
CashBox®

Programming Guide

CashBox 5.0
February, 2014

CashBox 5.0: Programming Guide

© 2014 Vindicia, Inc.

Copyright © 2006 – 2014 by Vindicia, Inc.

All rights reserved.

Restricted Rights

Build Online Revenue, CashBox, CashBox DataBridge, CashBox Insight, CashBox Select,
CashBox StoreFront, ChargeGuard, Marketing and Selling Automation for the Digital
Economy, Vindicia, Your Chargebacks. Our Problem., and all related logos are trademarks
or registered trademarks of Vindicia, Inc. All other company and product names may be
trademarks of their respective owners.

This document may contain statements of future direction concerning possible functionality
for Vindicia's software products and technology. All functionality and software products will
be available for license and shipment from Vindicia only if and when generally commercially
available. Vindicia disclaims any express or implied commitment to deliver functionality or
software unless or until actual shipment of the functionality or software occurs. The
statements of possible future direction are for information purposes only, and Vindicia
makes no express or implied commitments or representations concerning the timing and
content of any future functionality or releases.

This document is subject to change without notice, and Vindicia does not warrant that the
material contained in this document is error-free. If you find any problems with this
document, please report them to Vindicia in writing.

No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying and recording, for any purpose without the
express written permission of Vindicia, Inc.

The information contained in this document is proprietary and confidential to Vindicia, Inc.

March 1, 2014

Table of Contents
CashBox® Programming Guide Preface

About CashBox. ii

About ChargeGuard . iii

Chapter 1 CashBox Client Library Setup. 1-1

1.1 CashBox API . 1-2

1.2 Support for Development . 1-4

1.2.1 Installing and Configuring the CashBox Library 1-4

PHP . 1-4

VB, C++, and ASP . 1-5

Perl . 1-5

Configuring the Perl API Client . 1-6

Specifying the First Parameter in Perl . 1-6

Java . 1-7

.NET With C# . 1-7

1.2.2 Setting Up Authentication Parameters 1-8

In Perl . 1-8

In PHP . 1-9

In Java . 1-9

In VB, C++, and ASP . 1-10

In C# . 1-10
CashBox 5.0: Programming Guide i

CashBox 5.0: Programming Guide
1.2.3 Configuring the SOAP Timeout for Client Libraries 1-11

