer scheduled for 
capture. To determine whether CashBox performs authorization reversal with your payment 
processor as a part of this call, contact your Vindicia Client Services representative.

For the Transaction objects for which this call is successful, CashBox changes their 
status to Cancelled. For those transactions whose authorization CashBox was able to 
reverse with the payment processors concerned, the status Void is displayed on the 
CashBox Portal. However, if you fetch those transactions with a fetch call, the status in the 
corresponding Transaction objects is Cancelled. 

Input transactions: an array of Transaction objects to cancel.

Output return: an object of type Return that indicates the success or failure of the call.

qtySuccess: the number of successful cancellations.

qtyFail: the number of failed cancellations.

results: an array of CancelResult objects that contain information on the success or 
failure of the call on each transaction. 

The following table lists and describes the data members for the CancelResult object.

Note You may only cancel Transactions that have not yet been 
captured. You may refund captured transactions but not cancel 
them. For details on refunds, see the Refund object.

Table 18-19 CancelResult Object Data Members

Data Members Data Type Description

merchantTrans-
actionId

string Your unique identifier for the Transaction object 
you asked to cancel.

returnCode integer The reason for the success or failure:

• 200: cancel() succeeded.
• 402: The Transaction object has 

expired and cannot be cancelled.
• 404: cancel() cannot load the 

Transaction object, likely because 
the VID or your transaction ID 
(merchantTransactionId) is invalid.

• 405: You did not specify an 
authorized transaction.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 390



CashBox 5.0: API Reference Guide cancel
Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example // create an empty transaction object to the make the SOAP calls
// against
$soap_tx = new Transaction();

$tx1 = new Transaction();
$tx2 = new Transaction();

// ids of previously authorized transactions
$merchantTxnId1 = '9876-5432';
$merchantTxnId2 = '9876-5437';

$tx1->setMerchantTransactionId($merchantTxnId1);
$tx2->setMerchantTransactionId($merchantTxnId2);

$txnArray = array($tx1, $tx2);

$response = $soap_tx->cancel($txnArray);

if($response['returnCode']==200) {
$cancelResults = $response['results'];
foreach ($cancelResults as $cancelResult) {

if ($cancelResult->returnCode == 200) {
print ("Transaction with id " . 

$cancelResult->merchantTransactionId .
" was successfully cancelled");

}
}

}

Return Code Return String

400 One of the following:

• Must specify transaction.
• Unable to save transactions: error-description.

Note A return code of 200 does not mean that all input transactions have 
been successfully cancelled. Be sure to examine the output 
parameters, such as qtySuccess, qtyFail, and results, to check 
which transactions were successfully cancelled and which failed to 
cancel.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 391



CashBox 5.0: API Reference Guide capture
capture

The capture method schedules a batch of previously authorized transactions for the 
capture operation with your payment processor. For capture to succeed, the authorization 
you previously obtained from the processor through the auth() call must still be valid. After 
a capture() call, actual capture occurs within the next 12 hours when the Vindicia server 
back-end processes run the regularly scheduled batch capture operation with your payment 
processor.

Typically, payment processors issue authorizations for only a short duration. If a previously 
authorized transaction has not been captured within a certain period of time, usually a few 
days, CashBox sets the transaction status to AuthExpired; the corresponding 
TransactionStatusType enumerated value is Cancelled. This method will attempt to 
reauthorize AuthExpired transactions before scheduling a capture.

The business meaning of a successful capture varies according to the transaction’s 
payment method, as follows:

• For credit card transactions, the payment processor charges the credit card specified in 
the sourcePaymentMethod data member of the Transaction object for the 
transaction amount.

• For ECP transactions, capture() executes the payment, that is, a fund transfer is 
initiated between the banks.

• For PayPal transactions, capturing a previously authorized transaction enables you to 
receive the customer’s payment.

• For Boleto Bancário transactions, you cannot call capture(). Instead, authorize and 
capture transactions in the single call authCapture(). (See the authCapture 
method.)

Input transactions: an array of Transaction objects to schedule for capture with the payment 
processor.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 392



CashBox 5.0: API Reference Guide capture
Output return: an object of type Return that indicates the success or failure of the call.

qtySuccess: the number of transactions that can be successfully scheduled for capture.

qtyFail: the number of transactions that cannot be scheduled for capture.

results: an array of CaptureResult objects that contain information on the success or 
failure of the call on each transaction. 

The following table lists the CaptureResult object data members. 

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Table 18-20 CaptureResult Object Data Members

Data Members Data Type Description

merchantTrans-
actionId

string Your unique identifier for this Transaction object. 
Although you normally assign this value, Vindicia 
might assign it for the transactions it generates for re-
authorization.

originalMer-
chantTransac-
tionId

string Your unique identifier for the original Transaction 
object in the case of a reauthorization.

returnCode integer The reason for the success or failure:

• 200: capture() succeeded.
• 402: The Transaction object has 

expired and cannot be reauthorized 
by capture().

• 404: capture() cannot load the 
Transaction object, likely because 
the VID or your transaction ID 
(merchantTransactionId) is invalid.

• 405: You did not specify an 
authorized transaction.

• 500: capture() encountered an 
internal failure.

Return Code Return String

400 One of the following:

• Must specify transaction.
• Unable to save transactions: error-description.

Note A return code of 200 does not mean that all input transactions have 
been successfully captured. Be sure to verify the number of 
successfully captured transactions in the qtySuccess output 
parameter against the number of input transactions. If some 
transactions have failed to be captured, examine the return codes in 
the results output parameter for possible explanation.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 393



CashBox 5.0: API Reference Guide capture
Example // to capture a batch of previously authorized transactions

// create an empty transaction object to the make the SOAP calls
// against
$soap_tx = new Transaction();

$tx1 = new Transaction();
$tx2 = new Transaction();

// ids of previously authorized transactions
$merchantTxnId1 = '9876-5432';
$merchantTxnId2 = '9876-5437';

$tx1->setMerchantTransactionId($merchantTxnId1);
$tx2->setMerchantTransactionId($merchantTxnId2);

$txnArray = array($tx1, $tx2);

$response = $soap_tx->capture($txnArray);

if($response['returnCode']==200) {
$captureResults = $response['results'];
foreach ($captureResults as $captureResult) {

if ($captureResult->returnCode == 200) {
print ("Transaction with id " . 

$captureResult->merchantTransactionId .
" was successfully captured");

}
}

}

© 2014 Vindicia, Inc. Table of Contents The Transaction Object 394



CashBox 5.0: API Reference Guide fetchByAccount
fetchByAccount

The fetchByAccount method returns one or more Transaction objects associated with 
the Account object specified in the input. Call this method to retrieve one-time, recurring, 
migrated, or other types of transactions in CashBox for a given customer.

Since transactions change their status as they go through their life cycle in CashBox, the 
returned Transaction objects might show a different status from before, especially for 
CashBox-processed transactions. The latest Transaction status is the first entry in the 
statusLog array (see the statusLog attribute in the table on the Transaction object 
data members).

Input account: the Account object that serves as the search criterion. Use the 
merchantAccountId or VID to identify the object.

includeChildren: an optional Boolean flag that, if set to true, includes any children 
associated with this Account. If this flag is omitted, CashBox will interpret it as false, and 
constructs the query without looking at any child's account.

Output return: an object of type Return that indicates the success or failure of the call.

transactions: an array of one or more Transaction objects associated with the Account 
object specified in the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 One of the following:

• Unable to load account to search by: No matches.
• No account specified to load transaction by!

404 Unable to load account to search by: error-description.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 395



CashBox 5.0: API Reference Guide fetchByAccount
Example // Create an Account object to represent an
// existing customer account by its id
$account = new Account();
$account->setMerchantAccountId('jdoe101');

// create a transaction object to make the call
$soap_tx= new Transaction();

// fetch the record(s)
$response = $tx->fetchByAccount($account);
if($response['returnCode'] == 200) {

$fetchedTxns = $response['data']->transactions;

// process fetched transactions here
if ($fetchedTxns != null) {

foreach ($fetchedTxns as $fetchedTx) {
// process a fetched transaction here
print "Transaction VID " . $fetchedTx->getVID();
print "Transaction amount ". $fetchedTx->getAmount();
print "Transaction status ";
print $fetchedTx->statusLog[0]->status . "\n";

}
}
else {

print "No transactions found \n";
}

}

© 2014 Vindicia, Inc. Table of Contents The Transaction Object 396



CashBox 5.0: API Reference Guide fetchByAutobill
fetchByAutobill

The fetchByAutobill method, which returns all the Transaction objects generated by 
CashBox for an AutoBill object, enables you to retrieve the rebilling transactions related 
to a specific AutoBill. Because Transactions are automatically generated and completed 
by CashBox, they are usually not in your system. Occasionally, you might need to access 
them in order to respond to customer queries.