In PHP . 1-11

In Java . 1-11

In ASP, VB, and C++ . 1-11

In C# . 1-11

1.2.4 Checking an Object Method’s Return Value 1-12

1.2.5 Setting UNIX Timestamps in VB . 1-13

1.2.6 Date and Timestamp Format . 1-13

1.2.7 Assigning Unique Identifiers for Objects 1-14

1.2.8 Ensuring the Correct Character Encoding 1-14

1.3 Working with CashBox WSDL Files . 1-14

1.3.1 Specifying the SOAP Address . 1-15

1.3.2 Performing the Prerequisite Steps 1-16

1.4 Tips for Developing SOAP Clients . 1-17

Chapter 2 Working with Accounts . 2-1

2.1 Creating Customer Accounts . 2-2

2.2 Setting Up Account Payment Methods . 2-3

2.3 Accessing Existing Customer Accounts . 2-6

2.4 Creating Account Hierarchies . 2-7

Chapter 3 Working with Products. 3-1

3.1 Creating Products . 3-2

3.2 Creating Bundled Products . 3-4

3.3 Accessing Existing Products . 3-5

Chapter 4 Working with Billing Plans. 4-1

4.1 Creating Billing Plans . 4-2

Chapter 5 Working with AutoBills . 5-1

5.1 Creating AutoBills . 5-2

5.1.1 Creating an AutoBill with Multiple Products 5-5

5.1.2 Updating and Validating AutoBill Objects 5-7

5.1.3 Verifying AVS and CVN for Recurring Billing 5-8

5.2 Modifying AutoBills . 5-10

5.2.1 Prorating Modification-Based Price Changes 5-11

5.2.2 Changing Products for an AutoBill 5-11

5.2.3 Changing the Billing Plan for an AutoBill 5-13

5.2.4 Changing both Products and Billing Plan in a Single Call . 5-14
© 2014 Vindicia, Inc. Table of Contents ii

CashBox 5.0: Programming Guide
5.3 Cancelling AutoBills . 5-16

5.3.1 Cancelling AutoBills on Billing Day 5-16

5.4 Importing AutoBills from other Billing Systems to CashBox 5-17

5.4.1 Key Migrate Parameters . 5-18

5.4.2 Migrating an AutoBill During a Billing Cycle 5-18

5.4.3 Migrating an AutoBill During a Free Trial Period 5-23

5.5 Using EDD for Recurring Billing . 5-25

5.5.1 Understanding Mandates for Recurring Billing with EDD . 5-28

5.6 Using PayPal for Recurring Billing . 5-30

Chapter 6 Working with One-Time Transactions 6-1

6.1 Setting Up Real-Time Billing for One-Time Purchases 6-2

6.1.1 Monitoring Transaction Status . 6-2

6.2 Using Credit Cards for One-Time Transactions 6-3

6.2.1 Verifying AVS and CVN for One-Time Transactions 6-5

6.2.2 Calling the auth and capture Methods Separately 6-8

6.3 Using Carrier Billing for One-Time Transactions 6-10

6.3.1 BOKU Static Pricing Transactions 6-11

6.3.2 BOKU Dynamic Pricing Transactions 6-12

6.3.3 Using CashBox to query BOKU . 6-13

6.4 Using Boleto Bancario for One-Time Transactions 6-15

6.5 Using ECP for One-Time Transactions . 6-16

6.5.1 Creating Outbound Payment Transactions with ECP 6-17

6.6 Using EDD for One-Time Transactions . 6-19

6.6.1 Understanding Mandates for Real-Time Billing with EDD . 6-21

6.7 Using PayPal for One-Time Transactions 6-23

6.8 Recording a Payment Manually . 6-25

6.9 Importing Transactions from other Billing Systems to CashBox . . 6-27

6.10 Refunding Customers . 6-28

Chapter 7 Working with Entitlements. 7-1

7.1 Creating Entitlements . 7-2

7.2 Entitlement Status . 7-3

7.3 Caching Entitlements . 7-3

7.4 Monitoring Entitlement Status . 7-4
© 2014 Vindicia, Inc. Table of Contents iii

CashBox 5.0: Programming Guide
Chapter 8 Working with Rate Plans . 8-1

8.1 Recording Rated Units . 8-2

8.2 Deducting Rated Units . 8-4

8.3 Reversing (Billed) Rated Unit Events . 8-4

8.4 Fetching and Reporting Rated Units . 8-5

8.4.1 Fetching a Summary (Total) of Unbilled Rated Unit Events 8-5

8.4.2 Fetching Billed or Unbilled Rated Unit Events 8-8

Chapter 9 Working with Customer Notifications. 9-1

9.1 Setting the Preferred Language . 9-2

9.2 Working with Billing Events . 9-2

9.2.1 CashBox Billing Events . 9-2

9.2.2 Billing Event Settings . 9-5

9.2.3 Parent-Child Account Billing Notifications 9-6

9.2.4 Creating Billing Notification Templates 9-7

Billing Event Template Tags . 9-7

9.3 Working with Invoices . 9-12

Dunning Notices . 9-12

9.3.1 CashBox Invoicing Events . 9-13

9.3.2 Creating Invoice Templates . 9-13

Default Invoice Template . 9-14

Invoice Template Tags . 9-15

Chapter 10 Working with Tokens . 10-1

10.1 Understanding CashBox Token Objects . 10-2

10.2 Understanding Token Activities . 10-3

10.3 Defining New Token Types . 10-7

10.4 Incrementing Token Balances . 10-7

10.4.1 Purchasing Tokens . 10-8

10.4.2 Granting Tokens to Accounts . 10-10

10.5 Decrementing Token Balances . 10-11

10.5.1 Transacting Purchases in Tokens 10-12

10.5.2 Token Transactions in Real Time 10-13

10.6 Handling Recurring Billing with Tokens . 10-15

10.7 Refunding Transactions in Tokens . 10-18

10.8 The CashBox Token Processor . 10-19
© 2014 Vindicia, Inc. Table of Contents iv

CashBox 5.0: Programming Guide
Chapter 11 Working with Campaigns. 11-1

11.1 Creating an AutoBill with a Campaign discount 11-2

11.2 Adding a Campaign Code to an AutoBill . 11-3

11.2.1 Applying a Campaign Code to an existing AutoBill 11-3

11.2.2 Applying a Campaign Code to a Specific Product on an AutoBill 11-4

Chapter 12 Credit Grants and Gift Cards . 12-1

12.1 Working with Credit . 12-2

12.1.1 Redeeming Credit . 12-2

12.1.2 Using Credits with an Account . 12-3

Granting Credit to an Account . 12-4

Revoking Credit from an Account . 12-5

Using Credits for a One-Time Transaction 12-6

Fetching Account Credit History . 12-8

12.1.3 Using Credits with an AutoBill 12-9

Granting Credit to an AutoBill . 12-10

Revoking Credit from an AutoBill 12-11

Fetching AutoBill Credit Transactions 12-12

Fetching an AutoBill’s Credit History 12-13

12.2 Working with Gift Cards . 12-14

12.2.1 Understanding the Attributes of the GiftCard Object . . 12-14

12.2.2 Determining Redemption Credit Amount 12-14

12.2.3 Redeeming a Gift Card . 12-16

12.2.4 Reversing a Gift Card Redemption 12-18

Chapter 13 Hosted Order Automation . 13-1

13.1 HOA Features . 13-3

13.2 HOA Process Flow . 13-4

13.2.1 HOA Work Flow Overview . 13-4

13.2.2 HOA Server Work Flow . 13-5

13.3 Working with HOA . 13-8

13.3.1 CashBox objects affected by HOA 13-8

13.3.2 HOA Naming Schema . 13-8

Naming schema for parameter values 13-9

Naming scheme for an object with an array 13-9

Naming scheme for name-value arrays 13-9

13.3.3 HOA Form Post Parameters . 13-10

Private Form Values . 13-11

13.3.4 HOA Method Parameters . 13-11

13.3.5 HOA Error Checking . 13-11
© 2014 Vindicia, Inc. Table of Contents v

CashBox 5.0: Programming Guide
13.4 WebSession Object . 13-12

13.4.1 Integrating HOA with CashBox . 13-15

13.5 Creating Order Forms for HOA . 13-16

13.6 Creating Success or Failure Pages for HOA 13-18

Chapter 14 Common ChargeGuard Programming Tasks. 14-1

14.1 Integrating Data into ChargeGuard . 14-2

14.2 Integration of Chargeback Data Back into Your System 14-3

14.2.1 Use Payment Processor Data to Manually Alter Account Status 14-3

14.2.2 Use CashBox Data to Manually Alter Account Status 14-3

14.2.3 Use the CashBox API to Automatically Update Account Status. 14-4

14.3 Data Reporting to Vindicia . 14-5

14.3.1 Initial Load of Historic Data . 14-5

14.3.2 Key ChargeGuard Objects . 14-6

14.3.3 Reporting Transaction Data to Vindicia 14-7

Reporting Real-Time Transaction Information for Fraud Screening 14-7

Reporting Activity Information . 14-9

Reporting Refund Information . 14-11

14.4 Retrieving Chargeback Updates . 14-12

Appendix A Custom Billing Statement Identifier Requirements. . A-1

A.1 Billing Statement Identifier . A-2

A.2 MCC-Associated Merchant Name . A-2

A.3 Default Customer Service Phone Number . A-3

Overriding the Default Customer Service Phone Number A-3

A.4 Billing Description . A-4
© 2014 Vindicia, Inc. Table of Contents vi

CashBox® Programming Guide Preface

CashBox is an on-demand solution for recurring and one-time billing, available for
integration with your application through an object-oriented application programming
interface (API), based on the Simple Object Application Protocol (SOAP). This manual, the
CashBox Programming Guide, leads you through the process of integrating your application
with the CashBox and ChargeGuard services offered by Vindicia.