Input autobill: the AutoBill object that serves as the search criterion. You can identify this 
object with either its VID or your AutoBill ID (merchantAutoBillId).

Output return: an object of type Return that indicates the success or failure of the call.

transactions: an array of one or more Transaction objects whose AutoBill object 
matches the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example // Create an AutoBill object to represent an
// existing customer subscription by its id
$autobill = new AutoBill();
$autobill->setMerchantAutoBillId('AB101');

// create a transaction object to make the call
$soap_tx= new Transaction();

// fetch the record(s)
$response = $tx->fetchByAutobill($autobill);
if($response['returnCode'] == 200) {

$fetchedTxns = $response['data']->transactions;

// process fetched transactions here
if ($fetchedTxns != null) {

foreach ($fetchedTxns as $fetchedTx) {
// process a fetched transaction here
print "Transaction VID " . $fetchedTx->getVID();
print "Transaction amount ". $fetchedTx->getAmount();
print "Transaction status ";
print $fetchedTx->statusLog[0]->status . "\n";

}
}
else {

print "No transactions found \n";
}

}

Return Code Return String

400 One of the following:

• Unable to load autobill to search by: No matches.
• No autobill specified to load transaction by!

404 Unable to load autobill to search by: error-description.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 397



CashBox 5.0: API Reference Guide fetchByMerchantTransactionId
fetchByMerchantTransactionId

The fetchByMerchantTransactionId method returns a Transaction object whose 
merchantTransactionId value matches the input. This ID could be assigned by you (for 
example, when you conduct a one-time transaction) or by CashBox while generating a 
rebilling transaction for an active AutoBill object.

Because Transactions change their status as they go through their life cycle in CashBox, 
returned Transaction objects might show a different status each time they are returned, 
especially for CashBox-processed transactions. The latest Transaction status is the first 
entry in the statusLog array (see the statusLog attribute in Section 18.1: Transaction 
Data Members. For example, if you create a one-time transaction and call authCapture() 
on it, the latest transaction status is Authorized. Later, if you retrieve the same 
Transaction by its ID with this method, the latest status could be Captured.

Input merchantTransactionId: the merchantTransactionId value, which serves as the 
search criterion.

Output return: an object of type Return that indicates the success or failure of the call.

transaction: the Transaction object whose merchantTransactionId value matches 
the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

404 One of the following:

• Unable to load transaction: No match for 
merchantTransactionId input-merchantTransactionId.

• Unable to load transaction by merchantTransactionId 
input-merchantTransactionId: error-description.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 398



CashBox 5.0: API Reference Guide fetchByMerchantTransactionId
Example // Known transaction id
$txId = "MERCH42202";

// create a transaction object to make the call
$soap_tx= new Transaction();

// fetch the record(s)
$response = $tx->fetchByMerchantTransactionId($txId);
if($response['returnCode'] == 200) {

$fetchedTx = $response['data']->transaction;

// process fetched transactions here
if ($fetchedTx != null) {

// process a fetched transaction here
print "Transaction VID " . $fetchedTx->getVID();
print "Transaction amount ". $fetchedTx->getAmount();
print "Transaction status ";
print $fetchedTx->statusLog[0]->status . "\n";

}
}
else if($response['returnCode'] == 404) {

print "No transaction found: ";
print $response['returnString'] . "\n";

}

© 2014 Vindicia, Inc. Table of Contents The Transaction Object 399



CashBox 5.0: API Reference Guide fetchByPaymentMethod
fetchByPaymentMethod

The fetchByPaymentMethod returns all Transaction objects that use the specified 
payment method. For example, call this method to search for all Transactions that use a 
certain credit-card number. 

This method supports paging to limit the number of records returned per call. Returning a 
large number of records in one call may swamp buffers, and might cause a failure. Vindicia 
recommends that you call this method in a loop, incrementing the page for each loop 
iteration with an optimal page size (number of records returned in one call) until the page 
contains a number of records that is less than the given page size.

Input paymentMethod: the Transaction object’s payment method, which serves as the search 
criterion. Identify the payment method with its VID, your payment method ID 
(merchantPaymentMethodId), or one of the following:

• The account number for a credit card. Be certain to set the type attribute of the input 
PaymentMethod object to CreditCard. This call does not support wildcards in the 
account number.

• The account number-bank routing number combination for ACH and ECP. Be certain to 
set the type attribute of the input PaymentMethod object to ECP.

• The fiscal number for a Boleto. Be certain to set the type attribute of the input 
PaymentMethod object to Boleto.

• The PaypalEmail for PayPal.

Note: If you use SOAP releases prior to 3.5, you will not be able to search accounts using 
the PayPal payment method. SOAP release 3.6.0 and later allows you to search accounts 
and transactions by the PaypalEmail. 

page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to display per page per call. This value must be greater 
than 0.

Output return: an object of type Return that indicates the success or failure of the call.

transactions: an array of one or more Transaction objects that were conducted with the 
payment method specified in the input.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 400



CashBox 5.0: API Reference Guide fetchByPaymentMethod
Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $pm = new PaymentMethod();
$pm->setType('CreditCard');
$cc = new CreditCard();

// this is the card number we want to search by
$cc->setAccount('4111111111111111'); 
$cc->setExpirationDate('201208');
$pm->setCreditCard($cc);

$soap_tx = new Transaction();
$page = 0;
$pageSize = 10; // max 10 records per page

do {
$response = $soap_tx->fetchByPaymentMethod($pm, 

$page, $pageSize); 

if($response['returnCode']==200) {
$txns = $response['data']->transactions;
if ($txns != null) {

$count = count($txns);
foreach ($txns as $fetchedTx) {

// process each transaction found here
print "Found transaction with id: ";
print $fetchedTx->getMerchantTransactionId() . "\n";

}
}
else {

$count = 0;
}

}
else {

$count = 0;
}
$page++

} while ($count > 0);

Return Code Return String

400 One of the following:

• Payment method type is credit card, but credit card 
information is incomplete.

• Payment method type is ECP, but ECP account and 
routing information is incomplete.

• Payment method type is Boleto, but Boleto payment 
information is incomplete.

• Payment method type is currently not supported.
• Must specify a PaymentMethod object, a non-negative 

page number, and a page size greater than 0.

404 No matching transactions.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 401



CashBox 5.0: API Reference Guide fetchByVid
fetchByVid

The fetchByVid method returns a Transaction object whose VID matches the input.

VID is Vindicia’s unique identifier for an object. While saving a Transaction object in its 
database for the first time after you’ve made a call (such as migrate(), auth(), or 
authCapture()), CashBox generates and assigns a unique identifier for the object. Some 
calls return the newly created and updated Transaction object to you in their output 
response with the VID populated in the output Transaction object. Once you know a 
Transaction object’s VID, you may refer to that object by its VID in future calls.

Never assign a VID to a new Transaction object; CashBox will generate the VID. 

Input vid: the Transaction object’s Vindicia unique identifier, which serves as the search 
criterion.

Output return: an object of type Return that indicates the success or failure of the call.

transaction: the Transaction object whose VID matches the input.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example // Known VID
$vid = "29ed2ea9753896f980095911972d6695b049f54c";

// create a transaction object to make the call
$soap_tx= new Transaction();

// fetch the record(s)
$response = $tx->fetchByVid($vid);
if($response['returnCode'] == 200) {

$fetchedTx = $response['data']->transaction;

// process fetched transactions here
if ($fetchedTx != null) {

// process a fetched transaction here
print "Transaction VID " . $fetchedTx->getVID();
print "Transaction amount ". $fetchedTx->getAmount();
print "Transaction status ";
print $fetchedTx->statusLog[0]->status . "\n";

}
}
else if($response['returnCode'] == 404) {

print "No transaction found: ";
print $response['returnString'] . "\n";

}

Return Code Return String

400 No VID specified to load transaction by.

404 One of the following:

• Unable to load transaction: No match for VID input-vid.
• Unable to load transaction by VID input-vid: error-

description.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 402



CashBox 5.0: API Reference Guide fetchByWebSessionVid
fetchByWebSessionVid

Call the fetchByWebSessionVid method within your HOA implementation to retrieve the 
Transaction object created by HOA on Vindicia’s servers when a customer submits an 
order form, which results in a one-time or recurring bill. You must create a WebSession 
object on Vindicia’s servers before serving the form to your customer to track the form’s 
submission to Vindicia. For more information, see Section 19: The WebSession Object.

The WebSession object’s VID serves as the tracking ID for various activities, starting from 
serving the order form to a customer, and ending in returning a success or failure page to 
that same customer. 

Use fetchByWebSessionVid to program the success page (see the WebSession 
object’s returnURL attribute), to which HOA redirects the customer’s browser after 
successfully processing the data in the order form. The WebSession object’s VID is 
available to you on the success page, because HOA passes it during the redirection. Pass 
that VID as the input parameter to this call, and retrieve the Transaction object created by 
HOA. Then, extract the contents of the Transaction object and include them, as 
appropriate, in the success page to be returned to the customer.