Vindicia’s CashBox API allows you to both integrate with CashBox, and take advantage of
Vindicia’s ChargeGuard protection services.
© 2014 Vindicia, Inc. i

CashBox 5.0: Programming Guide
About CashBox

CashBox delivers an on-demand billing solution for both subscription and one-time payment
offerings that maximizes online revenue through managed customer retention and extended
customer life cycles. The CashBox API enables you to seamlessly integrate Vindicia’s
services into your online applications.

CashBox Workflow

Using the CashBox API, you can create sophisticated and automatic billing services for your
products, and pass credit-card, electronic-check, PayPal, and other payment method
transactions to CashBox for processing. CashBox also ensures security and compliance
with rules and regulations, and supports token or virtual-currency purchases, such as
frequent flyer miles, usage minutes, and incentive points.

Relationship between the CashBox API and Merchant Website

API calls are automatically converted to Secure Sockets Layer (SSL)-based Simple Object
Access Protocol (SOAP) calls to Vindicia’s servers for processing and record-keeping.
CashBox returns the transaction results as SOAP calls, and translates the results into return
values for processing in your application.
© 2014 Vindicia, Inc. Table of Contents Preface ii

CashBox 5.0: Programming Guide
About ChargeGuard

Fraudulent chargebacks present a unique and different problem because they distract you
from your core business, limit marketing initiatives, and drain your customer-service
resources. For online merchants, systematically challenging friendly-fraud chargebacks (see
www.vindicia.com/products/fraud_management/chargeback_management.html) is an
important component for building online revenue. Often, credit-card networks end up
protecting fraudsters as you lose revenue and incur higher transaction and operational
costs.

True and Friendly Fraud Process

As a subset of CashBox, ChargeGuard delivers an overall approach to managing
chargebacks by becoming your dispute agent in gaining recognition of legitimate
transactions. In essence, ChargeGuard minimizes chargeback-related revenue loss by
securely leveraging fraud risk screening capabilities to prevent chargebacks of completed
transactions. If chargebacks occur, ChargeGuard help you to successfully dispute them.
© 2014 Vindicia, Inc. Table of Contents Preface iii

CashBox 5.0: Programming Guide
Chargeback Dispute Process

Vindicia first assesses the information reported by your customer and by you. If the
chargeback is legitimate, Vindicia leaves it as is. However, if it appears to be fraudulent,
Vindicia disputes it on your behalf.

Chargeback Dispute Process

Gathering as much information as possible about the original transaction, the customer, and
the customer’s previous and current use activity history, can make a significant difference in
the success of chargeback challenges. ChargeGuard classifies, collects, and assembles
four types of data: transaction data, customer usage data, chargeback data, and chargeback
fighting status.

ChargeGuard Data Types

CashBox automatically sends transaction and customer use data to Vindicia. The CashBox
API also allows you to retrieve chargebacks and their latest status from the Vindicia servers.
© 2014 Vindicia, Inc. Table of Contents Preface iv

CashBox 5.0: Programming Guide
Fraud Risk Screening

The Vindicia fraud risk screening features are integrated into ChargeGuard and CashBox.
Fraud risk screening analyzes and scores risk factors for online transactions in real time, so
that you can process customer orders more efficiently with little or no manual intervention.
Risk screening helps reduce fraud risk with minimal intervention from your organization, and
minimizes false positives (incorrectly rejected valid transactions).

Vindicia's risk screening system has the added benefit of cross-referencing data across a
worldwide network of merchants. When a user issues a chargeback or commits fraud at one
of Vindicia’s merchant sites, that information feeds back into the risk screening system for all
merchants. Because Vindicia's risk screening solution is informed by a database of
chargebacks processed across the Vindicia merchant network, the system becomes more
predictive everyday in identifying potentially fraudulent transactions.

Fraud risk screening offers the following key features:

• IP Geolocation control, which enables you to pinpoint your customer’s physical
location, and removes some of the anonymity offered by the Internet. The locator can
highlight, for example, the distance between the billing address and the location where
the order was placed to help determine transaction risk, especially as it applies to
specific countries.

• Proxy detection, which determines whether an IP address is an anonymous or open
proxy. Both types of proxies are commonly used to mask the original IP address, thus
bypassing IP geolocation controls.

• Validation of Bank Identification Number (BIN), which checks the first six digits of the
credit-card number for information on the issuing bank. This feature verifies whether the
country of the billing address matches that of the issuing bank.

• Analysis of email addresses, which determines whether the customer’s email address
is from a free email provider, and if that email address has been associated with high-
risk or fraudulent transactions.

• Creation of true-probability profiles, which validates the risk screen against the body
of chargebacks that Vindicia processes across its database to help you determine
whether to accept or reject the transaction.

• A broad database that houses data on businesses that subscribe to the Vindicia
service, which enables them to indirectly collaborate and share non-personally
identifiable information through Vindicia for mutual protection. This network effect
significantly contributes to the detection of fraudulent orders and probable chargebacks.
© 2014 Vindicia, Inc. Table of Contents Preface v

1 CashBox Client Library Setup

The CashBox API is composed of objects accessed through a SOAP interface. Integrate
with the Vindicia service by making SOAP calls supported by the objects. The CashBox
client library allows you to send SOAP requests to Vindicia without writing code at the SOAP
level, because the library wraps around the SOAP objects. Typically, each SOAP object
directly translates into a corresponding language-specific object.

This chapter introduces the CashBox API objects and describes the procedure to configure
the CashBox client library.
© 2014 Vindicia, Inc. Table of Contents 1 - 1

CashBox 5.0: Programming Guide CashBox API
1.1 CashBox API

The following table lists and summarizes the CashBox API objects.

Table 1-1 Summary of CashBox API Objects

CashBox API Object Description

Account Encapsulates a customer account.

Activity Records a nontransaction (nonpurchase) activity on your site.

Address Records a customer’s address.

AutoBill Describes the terms of a customer’s relationship to a product or service and
a Billing Plan.

BillingPlan Describes a billing plan which defines how charges are made over time.

Campaign Describes the parameters of a sales Campaign.

Chargeback Details the chargeback information for a customer account. (Works in con-
junction with ChargeGuard.)

Entitlement Details the status of a customer’s current entitlement to your product or ser-
vice.

GiftCard Encapsulates details of a gift card redeemed or to be redeemed through
CashBox.

NameValuePair Referenced by several CashBox objects, the NameValuePair object is
used to hold attributes not otherwise supported in the object.

PaymentMethod Details a customer’s payment method, such as Credit Card, PayPal, or Di-
rect Debit.

PaymentProvider Se rv es as a wrapper to contain static information required by a payment
provider for payment processing.

Product Describes a product or service that you offer.

RatePlan Defines the logic by which the pricing structure for Rated Products will be
determined.

Refund Describes a refund on a transaction or account.

SeasonSet Defines a group of time intervals, which may be used with Billing Plans to
define both Billing Cycles, and Entitlement grants.

Token Describes a customer account’s non-currency balance, such as virtual cur-
rency, frequent flier miles, downloads, or storage space.

Transaction Handles the transactions, generated through CashBox, that relate to a cus-
tomer account. (With ChargeGuard integration, be certain to report transac-
tions to Vindicia.)

WebSession Tracks your Web order form’s submission activity in the context of the Host-
ed Order Automation (HOA) capacity.
© 2014 Vindicia, Inc. Table of Contents CashBox Client Library Setup 1 - 2

CashBox 5.0: Programming Guide CashBox API
The CashBox API Guide describes the objects in detail. These objects include data
members, and methods that operate on the data members. Write to the CashBox API with
PHP, Perl, Java, .NET with C#, or C++ by using the CashBox client libraries. You may also
implement a native library for other environments with the CashBox Web Services
Description Language (WSDL) files.

Note Because Vindicia supports multiple programming languages, the
descriptions and examples of the CashBox objects, data members,
and methods are in generic pseudo-code. Translate this pseudo-
code to your programming language of choice.
© 2014 Vindicia, Inc. Table of Contents CashBox Client Library Setup 1 - 3

CashBox 5.0: Programming Guide Support for Development
1.2 Support for Development

Before using CashBox, collect your customer requests, package the data, send it to Vindicia
through the CashBox API, and receive, store, and report the return data from CashBox for
your needs, as appropriate. The API, a library or package for PHP, Visual Basic (VB), C++,
Active Server Pages (ASP), Perl, Java, and .NET with C#, makes it simple and secure for
you to hand off data to CashBox for processing.

Be sure to also read the CashBox Portal User’s Guide. Because most of the data created
and processed by the CashBox API is displayed on the CashBox Portal, the Portal may be
useful for debugging during your development process. The CashBox Portal also allows you
to create most CashBox objects, and may be used in conjunction with the API throughout
your deployment and maintenance cycle.

1.2.1 Installing and Configuring the CashBox Library

Vindicia provides libraries specific to several development environments. To build
applications that employ CashBox, first set up the library files, as described in the following
subsections.

PHP

The CashBox client library for PHP contains a ZIP file with several PHP files in the directory
Vindicia/Soap. Two of those files, Vindicia.php and Const.php, are included in your
source code.

Install the PHP client library:

1. Extract the zip archive, and install it into the proper location for operating system and
PHP engine and distribution.

2. Type:
require_once('Vindicia/Soap/Vindicia.php');
require_once(‘Vindicia/Soap/const.php’);

Note: You must add these require_once statements to every PHP source file which
references the CashBox API in any way.

3. Double check that you have downloaded the correct version for your site, and that the
extraction of the archive was completed successfully.
© 2014 Vindicia, Inc. Table of Contents CashBox Client Library Setup 1 - 4

CashBox 5.0: Programming Guide Installing and Configuring the CashBox Library
VB, C++, and ASP

Install VB, C++, and ASP:

1. Install the client library.

This client library is shipped as a Windows Microsoft Installer (MSI) file. When you run
this file, it installs the dynamic link library (DLL) in the folder specified. The default
location is

C:\Program Files\Vindicia\CashBoxAPIversion.

2. After you have installed the client library, register the object on the server.

In a command window, go to the library’s installation location and type:

regsvr32 VindiciaCOM.dll

regsvr32 then displays a message that the registration is successful.

3. Once you have installed the files, access the objects by referencing VindiciaCOM
when creating instances of CashBox objects.

For example, to create a CashBox Transaction object in VB:

Dim transaction As New VindiciaCOM.CTransaction()

To create the same object in VB to program ASP:

Set transaction = CreateObject("VindiciaCOM.Transaction")

Perl

Install the Perl client library on Mac OS X:

1. Install the modules required by the Perl API client. Type:

sudo perl -MCPAN -e 'install Crypt::SSLeay'

sudo perl -MCPAN -e 'install SOAP::Lite'

2. Install the API client.

Obtain a current copy and place it in a directory.

Navigate to that directory in a terminal, and type:

sudo perl Makefile.PL

sudo make

sudo make install

The Perl client is now installed on your Mac. The default location is /Library/Perl/
perl-version, with Vindicia.pm and all the other modules in the Vindicia directory.

3. During development, import the Perl module into your source files. Type:

use Vindicia;

use Vindicia::Soap::Vindicia;
© 2014 Vindicia, Inc. Table of Contents CashBox Client Library Setup 1 - 5

CashBox 5.0: Programming Guide Installing and Configuring the CashBox Library
Configuring the Perl API Client

The installation process above creates the file /etc/vindicia_conf.xml, a
configuration file in XML format. Note that the path name assumes a Mac setup. Path names
on Windows vary according to the configuration.