Input vid: the WebSession object’s Vindicia unique identifier for tracking the submission of the 
order form.

Output return: an object of type Return that indicates the success or failure of the call.

transaction: a Transaction object that was created by HOA as a result of an order form 
submitted by a customer.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 Missing required parameter 'vid'.

404 Unable to find requested Transaction: No matches.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 403



CashBox 5.0: API Reference Guide fetchByWebSessionVid
Example // to use the fetchByWebSessionVid call on a success web page

$webSessionVid = …; //passed in by redirected page
$soap = new WebSession($soapLogin, $soapPwd);
$response = $soap->fetchByVID($webSessionVid);

if ($response['returnCode'] == 200) {

$fetchedWs = $response['data']->session;

// check if the CashBox API call made by HOA was successful
$retCode = $fetchedWs->apiReturn->returnCode;
if ($retCode == 200) {

// Assuming HOA created a Transaction object, let's 
// fetch it
$soapTxn = new Transaction($soapLogin, $soapPwd);
$resp = $soapTxn->fetchByWebSessionVid($webSessionVid);

if ($resp['returnCode'] == 200) {
$createdTxn = $resp['data']->transaction;

// Get Transaction contents here to be included in
// HTML returned to the customer.

}
else {

// Return error message to customer
}

}
else {

// return failure page to customer
}

}
else {

// Return error message to the customer 
}

© 2014 Vindicia, Inc. Table of Contents The Transaction Object 404



CashBox 5.0: API Reference Guide fetchDelta
fetchDelta

The behavior of the fetchDelta() call is similar to that of fetchDeltaSince, except 
that you need not specify a timestamp as a parameter. CashBox tracks your calls to this 
method, and returns the Transaction objects whose status has changed since your last 
call. If you have never called this method, CashBox returns all Transactions created 
since January 1, 1970 (“epoch”). 

For paging, specify the page size only for this method. Like fetchDeltaSince, there is no 
need to increment through page numbers, because this call keeps a record of the last item 
returned to you in the previous call. Each time you make this call, the results will continue 
from the last position in the result set.

Input pageSize: the number of records to display per page per call. This value must be greater 
than 0.

Output return: an object of type Return that indicates the success or failure of the call.

transactions: an array of one or more Transaction objects whose status has changed 
since this method was last called.

startDate: the starting timestamp for the range of Transaction objects fetched.

endDate: the ending timestamp for the range of Transaction objects fetched.

Returns This method returns the codes listed in Table 1: Standard Return Codes.

Example $soap_tx = new Transaction();
$pageSize = 50;

do {
$ret = $soap_tx->fetchDelta ($pageSize);
$count = 0;
if ($ret['returnCode'] == 200) {

$fetchedTxns = $ret['transactions'];
if ($fetchedTxns != null) {

$count = sizeof($fetchedTxns);
foreach ($fetchedTxns as $txn) {

// process a fetched transaction here …
$status = $txn->statusLog[0]->status;
$transactionId = $txn->getMerchantTransactionId();
$amount = $txn->getAmount();

}
$page++;

}
}

} while ($count > 0); 

// quit when no more objects are retrieved
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 405



CashBox 5.0: API Reference Guide fetchDeltaSince
fetchDeltaSince

The fetchDeltaSince method returns one or more Transaction objects whose status 
has changed since the specified timestamp. Call this method to programmatically and 
periodically download Transactions from Vindicia for reconciliation with the payments 
deposited into your bank account by your payment processor, especially if you use CashBox 
for recurring billing only. In that case, because CashBox generates and processes all your 
transactions with your payment processor, you (may) have no records of them. For record-
keeping, reporting, or any other purpose, periodically synchronize your database with the 
Transactions in the Vindicia database by calling this method. 

Vindicia recommends that you call this method at regular intervals, and make note of the 
date and time, so that you can specify that as the timestamp for your next call. The 
appropriate interval for the calls depends on your transaction volume. If your volume is 
large, call this method more often to limit the amount of data you receive. You may also 
further filter and limit the number of transactions returned by specifying a payment method 
as another search criterion.

The fetchDeltaSince method supports paging to limit the number of records returned 
per call. Returning a large number of records in one call may swamp buffers and might 
cause a failure. Vindicia recommends that you call this method in a loop, incrementing the 
page for each loop iteration with an optimal page size (number of records returned in one 
call) until the page contains a number of records that is less than the given page size.

You may also download transaction-related reports from the CashBox Portal. See the 
CashBox User’s Guide for details.

Input timestamp: a timestamp that specifies the date and time on or after which the 
Transaction objects have changed status.

endTimestamp: a timestamp that specifies the upper limit of the date and time before which 
the Transaction objects have changed status.

page: the page number, starting at 0, for which to return the results. For example, if the total 
number of results is 85 and pageSize is 10:

• Specifying 0 for page gets the results from 1 through 10.

• Specifying 2 for page gets the results from 21 through 30.

pageSize: the number of records to display per page per call. This value must be greater 
than 0.

paymentMethod: a PaymentMethod object, an optional constraint that, if specified, 
restricts retrieval to only those Transaction objects whose source payment method 
matches the input. Identify the PaymentMethod with its VID or your payment method ID 
(merchantPaymentMethodId).

Output return: an object of type Return that indicates the success or failure of the call.

transactions: an array of one or more Transaction objects whose status has changed 
since the specified timestamp but before endTimestamp, if specified, and that use 
paymentMethod, if specified.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 406



CashBox 5.0: API Reference Guide fetchDeltaSince
Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $soap_tx = new Transaction();
$page = 0;
$pageSize = 50;

// Fetch transactions that have changed in status since the last time 
// this call was run. Assume we have a function available to us that 
// gives us the timestamp when the last time we ran this call.

$since = getLastCallTime(); 
do {

// we will not filter returned transactions by end timestamp 
// and payment method
$ret = $soap_tx->fetchDeltaSince($since, null, $page, 

$pageSize, null);
$count = 0;
if ($ret['returnCode'] == 200) {

$fetchedTxns = $ret['transactions'];
if ($fetchedTxns != null) {

$count = sizeof($fetchedTxns);
foreach ($fetchedTxns as $fetchedTx) {

// process a fetched transaction here …
$status = $fetchedTx->statusLog[0]->status;
$transactionId = 

$fetchedTx->getMerchantTransactionId();
$amount = $fetchedTx->getAmount();

}
$page++;

}
}

} while ($count > 0);

Return Code Return String

400 One of the following:

• Invalid Arguments - Must specify a valid payment 
method type, if using that option.

• Must specify a timestamp to find transactions newer 
than …

404 Not Found - No match found for the Payment Method.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 407



CashBox 5.0: API Reference Guide finalizeCustomerAction
finalizeCustomerAction

The finalizeCustomerAction method completes the authorization of a Hosted Page 
payment method validation transaction. Use this method only when working with a 
Transaction that is paid for with this payment method. 

Input transactionVid: Vindicia’s ID for the Transaction generated for a HostedPage payment 
method. This will be available to you through the URL when your customer is redirected to 
your site by the payment provider.

Output return: an object of type Return that indicates the success or failure of the call.

transaction: the resultant Transaction object after finalization. It contains the updated 
status of the transaction.

Returns This method returns the codes listed in Table 1: Standard Return Codes.

Example // Create a new Transaction with payment_product = 702
// The Transaction will be created with status: "New."
$tx = new_transaction($identifier, "702");

// Call authCapture on this transaction. 
// Note: There is no support for the auth call. 
// By definition, an auth request for Payment Methods 
// aggregated through Hosted Pages will result in 
// the transaction being captured. 
// The Transaction status will be changed to
// "PendingCustomerAction" until your customer completes 
// the payment on the hosted pages.

$rc = $trans->authCapture($trans, 0, 1, 1);

// Set the status of the Transaction to “AuthorizedPending” 
// in case of success.
$rc = $trans->finalizeCustomerAction($VID); 

Note: The customer’s Account must exist before calling 
finalizeCustomerAction.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 408



CashBox 5.0: API Reference Guide finalizePayPalAuth
finalizePayPalAuth

The finalizePayPalAuth method completes the authorization of a PayPal payment 
method validation transaction. Use this method only when working with a Transaction 
that is paid for with a PayPal-based payment method. The authCapture() call made to 
conduct a one-time transaction returns a PayPal site URL. Ask your customer to visit that 
URL so that they may complete the authorization process necessary to validate the payment 
method at PayPal’s site. 

After the customer finishes the authorization sequence at the PayPal website, and is 
redirected to your site by PayPal, call the finalizePayPalAuth method from either the 
success page (returnUrl specified in the PayPal payment method) or the failure page 
(cancelUrl specified in the payment method) to which the customer was redirected. This 
method enables you to tell CashBox the status of the Transaction, so that CashBox can 
move it out of its AuthorizationPending status. If authorized, CashBox sets the status 
of the transaction to Authorized, and then schedules it for capture.

For more information on applying tax to PayPal transactions, please see The Transaction 
Object’s addressAndSalesTaxFromPayPalOrder method.

Note: Billing Success emails will not be issued for the Transaction until this call is made.

Input payPalTransactionId: Vindicia’s ID for the PayPal payment method validation 
Transaction, generated when you called Transaction.capture. Retrieve this ID from 
the value associated with the name: vindicia_vid in the name–value pairs attached to 
the redirect URL.

success: set to true if the customer successfully authorized the validation transaction at 
PayPal’s site and was redirected to the success page (returnUrl) hosted by you. If the 
customer was redirected to the failure page (cancelUrl), set this to false.

Output return: an object of type Return that indicates the success or failure of the call.

transaction: the resultant Transaction object after finalization. It contains the updated 
status of the transaction.

Returns This method returns the codes listed in Table 1: Standard Return Codes.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 409



CashBox 5.0: API Reference Guide finalizePayPalAuth
Example $soap_caller = new Transaction();

// obtain the id of the PayPal transaction from the redirect URL. 
// It is the value associated with name 'vindicia_vid'

$payPalTxId = … ;

// if calling from return URL which is reached when the PayPal
// transaction is successfully authorized, set the
// success input parameter to true, from the cancelUrl,
// set it to false. Let's assume success here:

$success = true;
$response = 

$soap_caller->finalizePayPalAuth($payPalTxId, $success);

if($response['returnCode'] == 200) {
$txId = $response['transaction']->getMerchantTransactionId();
printLog "Transaction authorized: " . $txId;

}

© 2014 Vindicia, Inc. Table of Contents The Transaction Object 410



CashBox 5.0: API Reference Guide migrate
migrate

The migrate method allows you to enter Transactions, processed outside CashBox, to the 
CashBox database. Transactions imported to CashBox using this method are stored in 
the database. Those that are entered with a status of failed will be processed by CashBox 
according to your defined retry schedule.

Transactions entered using this method may be searched and analyzed, both through the 
CashBox UI, and using the Transaction.fetchDeltaSince method.

After migration, these Transactions will be processed and treated as if they originated with 
CashBox, allowing you to use this method to import historic billing information for your 
customers.

When you call this method to import a batch of Transactions, Vindicia queues the data, and 
then processes it in the order received, before adding it to the database. Lag time exists 
between the time you migrate a transaction, and the time it appears in the CashBox 
database and UI. The lag varies according to your transaction volume, and that of other 
merchants currently in the queue.

Vindicia recommends small batches for this call. If your migrated Transaction volume is 
high, call Transaction.migrate more often to reduce the amount of data sent in one 
call. (The optimal batch size depends on the total amount of data being sent.) To minimize 
timeouts, consider adjusting the timeout setting in the client library and the batch size for the 
call. 

Input migrationTransactions: an array of migrationTransaction objects to import to 
CashBox.

Output return: an object of type Return that indicates the success or failure of the call.

response: an array of TransactionValidationResponse objects.

Returns When you migrate a batch of Transactions, a return code of 200 means that CashBox has 
received your data and queued it for processing. During this process, if CashBox discovers 
problems with the data that prevent it from being added to the CashBox database, CashBox 

Note: While this method uses the same migrationTransaction 
subobject as the AutoBill.migrate method, the two methods 
require that different data members be populated.

Do not populate the following migrationTransaction data 
members for the Transaction.migrate call:

• autoBillCycle

• billingPlanCycle

• merchantBillingPlanId

Do not populate the following migrationTransactionItem data 
member for the Transaction.migrate call:

• merchantAutoBillItemId
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 411



CashBox 5.0: API Reference Guide migrate
attempts to correct the data. If the attempt fails, CashBox will ask you to correct the errors 
and might request that you report the data again.

The Return object also contains an attribute called soapId. For the migrate call to 
succeed, you must log the value of soapId. If, for some reason, the migrated 
Transactions do not make it into the CashBox database, provide the soapId value to 
CashBox to facilitate tracking of your batch in the CashBox system.

In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 One of the following:

• Unable to save transactions: error-description.
• (This code is returned if an error occurs in the processing of a 

transaction and it is the only transaction in the batch.)
• One or more Transaction migrations failed.
• Error descriptions provided in 

TransactionValidationResponse (contained in the 
response array of the return).
• Invalid field(s) for non-recurring Transaction 
Migration: (invalid fields)

Invalid MigrationTransaction fields (when calling 
Transaction.migrate): autoBillCycle, 
merchantBillingPlanId, billingPlanCycle, 
billingDate, retryNumber.

Invalid MigrationTransactionItem fields (when calling 
Transaction.migrate): servicePeriodStartDate, 
servicePeriodEndDate, merchantAutoBillItemId.

• Unable to prepare transaction for migration: error. 
• (Details provided in common AutoBill.migrate/
Transaction.migrate messages.)

400 One of the following:

• MigrationTransaction not provided.
• Invalid paymentProcessor: paymentProcessor.
• MigrationTransaction must include at least one 

statusLog record.
• Failed to convert salesTaxAddress.
• Attempt to migrate Transaction which already exists.
• Unsupported Payment Type: paymentType.
• Failed to prepare auth_response for Migrated 

Transactions.
• Unable to determine currency for migrated 

Transaction.
• Calculated Transaction amount (XXX.XX) does not match 

input amount (YYY.YY) on migrated Transaction.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 412



CashBox 5.0: API Reference Guide migrate
Example //To migrate a Transaction that has been processed via an external system

//Create the customer account objects
my $address = new Address();
$address->setAddr1('11235 Fibonacci St.');
$address->setCity('San Mateo');
$address->setCountry('US');
$address->setDistrict('CA');
$address->setName('Forest Chump');
$address->setPhone('(650) 555-1212x42');
$address->setPostalCode('94403');

my $creditCard = new CreditCard();
$creditCard->setAccount('4222261111112664');
$creditCard->setBin('22226');
$creditCard->setAccountLength(16);
$creditCard->setExpirationDate('201602');
$creditCard->setLastDigits

my $paymentMethod = new PaymentMethod();
$paymentMethod->setAccountHolderName('Forest Chump');
$paymentMethod->setActive(1);
$paymentMethod->setBillingAddress($address);
$paymentMethod->setCreditCard($creditCard);
$paymentMethod->setCustomerSpecifiedType('VI');
$paymentMethod->setMerchantPaymentMethodId('vi_1391721679');
$paymentMethod->setSortOrder(0);
$paymentMethod->setType('CreditCard');

my $account = new Account();
$account->setEmailAddress('devnull@devnull.com');
$account->setEmailTypePreference('html');
$account->setMerchantAccountId('maccid_1391721679');
$account->setName('Forest Chump');
$account->setPaymentMethods(array($paymentMethod));
$account->setShippingAddress($address);

//Create the Transaction objects
$taxItemA = new MigrationTaxItem();
$taxItemA->setAmount(.38);
$taxItemA->setJurisdiction('COUNTY_19');
$taxItemA->setName('SALES TAX');

$taxItemB = new MigrationTaxItem();
$taxItemB->setAmount(2.75);
$taxItemB->setJurisdiction('DISTRICT');
$taxItemB->setName('CA DISTRICT SALES TAX');

$txItem = new MigrationTransactionItem();
$txItem->setItemType('NonRecurringCharge');
$txItem->setMigrationTaxItems(array($taxItemA, $taxItemB));
$txItem->setName('PetrifiedVomitOnAStick');
$txItem->setPrice(49.99);
$txItem->setSku('CB-4081');
$txItem->setTaxClassification('DC010500');  
// This should be the Avalara tax code associated with this product
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 413



CashBox 5.0: API Reference Guide migrate
$creditCardStatusA = new CreditCardStatus();
$creditCardStatusA->setAuthCode('000');
$statusLogA = new TransactionStatus();
$statusLogA->setCreditCardStatus($creditCardStatusA);
$statusLogA->setPaymentMethodType('CreditCard');
$statusLogA->setStatus('Captured');
$statusLogA->setTimestamp('2014-02-06T13:22:16-08:00');

$creditCardStatusB = new CreditCardStatus();
$creditCardStatusB->setAutCode('000');
$statusLogB = new TransactionStatus();
$statusLogB->setCreditCardStatus($creditCardStatusB);
$statusLogB->setPaymentMethodType('CreditCard');
$statusLogB->setStatus('Authorized');
$statusLogB->setTimestamp('2014-02-06T13:21:33-08:00');

$statusLogC = new TransactionStatus();
$statusLogC->setPaymentMethodType('CreditCard');
$statusLogC->setStatus('New');
$statusLogC->setTimestamp('2014-02-06T13:21:23-08:00');