1. Edit the following fields in vindicia_conf.xml:

• VIN_SOAP_Server: The server’s host name. For example, the name of the
Prodtest development server is soap.prodtest.sj.vindicia.com.

• VIN_SOAP_Version: The version of CashBox you will call, for example, 4.2.

• VIN_Server: This value must be 0, which means that this is a Vindicia Perl client,
not a server.

• VIN_Client_Timeout_Usec: The client timeout in milliseconds. For example, for
250 seconds, set the value to 250000.

2. Create a temporary directory on your computer for the client, and then specify the
directory’s full path as the value for the following fields:

Specifying the First Parameter in Perl

Certain methods in Perl take a first parameter that is not specified in other languages,
because the first parameter is the invoking object, such as in the fetchCreditHistory
method. For example:

In PHP (and similarly in Java and C#):

ab = AutoBillFactory::getObject();
ab->fetchCreditHistory($timestamp, $end_timestamp, $page,
page_size);

In Perl:

ab = Vindicia::Soap::AutoBill->new(...);
ab->fetchCreditHistory($ab, $timestamp, $end_timestamp, $page,
page_size);

In Perl, the first parameter is the AutoBill object, but in other languages it is provided
using the invoking parameter. This is true with any method where the first parameter is an
object of the class in question.

VIN_Base_Dir VIN_Soap_Cache_Dir

VIN_Var_Dir VIN_Client_Var_Dir

VIN_Tmp_Dir VIN_Log_Cache

VIN_Lock_Dir
© 2014 Vindicia, Inc. Table of Contents CashBox Client Library Setup 1 - 6

CashBox 5.0: Programming Guide Installing and Configuring the CashBox Library
Java

The CashBox client library for Java is in the Java archive file vindicia.jar, which
bundles the CashBox API and the underlying Apache Axis library for sending and receiving
SOAP calls. The release contains two files: vindicia_java_client_version.zip and
vindicia_java_client_version.docs.zip.

To set up the Java client library, unzip vindicia_java_client_version.zip and add
vindicia.jar to your project’s classpath. Then, import the Vindicia classes to your
source file. For example, for CashBox 4.2:

import com.vindicia.client.ClassName;
import com.vindicia.soap.v4.2.Vindicia.ClassName;

If you will be running the Vindicia Java client library on a machine which can access a URL
(such as a SOAP end point) outside of your company's firewall only through a proxy server,
please configure the Java client library to identify the proxy server as follows

System.setProperty("https.proxyHost", "web-proxy.mycompany.com");
// Use the address of your company's proxy server

System.setProperty("https.proxyPort", "8080");
// Use the HTTPS port supported by your proxy server

.NET With C#

The CashBox client library for .NET is in the DLL file Vindicia.dll, which bundles the
CashBox API and the underlying SOAP stubs.

To set up the .NET client library, add a reference to the Vindicia.dll file in your project.
Then, import the Vindicia namespace to your source file:

using Vindicia;

Caution Some class names in the packages are identical. The class in the
com.vindicia.client package is usually a child of a class with
an identical class name in the com.vindicia.soap.Vindicia
package. Vindicia recommends that you import classes with fully
qualified package names, and identify the types similarly in your
Java code.
© 2014 Vindicia, Inc. Table of Contents CashBox Client Library Setup 1 - 7

CashBox 5.0: Programming Guide Setting Up Authentication Parameters
1.2.2 Setting Up Authentication Parameters

The API calls that you make to the Vindicia servers use SOAP over SSL, which encrypts the
data that travels between your servers and Vindicia’s, and renders the data tamper-proof en
route. To ensure that the calls originate from a legitimate source, CashBox requires that
each call include authentication. The Authentication object contains a SOAP user name
and password, which are provided to you by Vindicia Client Services, and which vary
between the production and test environments.

If you generate API calls directly through the CashBox WSDL files without using any client
libraries, you must include the Authentication object in your calls to Vindicia. By using a
Vindicia client library, however, you need not do so. The client library enables you to globally
configure the authentication parameters (the SOAP user name and password),
automatically construct the Authentication object, and pass it in with your calls. Some
libraries, such as Java and PHP, also enable you to specify authentication parameters
during the process of constructing a target object on which to make calls.

The following subsections describe how authentication parameters operate in the client
libraries. The concepts are illustrated through the construction of the commonly used
Transaction object.

In Perl

Create a Transaction in a Perl program:

Set your Vindicia user name and password variables:

$login = "MyVindiciaLogin";
$password = "MyVindiciaPassword";

Create a new Transaction:

my $tx = Vindicia::Soap::Transaction->
new(auth_login => $login, auth_password => $password);

where MyVindiciaLogin and MyVindiciaPassword are the SOAP user name and
password, respectively, assigned to you by Vindicia.
© 2014 Vindicia, Inc. Table of Contents CashBox Client Library Setup 1 - 8

CashBox 5.0: Programming Guide Setting Up Authentication Parameters
In PHP

In the PHP library, edit the Const.php file in the Vindicia/Soap directory to change the values
of the global constants that contain the Vindicia SOAP login and password. Change the
values of the following constants:

define("VIN_SOAP_CLIENT_USER", "your username here");
define("VIN_SOAP_CLIENT_PASSWORD", "your password here");

Then, you can instantiate an object, such as Transaction, as follows:

$txn = new Transaction();

In Java

Create a Transaction in Java:

// Create a new transaction
String username = "MyVindiciaLogin";
String password = "MyVindiciaPassword";
com.vindicia.client.Transaction transaction =

new com.vindicia.client.Transaction(username, password);

where MyVindiciaLogin and MyVindiciaPassword are the SOAP user name and
password, respectively, assigned to you by Vindicia.

You may also globally set the SOAP user name and password for making CashBox API calls
in the Java library. Define the constants in the
com.vindicia.client.ClientConstants class as follows:

com.vindicia.client.ClientConstants.SOAP_LOGIN = "my_soap_user_name";

com.vindicia.client.ClientConstants.SOAP_PASSWORD = "my_soap_password";

If you set the SOAP user name and password globally, use object constructors that do not
take those values as their parameters.
© 2014 Vindicia, Inc. Table of Contents CashBox Client Library Setup 1 - 9

CashBox 5.0: Programming Guide Setting Up Authentication Parameters
In VB, C++, and ASP

In VB, you must create an object and allocate space for it before sending the authentication
information.

1. To create a new Transaction object, type:

Create a new transaction
Dim transaction As New VindiciaCOM.CTransaction()

2. After creating the Transaction, initialize your authentication data and call the
SetAuthenticationInfo method for the Transaction object. Type:

Dim username = "MyVindiciaLogin"
Dim password = "MyVindiciaPassword"
transaction.SetAuthenticationInfo(username, password)

where MyVindiciaLogin and MyVindiciaPassword are the SOAP user name and
password, respectively, assigned to you by Vindicia.

In C#

In C#, the Vindicia namespace includes an object called Environment, which enables you
to set the SOAP endpoint server and authentication. For example:

string login = "MyVindiciaLogin";
string password = "MyVindiciaPassword";

// This method allows you to change the server you connect to
Vindicia.Environment.SetEndpoint("soap.prodtest.sj.vindicia.com");

// This method allows you to set your auth info once
Vindicia.Environment.SetAuth(login, password);

where MyVindiciaLogin and MyVindiciaPassword are the SOAP user name and
SOAP password, respectively, assigned to you by Vindicia.
© 2014 Vindicia, Inc. Table of Contents CashBox Client Library Setup 1 - 10

CashBox 5.0: Programming Guide Configuring the SOAP Timeout for Client Libraries
1.2.3 Configuring the SOAP Timeout for Client Libraries

The method calls in your client library result in SOAP calls to the CashBox Web service
hosted on Vindicia servers. You can configure the method calls to wait for a response from
the server for no longer than a fixed, maximum amount of time. Each client library contains a
global setting for the timeout value.

The optimal value of the timeout depends on the amount of data you are fetching from
CashBox in a single call, and other factors, such as server load and network latencies. Calls
that are not designed well often result in timeouts. For example, a single
Transaction.fetchDeltaSince() call might fetch many results. To avoid data
overload, set the paging parameters to page through the set when making the call. If you are
experiencing frequent timeouts, examine the nature of the call you are making and
determine if you can reduce the size of the result set returned by the call. If not, raise the
timeout value for your client library.

In PHP

In the PHP library, edit the Const.php file in the Vindicia/Soap directory to change the
value of the global constant VIN_SOAP_TIMEOUT. This value is in seconds and is set to 60
by default. To change the value, type:

define("VIN_SOAP_TIMEOUT", "30");

In Java

In Java, set the global SOAP timeout for CashBox API calls in the Java library. The setting is
in the com.vindicia.client.ClientConstants class with a default value of 2,500
milliseconds. To change this value, type:

com.vindicia.client.ClientConstants.DEFAULT_TIMEOUT = 6000;
// in millisecs

In ASP, VB, and C++

The VindiciaCOM.dll file for ASP, VB, and C++ contains the VindiciaCOM object. That
object supports the method SetTimeout(), for which you can specify the desired global
SOAP timeout in milliseconds. The default is 2,500 milliseconds.

In C#

in C#, set the SOAP timeout globally (in milliseconds) using the SetTimeout method to the
Vindicia.Environment class. Local timeouts may be set individually, when you
instantiate the object in the C# client.

Vindicia.Environment.SetTimeOut(30000);
// in millisecs
© 2014 Vindicia, Inc. Table of Contents CashBox Client Library Setup 1 - 11

CashBox 5.0: Programming Guide Checking an Object Method’s Return Value
1.2.4 Checking an Object Method’s Return Value

All CashBox object methods include a Return data structure which indicates the success or
failure of the method call. Return can contain three data members: returnCode,
returnString, and soapid. (For details, see The Return Object in the CashBox API
Guide.)

For Java, the SOAP call’s Return object is represented by the
com.vindicia.client.VindiciaReturn object in the Java CashBox client API.

For Java calls that are not expected to return a meaningful value (that is, if the call is
expected to return a void value), the method usually returns a VindiciaReturn object
instead of void. Examine the VindiciaReturn object for the returnCode,
returnString, and soapid values.

For calls that are expected to return a meaningful value, the VindiciaReturn object can
be a static member LAST_RETURN of the class of the object on which you made the call. For
example, com.vindicia.client.AutoBill.fetchByEmail() returns an array of
com.vindicia.client.AutoBill objects, that match the specified email address. If
com.vindicia.client.AutoBill.fetchByEmail() does not return the expected
values, check the VindiciaReturn object associated with the call. You can find the object
in AutoBill.LAST_RETURN.

(The com.vindicia.client.AutoBill.cancel() call forms an exception to this rule,
in that it returns a VindiciaReturn object.)

When a SOAP call returns multiple meaningful values (for example, AutoBill.update()
returns the next billing amount, its currency, and the date in addition to the standard
VindiciaReturn object), those values and the VindiciaReturn object are lumped into
a single object that is returned by the corresponding Java method.

For instance, the com.vindicia.client.AutoBill.update() method returns a
com.vindicia.client.AutoBillingReturn object, which lumps together all the
return values of the underlying SOAP call.

Note The examples in this guide do not contain error-handling. Your
production applications, especially those that involve financial
transactions, should always include robust error-checking and
handling.
© 2014 Vindicia, Inc. Table of Contents CashBox Client Library Setup 1 - 12

CashBox 5.0: Programming Guide Setting UNIX Timestamps in VB
1.2.5 Setting UNIX Timestamps in VB

Many CashBox objects and methods require a timestamp. By default, VB uses a built-in
Microsoft date technology that produces different timestamp data than the timestamp that
CashBox expects. To generate a timestamp from a VB date, add a VB function to your
CashBox application, as follows:

Function UnixDate (ByVal theDate)
UnixDate = DateDiff("s", "01/01/1970 00:00:00", theDate)

End Function

To set a timestamp for a TransactionDetail object named detail:

Dim timestamp = UnixDate(Now())
detail.SetTimestamp(timestamp)

1.2.6 Date and Timestamp Format

When a parameter to a method is a date or a timestamp, Vindicia expects them in the
standard ISO8601 format:

(Note the T between the date and the time.)