$migrationTransaction = new MigrationTransaction();
$migrationTransaction->setAccount($account);
$migrationTransaction->setAmount(41.08);
$migrationTransaction->setCurrency('USD');
$migrationTransaction->setDivisionNumber('iAmTheWalrus');
$migrationTransaction->setMerchantAffiliateId('Joe');
$migrationTransaction->setMerchantAffiliateSubId('Bob');
$migrationTransaction->setMerchantTransactionId('mTXID-1391721679-1');
$migrationTransaction->setMigrationTransactionItems(array($txItem));
$migrationTransaction->setPaymentMethod($paymentMethod);
$migrationTransaction->setPaymentProcessor('Litle');
$migrationTransaction->setPaymentProcessorTransactionId('1069127');
$migrationTransaction->setSalesTaxAddress($address);
$migrationTransaction->setShippingAddress($address);
$migrationTransaction->setSourceIp('63.201.132.182');
$migrationTransaction->setStatusLog(array($statusLogA, $statusLogB, 
$statusLogC));
$migrationTransaction->setType('NonRecurring');

//Migrate Transaction into CashBox
$response = $transaction->migrate(array($migrationTransaction));
if($response['returnCode'] == 200)
{

//Transaction(s) migrated successfully
}
else
{

//One or more Transaction migrations failed.
//Rummage through the TransactionValidationResponse objects 
//in the $response to determine the source of the problem(s)

}

© 2014 Vindicia, Inc. Table of Contents The Transaction Object 414



CashBox 5.0: API Reference Guide score
score

The score method evaluates the chargeback probability score (also called risk score) for 
the Transaction object specified in the input, and stores the object in the Vindicia 
database.

Scoring a transaction before accepting it is a recommended best practice in the payment 
industry. It helps keep your costs low by:

• Avoiding payment processor fees for authorization calls to the processor for 
transactions which your processor will not approve.

• Keeping your chargeback rate low. Processing and disputing chargebacks can be 
expensive. Payment processors typically require that you keep a very low chargeback 
rate.

The risk score is most applicable if the transaction’s payment method is credit card.

This call evaluates the risk score by examining several elements, including:

• The IP address of the origin of the transaction:

• Whether the transaction originated from a proxy IP address known to Vindicia as an 
originator of fraudulent, malicious transactions.

• How the geolocation of the IP address compares with the transaction’s billing 
address.

• The billing and shipping addresses:

• Whether a transaction’s billing address or shipping address (or both) is known for 
being a fraudulent mail drop.

• Whether the country of the address is a country known for the origin of fraudulent 
transactions.

• The BIN (the first six digits the credit-card number), which provides information on the 
bank that issued the credit card: whether the country of the billing address matches that 
of the issuing bank.

• The customer’s email address: whether it is from a free email provider, and if the email 
address has been associated with high–risk or fraudulent transactions.

• The credit-card account: whether the Vindicia database shows a previous chargeback 
against the transaction or the credit card used to pay for it. If so, score() returns the 
highest score of 100.

Call score() in these circumstances:

• If you subscribe to ChargeGuard only, that is, if you process your transactions outside of 
Vindicia and need to report them to Vindicia for chargeback dispute only, call this 
method to screen a transaction for fraud risk before processing it, and to simultaneously 
record it in the Vindicia database, saving you a separate reporting step. 

• If you process one-time transactions through CashBox, call this method to screen a 
transaction before processing it with your payment processor. 

Note: The score method initiates the CashBox risk-screening service. Be 
certain to subscribe to that service before calling score.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 415



CashBox 5.0: API Reference Guide score
This call requires that your transaction contain at least the following information:

• Source IP address

• Billing address: 

• City

• District (state or province). If states or provinces do not exist in the country in 
question, fill in the field with None.

• Country

A risk score of 100 indicates that Vindicia is certain that the transaction is fraudulent and will 
result in a chargeback; a risk score of 0 means that the transaction is sound with a minimal 
likelihood of chargeback. You must decide the score level that you can tolerate. If you pick a 
high threshold, you might end up accepting many fraudulent transactions that will result in 
chargebacks. On the other hand, a low threshold might cause you to reject potentially good 
transactions and lose revenue. Selecting the right threshold for your risk score takes a bit of 
work. We recommend that you watch the scores on both the legitimate and fraudulent 
transactions before setting the threshold. 

You can also indirectly screen transactions for risk by calling the Transaction object’s 
auth() method or the AutoBill object’s update() method. See the 
minChargebackProbability parameter supported by these methods.

In addition to returning the risk score, the score() method also returns descriptive strings 
that explain the score. Those strings have associated codes (IDs) called ScoreCode 
objects, listed in Table 18-21. Use these score codes to trigger certain actions in your 
application, such as in customer messaging, especially if you are rejecting a transaction 
because of a high risk score.

Table 18-21 Score Code Descriptions

Score Code (ID) Description

14 The city and state in the shipping address do not match the ZIP code.

15 The city and state in the billing address do not match the ZIP code.

16 The shipping address is in the database of known risky mail drops.

21 The country of the issuing bank does not match the country of the billing 
address.

31 The password is in the database of high-risk passwords.

32 The user name is in the database of high-risk user names.

41 The email address is in the database of high-risk email addresses.

42 The email address is from a free email provider.

51 The IP address is in the database of known transparent proxy servers.

52 The IP address is an anonymous proxy.

63 The country of the IP address or billing address is a high-risk country.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 416



CashBox 5.0: API Reference Guide score
Input transaction: the Transaction object to score.

Output return: an object of type Return that indicates the success or failure of the call.

transaction: a copy of the specified Transaction object, identified with a VID if not 
included in the input.

score: the Transaction object’s fraud risk score, which represents the estimated 
probability that this transaction will result in a chargeback. This number ranges from 0 (best) 
to 100 (worst). It can also be -1, meaning that Vindicia has no opinion. In particular, -1 
applies to transactions with no originating IP addresses, incomplete addresses, or both. A 
score of -2 indicates an error; retry later.

If the score is not acceptable, you might want to contact the customer for more 
information, and then call this method again for another score.

scoreCodes: an array of ScoreCode objects that explain the score. Each object contains 
two attributes: id and description. See Table 18-21: Score Code Descriptions for 
details.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $tx = new Transaction();
$tx->setAmount('29.90');
$tx->setCurrency('USD');
$tx->setMerchantTransactionId('txid-123456');

// IP is one of required attributes for scoring a transaction
$tx->setSourceIp('35.45.123.158');

$account = new Account();
$account->setMerchantAccountId('9876-5432');
$account->setEmailAddress('jdoe@mail.com');
$account->setName('J Doe');
$tx->setAccount($account);

$shippingAddress = new Address();

64 The distance between the IP address and billing address is XX kilome-
ters.

65 The IP address and billing address are in different countries.

71 The Account object is associated with known fraudulent (friendly or 
true-fraud) chargebacks.

Table 18-21 Score Code Descriptions  (Continued)

Score Code (ID) Description

Return Code Return String

400 One of the following:

• Unable to save transactions: error-description.
• Data validation error: error-description.
© 2014 Vindicia, Inc. Table of Contents The Transaction Object 417



CashBox 5.0: API Reference Guide score
$shippingAddress->setName('Jane Doe');
$shippingAddress->setAddr1('44 Elm St.');
$shippingAddress->setCity('San Mateo');
$shippingAddress->setDistrict('CA');
$shippingAddress->setPostalCode('94403');
$shippingAddress->setCountry('US');

$tx->setShippingAddress($shippingAddress);

// The line items of the transaction
$tx_item = new TransactionItem();
$tx_item->setSku('sku-1234');
$tx_item->setName('Widget');
$tx_item->setPrice('3.30');
$tx_item->setQuantity('3');
$tx->setTransactionItems(array($tx_item));

$paymentMethod = new PaymentMethod();
$ccCard = new CreditCard();
$ccCard->setAccount('4111111111111111');
$ccCard->setExpirationDate('201109');
$paymentMethod->setType('CreditCard');
$paymentMethod->setCreditCard($ccCard);

// Billing address city, district, country are required for score 
// call to work
$paymentMethod->setBillingAddress($shippingAddress);

$tx->setSourcePaymentMethod($paymentMethod); 

$response = $tx->score();

if ($response['returnCode'] == 200) {
if($response['score']->score <= 50) {

print "Acceptable score, processing transaction";
// process the transaction further here

}
else {

print "High risk of chargeback. Reasons are: \n";
$scoreCodes = $response['scoreCodes'];
foreach ($scoreCodes as $scoreCode) {

print("Score code ". $scoreCode['id'] . " : " . 
$scoreCode['description'] . "\n");

}
}

}
else {

// the score call did not succeed, check return code 
// and return string and try to re-submit

}

© 2014 Vindicia, Inc. Table of Contents The Transaction Object 418



CashBox 5.0: API Reference Guide score
19 The WebSession Object

Create WebSession objects, in the context of Vindicia’s HOA function, in anticipation of the 
submission of the Web order form by a customer who requested the form from your server. 
While filling out the form, the customer enters sensitive payment data, such as a credit-card 
numbers, before submitting the form to HOA, which is hosted on Vindicia’s server. Handling 
such data might mean that you must comply with PCI requirements. With HOA, however, 
your billing infrastructure need not handle any payment data at all. See Chapter 13: Hosted 
Order Automation in the CashBox Programming Guide, for details.

Note that the WebSession object is only partly populated at creation. It might, for example, 
contain private data that you do not want to be visible in the form that you serve to the 
customer, but that is needed for the API call made by HOA at form submission. One key 
piece of data you must include in the WebSession object is the CashBox API call (see the 
method attribute) HOA should make when the customer submits the form. Once created, 
the WebSession object contains a VID. Embed that VID in the form you serve to the 
customer so that HOA can match the form’s submission with the corresponding 
WebSession object instance.

After form submission by the customer, HOA makes the API call you specified in the 
WebSession object’s method attribute to create an object that requires sensitive payment 
information, such as an AutoBill, a PaymentMethod, or a Transaction. Fetch the 
WebSession object by calling its fetchByVid() method, typically before returning the 
success or failure page to the customer: HOA redirects the customer’s browser to one of 
those pages after receiving the form. See Chapter 13: Hosted Order Automation in the 
CashBox Programming Guide for details on the role of the WebSession object in the 
HOA process flow.
© 2014 Vindicia, Inc. Table of Contents The WebSession Object 419



CashBox 5.0: API Reference Guide WebSession Data Members
19.1 WebSession Data Members

The following table lists and describes the data members of the WebSession object. 

Table 19-1 WebSession Object Data Members

Data Members Data Type Description

apiReturn Return Read-only. The Return object returned to HOA by the API call speci-
fied in the method attribute. This attribute is available only after the 
WebSession object is finalized.

errorURL string Optional. The URL of your site’s dynamic page, to which HOA redirects 
the customer’s browser at form submission if initial validation (e.g. credit 
card Luhn check, expiration date does not begin with 20 ) of the form 
contents fails.

While redirecting the customer’s browser to this page, HOA includes the 
VID of the WebSession object. On this page, fetch the WebSession 
object with that VID as the search criterion, and extract the reason why 
HOA’s call failed, available through the returnString and return-
Code attributes. Use this string to create a failure message to send to 
the customer in HTML.

If you do not specify this attribute, HOA uses the returnURL value.

expireTime dateTime Read-only. The timestamp of when this WebSession object expires. 
WebSession objects are valid (by default) for one hour. If the customer 
submits the order form after that time, HOA redirects the customer’s 
browser to the page specified by errorURL.

When you fetch a WebSession object, if the current time is past this 
timestamp and the returnCode and returnString attributes are not 
populated in the WebSession object, assume that the customer never 
submitted the form, and that the WebSession object is no longer valid.

ipAddress string Required. The IP address from which the customer requested the order 
form. When the customer submits the form, HOA checks if the submis-
sion originated from the same IP address. If not, HOA does not make 
the API call specified in the method attribute. Instead, it updates the 
WebSession object with the error return code 401, and the return string 
“IP address does not match value associated with WebSession,” and 
redirects the customer’s browser to the page specified by errorURL.

method string Required. The CashBox API call made by HOA at form submission. 
The data loaded in the privateFormValues data member of this 
WebSession object and the data submitted through the form should be 
relevant to this call.

CashBox supports the AutoBill.update, Transaction.auth, 
Transaction.authCapture, and PaymentMethod.update calls. 
To specify a call in this string, concatenate the object name with the 
method name separated by an underscore, and omit the parentheses, 
for example, Transaction_authCapture.
© 2014 Vindicia, Inc. Table of Contents The WebSession Object 420



CashBox 5.0: API Reference Guide WebSession Data Members
methodParamVal-
ues

NameValuePair[] Optional. The values for some of the parameters required by HOA to 
make the API call specified in the method attribute. To avoid hacking, 
include them here to exclude them at form submission.

For example, if the call is AutoBill.update, exclude the tolerance 
threshold in the risk score (minChargebackProbability) at form 
submission. The name for the value is the flattened object name, meth-
od name, and parameter name, concatenated with an underscore, for 
example, AutoBill_Update_minChargebackProbability.

See Section 10: The NameValuePair Object.

nameValues NameValuePair[] Optional. The name–value pairs to include in the objects created by 
HOA through the API call specified in the method attribute. Include this 
attribute when initializing the WebSession object. For example, if that 
call creates an AutoBill object and you want the latter’s transactions 
to be routed to your payment processor under a specific division ID, in-
clude that ID in this name–value pair with the name vin:Division.

See Section 10: The NameValuePair Object.

postValues NameValuePair[] Read-only. The name-value pairs stored by HOA in the corresponding 
WebSession object at form submission by the customer if you include 
non-Vindicia form elements, those with no vin prefix in their names, in 
the order form. On your success or failure page, extract these pairs from 
the WebSession object you fetch.

See Section 10: The NameValuePair Object.

Table 19-1 WebSession Object Data Members  (Continued)

Data Members Data Type Description
© 2014 Vindicia, Inc. Table of Contents The WebSession Object 421



CashBox 5.0: API Reference Guide WebSession Data Members
privateFormVal-
ues

NameValuePair[] Optional. The object attribute values required by HOA to complete the 
API call specified in the method attribute at form submission. Once this 
attribute is populated, your application need not pass the related data to 
the form, which secures it against hacking.

For example, if the call is AutoBill.update, specify the customer ac-
count to which the call applies by populating this attribute with the Ac-
count object’s VID. That way, hackers cannot change that VID in the 
form, because HOA looks it up only in this data member, privateFor-
mValues, instead of from the data in the form.

Also, if a Vindicia form element can have only one of several values, in-
clude all the values in privateFormValues. That way, HOA can verify 
the validity of the form element’s value at form submission. For exam-
ple, when creating an AutoBill object, to enable the customer to 
choose only one of two billing plans, include the IDs of the two billing 
plans in this attribute. Afterwards, embed two radio buttons in the form 
with the same values. 

The names of the form elements should match the names in this attri-
bute. The names for these pairs follow the same convention as that for 
order-form elements; see Chapter 13: Hosted Order Automation in the 
CashBox Programming Guide.

Note: Commas are a special reserved character for use in this data 
member, and should be used only as a separator between multiple pos-
sible values for the name of a name-value pair.

For example, to create an HOA order form which allows your customer 
to choose between three Billing Plans with billingPlanId gold, sil-
ver, and platinum, use the privateFormValues to populate the fol-
lowing name-value pair when initiating the WebSession object:

vin_BillingPlan_merchantBillingPlanId =
gold,silver,platinum

Then, in the web order form presented to the customer, include a multi-
ple choice field with name 
vin_BillingPlan_merchantBillingPlanId. This field will allow 
your customer to choose one value from the three offered: gold, silver, 
and platinum.

Do not use commas as values in the privateFormValues for any other 
purpose.

See Section 10: The NameValuePair Object.

returnURL string Required. The complete URL of your site’s dynamic page, to which 
HOA redirects the customer’s browser at form submission, after HOA 
has successfully made the API call specified in the method attribute.

While redirecting the customer’s browser to this page, HOA includes the 
VID of the WebSession object. In your code to construct this page, 
fetch the WebSession object with its VID as the search criterion, and 
the CashBox object created by the API call specified in the method at-
tribute. Afterwards, extract the information from the fetched objects and 
create a success message in HTML to send to the customer.

Table 19-1 WebSession Object Data Members  (Continued)

Data Members Data Type Description
© 2014 Vindicia, Inc. Table of Contents The WebSession Object 422



CashBox 5.0: API Reference Guide WebSession Data Members
version string The CashBox API version HOA should use for the call specified in the 
method attribute. This value must be 3.3 or higher.

VID string Vindicia's Globally Unique Identifier (GUID) for this object. When creat-
ing a new WebSession object, leave this field blank; it will be automati-
cally populated by CashBox.

We suggest that you embed the VID as a hidden form element named 
vin_WebSession_vid in the order form you present to the customer. 
That way, when the customer submits the form, HOA can load the cor-
responding WebSession object.

Table 19-1 WebSession Object Data Members  (Continued)

Data Members Data Type Description
© 2014 Vindicia, Inc. Table of Contents The WebSession Object 423



CashBox 5.0: API Reference Guide WebSession Methods
19.2 WebSession Methods

The following table lists and summarizes the methods for the WebSession object.

Table 19-2 WebSession Object Methods

Method Description

fetchByVid Returns an existing WebSession object whose VID matches the input VID.

finalize Completes HOA activity by instructing HOA to make the API call to create 
CashBox objects containing sensitive payment data. Uses data submitted by 
the order form.

initialize Creates a WebSession object.