Note: If you omit the timezone offset, it will default to Pacific Time (-7:00 or -8:00).

Data Type Format Example

dates YYYY-MM-DD 2010-10-23

timestamp YYYY-MM-DDTHH:MM:SS(+|-)HH:MM 2010-10-23T14:23:12-07:00
© 2014 Vindicia, Inc. Table of Contents CashBox Client Library Setup 1 - 13

CashBox 5.0: Programming Guide Assigning Unique Identifiers for Objects
1.2.7 Assigning Unique Identifiers for Objects

Most top-level objects must have unique identifiers. You can directly manipulate objects,
such as AutoBill or Account objects. You can load the object, usually with a fetchBy
method; and save it, usually with an update method. Most objects of this kind have two
unique identifiers: one assigned by you and the other by Vindicia.The naming convention for
the IDs that you assign is in the form of merchantClassId, for example,
merchantAccountId correspond to the unique identifiers for the objects in your database,
such as database IDs, email addresses, or invoice numbers, with which you track the items
in question.

When you create an object in the CashBox database, Vindicia assigns the object a globally
unique Vindicia identifier, called a VID, which you can access through the object’s VID
attribute. If you do not specify a VID when you call the update() method for an object,
Vindicia generates a new VID or loads the existing one and returns it.

Vindicia best practices recommend that, when creating objects with update() calls, clients
generate their own set of object identifiers to populate the corresponding
merchantClassId values.

1.2.8 Ensuring the Correct Character Encoding

CashBox supports the UTF-8 encoded character set. When you construct CashBox objects,
especially with data input by your customers (such as the data on a Web form), ensure that
the strings are UTF-8 encoded.

1.3 Working with CashBox WSDL Files

If a CashBox API client library is not available for your programming language, you can
integrate with CashBox by making SOAP calls directly to Vindicia’s Web services.

Because of the prevalence of Web services with SOAP as a protocol of choice for
integration of disparate systems, most programming languages have built-in support for
developing SOAP client-server code. A third-party plug-in or library might also be available
for your language of choice. For example, Python programmers can build SOAP client-
server code with the SOAPpy library. Programming a SOAP client in the language of your
choice usually requires access to a Web Services Description Language (WSDL) file that
describes the Web service for which you wish to create a client.

Vindicia Web services consist of a set of objects and the SOAP calls that they support
(CashBox SOAP API), with the calls described in a set of WSDL files. These WSDL files
support document-literal SOAP calls, as defined in the World Wide Web Consortium (W3C)

Caution Do not specify your own VID values when creating objects.

Note: Most programming languages contain a built-in function that
enables you to convert strings into UTF-8 encoded strings. In PHP,
for example, that function is utf8_encode().
© 2014 Vindicia, Inc. Table of Contents CashBox Client Library Setup 1 - 14

CashBox 5.0: Programming Guide Specifying the SOAP Address
standards. Each WSDL file corresponds to a logical object commonly used in billing
solutions. Objects (complex types) shared across all WSDL files are defined in the
Vindicia.xsd file that every WSDL file includes in its definition.

Each WSDL file describes a set of calls supported by the logical object. For example, the
Account.wsdl file describes the calls with which you can perform activities on a customer
account (an Account object) in CashBox. Make an update call to create or update an
Account object; or a fetchByMerchantAccountId() call to retrieve an Account object
by the unique ID assigned by you when you created the object.

Each WSDL file defines only one SOAP port bound to the object-specific interface (a set of
methods). For example, Transaction.wsdl defines a port called TransactionPort,
which supports only the SOAP calls that relate to the Transaction object.

The ports defined in each of the WSDL files are associated with the same SOAP address
(endpoint). That address is a script on Vindicia servers that receives all SOAP calls and
routes them to object-specific code for further processing, depending on which objects the
calls are for. For example, for CashBox 4.2:

<service name="Transaction">
<port binding="tns:TransactionBinding" name="TransactionPort">
soap:address

location="https://soap.vindicia.com/v4.2/soap.pl" />
</port>

</service>

Each WSDL file imports the Vindicia.xsd schema file, which defines the data structure
of all top-level and helper objects. Your client code must be able to access this schema file.

1.3.1 Specifying the SOAP Address

By default, the SOAP address points to Vindicia’s production servers. Before going live with
CashBox, test your integration code in a Vindicia sandbox server. If your language-specific
implementation of a SOAP client does not override the SOAP address specified by the
WSDL file, you can download the WSDL files from Vindicia, save them locally, and update
the SOAP address to reflect the sandbox and CashBox SOAP API version you will use.

For example, if you are working with CashBox SOAP API version 4.2 and want to call in to
CashBox on Vindicia’s Prodtest sandbox, update the service attribute in your local
WSDL file as follows:

<service name="Transaction">
<port binding="tns:TransactionBinding" name="TransactionPort">
<soap:address

location="https://soap.prodtest.sj.vindicia.com/v4.2/soap.pl" />
</port>

</service>
© 2014 Vindicia, Inc. Table of Contents CashBox Client Library Setup 1 - 15

CashBox 5.0: Programming Guide Performing the Prerequisite Steps
1.3.2 Performing the Prerequisite Steps

Before developing client code with the CashBox WSDL files:

1. Download the WSDL files and the schema file from the Vindicia servers.

For CashBox API production releases, download from the following sites:

• WSDL file: https://soap.vindicia.com/version/object.wsdl, for example,
https://soap.vindicia.com/4.2/PaymentMethod.wsdl

• Schema file: https://soap.vindicia.com/version/Vindicia.xsd

For CashBox API nonproduction releases that are in Vindicia’s staging servers for
testing prerelease client regression, download from the following sites:

• WSDL file: https://soap.staging.sj.vindicia.com/version/
object.wsdl

• Schema file: https://soap.staging.sj.vindicia.com/version/
Vindicia.xsd

2. Optional. Update the SOAP endpoint address to reflect the server to which to send
your SOAP calls, assuming that you cannot programmatically do so in your client code.