Note: As with all other CashBox methods, be certain to pass all required 
parameters. Do not rely on CashBox supplying a default value for 
your method parameters.
© 2014 Vindicia, Inc. Table of Contents The WebSession Object 424



CashBox 5.0: API Reference Guide fetchByVid
fetchByVid

The fetchByVid method returns an existing WebSession object that matches the input 
VID. Make this call from the success or failure page, to which HOA redirects the customer’s 
browser after form submission, and after HOA has created the object according to the 
corresponding WebSession object’s method attribute. HOA includes the WebSession 
object’s VID in the redirection URL to make the VID available to you in your success or 
failure page code.

Input vid: the WebSession object’s Vindicia identifier, which serves as the search criterion. This 
VID corresponds to the vin_WebSession_vid element in the order form submitted by the 
customer to HOA.

Output return: an object of type Return that indicates the success or failure of the call.

session: the WebSession object that matches the input VID.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example $sessionId = …; //passed in by redirected page

$soap = new WebSession($soapLogin, $soapPwd);

$response = $soap->fetchByVID($sessionId);
if ($response['returnCode'] == 200) {

$fetchedWs = $response['data']->session;

// Extract non-Vindicia values submitted by the web order form
// and process them to prepare the HTML to be returned to
// the customer
$postVals = $fetchedWs->getPostValues()

// Assuming HOA created an AutoBill object, let's fetch it
$soapAbill = new AutoBill($soapLogin, $soapPwd);
$resp = $soapAbill->fetchByWebSessionVid($sessionId);

if ($resp['returnCode'] == 200) {
$createdAutoBill = $resp['data']->autobill;

// Get AutoBill contents here to be included in
// HTML returned to the customer.

}
else {

// Return error message to customer
}

}
else {

// Return error message to the customer
} 

Return Code Return String

400 No VID specified to load session by.

404 Unable to load session: No match for VID vid.

500 Unable to load session by VID vid: error-description.
© 2014 Vindicia, Inc. Table of Contents The WebSession Object 425



CashBox 5.0: API Reference Guide finalize
finalize

The finalize method instructs Vindicia’s Hosted Order Automation solution (HOA) to 
make the API call you specified in the WebSession object’s method attribute to create 
CashBox objects containing sensitive payment data. Before you make this call, HOA has all 
the necessary data to create the CashBox objects available to it through the attributes of the 
WebSession object you populated when you initialized it, and the data the customer 
submits on the order form. 

Call this method from the success page to which HOA redirects the customer’s browser after 
that customer submits the order form containing sensitive payment information. Specify the 
URL of the success page in the returnURL attribute of the WebSession object when you 
initialize the WebSession object after the customer requests the form. When the customer 
submits the form, HOA receives the form data and stores it before redirecting the customer’s 
browser to the success page. The VID of the WebSession object embedded in the form 
identifies the context in which the customer submitted the form. It is available to you in your 
success page as a parameter to the redirected URL. Thus, in your success page code you 
know which WebSession object instance you should finalize.

When you call finalize() on the WebSession object, HOA not only makes the API call 
specified in the WebSession object’s method attribute, but also updates the WebSession 
object with results of the API call it made. These results are available to you in the updated 
WebSession object that is included in the response of this call (check the returnCode and 
returnString attributes of the WebSession object). Examine the results to determine the 
content of the customer’s browser page that awaits the response to the form submission.

Input session: the WebSession object to finalize. Include the VID of the object here. HOA 
passes this VID in as a URL parameter when it redirects the customer’s browser to your 
success page from which you made this call.

Output return: an object of type Return that indicates the success or failure of the call.

session: the WebSession object updated with results of the CashBox API call specified in 
the method attribute, which HOA makes as a result of this call to create CashBox objects 
containing sensitive payment data.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Return Code Return String

400 One of the following:

• Unable to load session: error-description.
• Must specify a WebSession to finalize!
© 2014 Vindicia, Inc. Table of Contents The WebSession Object 426



CashBox 5.0: API Reference Guide finalize
Example $sessionId = …; //passed in by redirected page

$ws = new WebSession($soapLogin, $soapPwd);
$ws->setVID($sessionId);

// finalize the WebSession so HOA can make the API call to
// create CashBox object/s containing sensitive payment
// information

$response = $ws->finalize();

if ($response['returnCode'] == 200) {

$updatedWs = $response['data']->session;

// Check if the API call HOA made to create the 
// CashBox object containing sensitive payment 
// data succeeded

if ($updatedWs->apiReturn->returnCode == 200) {

// Extract non-Vindicia values submitted by the web 
// order form and process them to prepare the HTML to 
// be returned to the customer

$postVals = $updatedWs->getPostValues()

// Assuming HOA created an AutoBill object, let's fetch it

$soapAbill = new AutoBill($soapLogin, $soapPwd);
$resp = $soapAbill->fetchByWebSessionVid($sessionId);

if ($resp['returnCode'] == 200) {
$createdAutoBill = $resp['data']->autobill;

// Get AutoBill contents here to be included in
// HTML returned to the customer.

}
}
else {

// The API call HOA made to create or manipulate object 
// containing sensitive payment data did not succeed.
// Return error message to customer

$errorString = 
$updatedWs->apiReturn->returnString();

…

}
}
else {

// Finalization failed
// Return error message to the customer 

}

© 2014 Vindicia, Inc. Table of Contents The WebSession Object 427



CashBox 5.0: API Reference Guide initialize
initialize

The initialize method creates a WebSession object. Call this method before 
presenting your HOA-based Web order form to your customer. The call returns the new 
WebSession object with a populated VID attribute. Embed that VID in the order form as a 
hidden form element with the name vin_WebSession_vid to make it available to HOA at 
form submission.

To create a WebSession object, set the values for its data members (see Section 19.1: 
WebSession Data Members) and then call initialize() to store the changes in the 
Vindicia database. Do not set a value for VID because CashBox automatically generates 
that when you call initialize(). 

Input session: the WebSession object to create.

Output return: an object of type Return that indicates the success or failure of the call.

session: the WebSession object that contains the data that you passed, the VID, and the 
expireTime value assigned by CashBox.

Returns In addition to those listed in Table 1: Standard Return Codes, this call returns: 

Example // to create a WebSession object

$ws = new WebSession();

// HOA should make an AutoBill.update call when the form is submitted

$ws->setMethod('AutoBill_Update');

// Customer's IP address. When customer submits the form
// it should come from the same IP address
$ws->setIpAddress("124.23.210.175");

// Page to which HOA will redirect customer's browser 
// after successfully making the AutoBill.update call when the 
// customer submits the form
$ws->setReturnURL("https://merchant.com/subscribe/success.php");

// Page to which HOA will redirect customer's browser
// if the AutoBill.update call it makes when the customer submits
// the form unsuccessful

$ws->setErrorURL("https://merchant.com/subscribe/failed.php");

Return Code Return String

402 One of the following:

• Missing required parameter: version version.
• Invalid parameter: Unsupported version.
• Missing required parameter: method.
• Invalid parameter: Unsupported method.
• Missing required parameter: returnURL.
© 2014 Vindicia, Inc. Table of Contents The WebSession Object 428



CashBox 5.0: API Reference Guide initialize
// Private name values pairs. These are needed to create the
// AutoBill object, but we do not want them to appear in the
// form the customer fills in

$pnv1 = new NameValuePair();

// The name is flattened Object name concatenated
// with attribute names with an underscore. 

// The CashBox Account object for which HOA should create the
// AutoBill object
$pnv1->setName('Account_VID');
$pnv1->setValue('36c8de2cb74b2c2b08b259cf231ac8d90d1bb3b8'); 

// The CashBox Product object HOA should use in constructing
// the AutoBill object
$pnv2 = new NameValuePair();
$pnv2->setName('Product_merchantProductId');
$pnv2->setValue('StartWars II'); 

$pnv3 = new NameValuePair();
$pnv3->setName('vin_BillingPlan_merchantBillingPlanId');

// When customer submits the form, the billing plan
// should be one of the two comma separated values
$pnv3->setValue('GoldAccess2010, PlatinumAccess2010'); 

$ws->setPrivateFormValues(array($pnv1, $pnv2, $pnv3));

// Method parameter name values pairs. These are needed to make the 
// AutoBill.update call which takes parameters in addition to the 
// AutoBill object itself. We do not want these to come from the form 
// submission because that makes them susceptible to hacking

$mpnv1 = new NameValuePair();

// The name is flattened object name, method name, and parameter 
// name concatenated with an underscore. 

$mpnv1->setName('AutoBill_Update_minChargebackProbability');
$mpnv1->setValue('80'); 

// Leave other parameter values to their default values
$ws->setMethodParamValues(array($mpnv1));

// Now create the WebSession object on Vindicia servers
// by making the SOAP call to initialize the object

$response = $ws->initialize();

if ($response->['returnCode'] == 200) {

$ret_ws = $response['data']->session;

// The VID of the WebSession object serves as session id

$sessionId = $ret_ws->getVID();

// Embed the sessionId as hidden field in the order web form
// Compose and present the order web form here

}
else {
// Return error to the customer who requested the web order form
}

© 2014 Vindicia, Inc. Table of Contents The WebSession Object 429


	CashBox® API Guide Preface
	CashBox API Overview

	1 The Account Object
	1.1 Account Object Hierarchies
	1.2 Account Data Members
	1.3 Account Subobjects
	Credit Subobject
	CurrencyAmount Subobject
	EmailPreference Subobject
	TaxExemption Subobject
	TimeInterval Subobject
	TokenAmount Subobject

	1.4 Account Methods
	addChildren
	decrementTokens
	extendEntitlementByInterval
	extendEntitlementToDate
	fetchAllCreditHistory
	fetchByEmail
	fetchByMerchantAccountId
	fetchByPaymentMethod
	fetchByVid
	fetchByWebSessionVid
	fetchCreditHistory
	fetchFamily
	grantCredit
	grantEntitlement
	incrementTokens
	isEntitled
	makePayment
	redeemGiftCard
	removeChildren
	reversePayment
	revokeCredit
	revokeEntitlement
	stopAutoBilling
	tokenBalance
	tokenTransaction
	transfer
	transferCredit
	update
	updatePaymentMethod


	2 The Activity Object
	2.1 Activity Data Members
	2.2 Activity Subobjects
	ActivityCallType Subobject
	ActivityCancelInitType Subobject
	ActivityCancellation Subobject
	ActivityEmailContact Subobject
	ActivityFulfillment Subobject
	ActivityLogin Subobject
	ActivityLogout Subobject
	ActivityNamedValue Subobject
	ActivityNote Subobject
	ActivityPhoneContact Subobject
	ActivityType Subobject
	ActivityTypeArg Subobject
	ActivityURIView Subobject
	ActivityUsage Subobject

	2.3 Activity Method
	record


	3 The Address Object
	3.1 Address Data Members
	3.2 Address Methods
	fetchByVid
	update


	4 The AutoBill Object
	4.1 AutoBill Data Members
	4.2 AutoBill Subobjects
	AutoBillItem Subobject
	AutoBillItemModification Subobject
	AutoBillStatus Subobject
	BillingPlanHistoryRecord Subobject
	PaymentDetails Subobject

	4.3 AutoBill Methods
	addCampaign
	addCharge
	cancel
	changeBillingDayOfMonth
	delayBillingByDays
	delayBillingToDate
	fetchAllCreditHistory
	fetchAllInSeason
	fetchAllOffSeason
	fetchByAccount
	fetchByAccountAndProduct
	fetchByEmail
	fetchByMerchantAutoBillId
	fetchByVid
	fetchByWebSessionVid
	fetchCreditHistory
	fetchDailyInvoiceBillings
	fetchDeltaSince
	fetchFutureRebills
	fetchInvoice
	fetchInvoiceNumbers
	fetchRemainingPaymentDetails
	fetchUpgradeHistoryByMerchantAutoBillId
	fetchUpgradeHistoryByVid
	finalizeCustomerAction
	finalizePayPalAuth
	grantCredit
	makePayment
	migrate
	modify
	redeemGiftCard
	reversePayment
	revokeCredit
	update
	writeOffInvoice


	5 The BillingPlan Object
	5.1 BillingPlan Data Members
	5.2 BillingPlan Subobjects
	BillingPlanPeriod Subobject
	BillingPlanPeriodType Subobject
	BillingPlanPrice Subobject
	BillingPlanStatus Subobject

	5.3 BillingPlan Methods
	fetchAll
	fetchAllInSeason
	fetchAllOffSeason
	fetchByBillingPlanStatus
	fetchByMerchantBillingPlanId
	fetchByMerchantEntitlementId
	fetchByVid
	update


	6 The Campaign Object
	6.1 Campaign Data Members
	6.2 Campaign Related Object
	CouponCode Object

	6.3 Campaign Methods
	activateCampaign
	activateCode
	cancelCampaign
	deactivateCampaign
	fetchAllCampaigns
	fetchByCampaignId
	fetchByVid
	retrieveCouponCodes
	validateCode


	7 The Chargeback Object
	7.1 Chargeback Data Members
	7.2 Chargeback Methods
	fetchByCaseNumber and fetchByReferenceNumber
	fetchByMerchantTransactionId
	fetchByStatus
	fetchByStatusSince
	fetchByVid
	fetchDelta
	fetchDeltaSince
	report
	update


	8 The Entitlement Object
	8.1 Entitlement Data Members
	8.2 Entitlement Methods
	fetchByAccount
	fetchByEntitlementIdAndAccount
	fetchDeltaSince


	9 The GiftCard Object
	9.1 GiftCard Data Members
	9.2 GiftCard Subobjects
	GiftCardStatus Subobject
	GiftCardStatusType Subobject

	9.3 GiftCard Methods
	reverse
	statusInquiry


	10 The NameValuePair Object
	10.1 NameValuePair Data Members
	10.2 NameValuePair Methods
	fetchNameValueNames
	fetchNameValueTypes


	11 The PaymentMethod Object
	11.1 PaymentMethod Data Members
	11.2 PaymentMethod Subobjects
	Boleto Subobject
	CarrierBilling Subobject
	CreditCard Subobject
	DirectDebit Subobject
	ECP Subobject
	ExtendedCardAttributes Subobject
	HostedPage Subobject
	MerchantAcceptedPayment Subobject
	PaymentMethodType Subobject
	PayPal Subobject
	PhoneNumber Subobject
	PriceCriteria Subobject

	11.3 PaymentMethod Methods
	fetchByAccount
	fetchByMerchantPaymentMethodId
	fetchByVid
	fetchByWebSessionVid
	update
	validate


	12 The PaymentProvider Object
	12.1 PaymentProvider Data Members
	12.2 PaymentProvider Methods
	dataRequest
	fetchByName


	13 The Product Object
	13.1 Product Data Members
	13.2 Product Subobjects
	ProductDescription Subobject
	ProductPrice Subobject
	ProductStatus Subobject

	13.3 Product Methods
	fetchAll
	fetchByAccount
	fetchByMerchantEntitlementId
	fetchByMerchantProductId
	fetchByVid
	update


	14 The RatePlan Object
	14.1 RatePlan Data Members
	14.2 RatePlan Subobjects
	Event Subobject
	RatedUnitSummary Subobject
	RatePlanTier Subobject

	14.3 RatePlan Methods
	deductEvent
	fetchAll
	fetchByMerchantRatePlanId
	fetchByVid
	fetchEventById
	fetchEventByVid
	fetchEvents
	fetchUnbilledEvents
	fetchUnbilledRatedUnitsTotal
	recordEvent
	reverseEvent


	15 The Refund Object
	15.1 Refund Data Members
	15.2 Refund Subobject
	RefundTokenAction Subobject

	15.3 Refund Methods
	fetchByAccount
	fetchByTransaction
	fetchByVid
	fetchDeltaSince
	perform
	report


	16 The SeasonSet Object
	16.1 SeasonSet Data Members
	16.2 SeasonSet Methods
	fetchAll
	fetchAllInSeason
	fetchAllOffSeason
	fetchByMerchantSeasonSetId
	fetchByVid
	fetchCurrentSeason
	fetchNextSeason
	isInSeason
	update


	17 The Token Object
	17.1 Token Data Members
	17.2 Token Methods
	fetch
	update


	18 The Transaction Object
	18.1 Transaction Data Members
	18.2 Transaction Subobjects
	AVSMatchType Subobject
	MigrationTaxItem Subobject
	MigrationTransaction Subobject
	MigrationTransactionItem Subobject
	MigrationTransactionType Subobject
	TransactionItem Subobject
	TransactionStatus Subobject
	TransactionStatusBoleto Subobject
	TransactionStatusCreditCard Subobject
	TransactionStatusECP Subobject
	TransactionStatusHostedPage Subobject
	TransactionStatusPayPal Subobject
	TransactionStatusType Subobject
	TransactionValidationResponse Subobject

	18.3 Transaction Methods
	addressAndSalesTaxFromPayPalOrder
	auth
	authCapture
	calculateSalesTax
	cancel
	capture
	fetchByAccount
	fetchByAutobill
	fetchByMerchantTransactionId
	fetchByPaymentMethod
	fetchByVid
	fetchByWebSessionVid
	fetchDelta
	fetchDeltaSince
	finalizeCustomerAction
	finalizePayPalAuth
	migrate
	score


	19 The WebSession Object
	19.1 WebSession Data Members
	19.2 WebSession Methods
	fetchByVid
	finalize
	initialize