3. Generate local stub or proxy objects with language-specific tools. For example:

• If you program in Java and are using the Apache Axis library to work with SOAP,
generate local stub objects with the utility WSDL2Java.

• If you program in .Net with C#, import the WSDL files into your project to
automatically generate local stub objects.

• If you program in another language, such as Python, for which no appropriate tools
are available, consult the language- or package-specific SOAP documentation on
how client code can make the SOAP calls as described in the WSDL files.

4. Ensure that your SOAP library supports making SOAP calls to external servers through
HTTPS.

For security, Vindicia does not support HTTP-based SOAP calls. You might need to
install additional SSL-specific libraries on your system.

Note Depending on your integration needs, you might not need all the
WSDL files. Feel free to consult with Vindicia Client Services to
decide which ones you need. See the CashBox API Guide for the
objects and the methods supported by the WSDL files.
© 2014 Vindicia, Inc. Table of Contents CashBox Client Library Setup 1 - 16

CashBox 5.0: Programming Guide Tips for Developing SOAP Clients
1.4 Tips for Developing SOAP Clients

Remember:

• In most SOAP libraries, you can set a timeout value for the SOAP calls that you make
from the client to the server. Ensure that the value is globally configurable. You may
wish to change the value to fine-tune it, depending on the amount of data you will be
sending or receiving from the Vindicia servers.

• Every SOAP call you make to CashBox requires that you pass an Authentication
object, which contains the SOAP login and password assigned to you by Vindicia. Make
those credentials globally configurable. When you switch to production, you must log in
with credentials that differ from those used in testing against Vindicia’s sandboxes.

• You might also want to make the Vindicia server, to which your client code points
globally, configurable. This can simplify the process of switching from testing to
production.

• Log all calls made with the CashBox client library. At a minimum, log the following:

• Timestamps

• Classes and methods

• The Vindicia Return data structure (all three fields)

• SOAP envelopes that are sent to and received from Vindicia servers may be used to
debug data-related errors. Most SOAP libraries allow you to add an option to log
these envelopes.
© 2014 Vindicia, Inc. Table of Contents CashBox Client Library Setup 1 - 17

2 Working with Accounts

The Account in CashBox represents your customer, and contains all the data necessary to
provide them services, communicate with them, and charge them for one-time or recurring
purchases.

The Account object encapsulates the customer’s account data, including billing address,
shipping address, preferred payment method, and contact preferences. Create an Account
when a customer visits your online store and registers with you.

This chapter describes creating customer Accounts; creating Account Payment Methods;
accessing existing Customer Accounts; and creating Account hierarchies.
© 2014 Vindicia, Inc. Table of Contents 2 - 1

CashBox 5.0: Programming Guide Creating Customer Accounts
2.1 Creating Customer Accounts

When a new customer visits your site to purchase a product or service, establish an account
for that customer and store the related information in a database in your system. You can
also create a record of customer information in CashBox to facilitate the financial
transactions you later pass to CashBox for processing.

To establish a new customer account, create an Account object, populate it with data, and
store that data in the CashBox database using the Account object’s update method. Note
that the authentication information resides in the Account object, and that you must add the
Account object information as a first step in a new call.

// Create a new Account object
$account = new Account();

// Provide basic account information: a Customer name, and
// a unique Customer ID
$account->setName('Somebody Q. Customer');
$account->setMerchantAccountId('IN9430-8421');

// To create address information, create an address object
$address = new Address();
$address->setAddr1('123 Main Street');
$address->setAddr2('Apt. 4');
$address->setCity('San Carlos');
$address->setDistrict('CA');
$address->setPostalCode('94070');
$address->setCountry('US');
$address->setPhone('123-456-7890');

// Associate the Address object with the account

$account->setShippingAddress($address);

// To set information about the customer's email contact info
$account->setEmailAddress('John.Doe@gmail.com');
$account->setEmailTypePreference('html');
$account->setWarnBeforeAutoBilling(true);

// Okay, basic information is entered, so save the account
$response = $account->update();

// Check to see that the account was created
if($response['returnCode'] == 200) {

// You can save the VID (Vindicia ID) for later use
$returnedAccount = $response['data']->account;
$accountVid = $returnedAccount->getVID();

}

When you create an Account object, CashBox assigns it a globally unique Vindicia
identifier (VID). As the preceding example illustrates, your application can capture the VID
for later use.

The Account object also includes a data member called merchantAccountId, which
enables you to assign your own identifier for the account, such as a database login, user
name, or email address. Be certain to specify a unique value for this field when creating an
Account.

For more information, see Section 1: The Account Object in the CashBox API Guide.
© 2014 Vindicia, Inc. Table of Contents Working with Accounts 2 - 2

CashBox 5.0: Programming Guide Setting Up Account Payment Methods
2.2 Setting Up Account Payment Methods

The Account object can store multiple payment methods, defined by PaymentMethod
objects. CashBox supports the following payment method types:

• Merchant Recorded: may be used to manually enter payments made by cash, check,
or other payment method, and accepted from your customers outside the CashBox
system.

• Credit cards: Credit cards may be used for standard purchases, including
subscriptions.

• Electronic Check Payment (ECP) through Automated Clearing House (ACH): ECP
may be used for recurring or onetime transactions. You can also use ECP to pay your
vendors or affiliates in real-time transactions.

• European Direct Debit (EDD): This payment method is similar to ECP in the United
States, in that it is a direct debit from a banking account.
(Einzugsermachtigungsverfahren (ELV), the German version of EDD, requires that a
customer complete a mandate to authorize the merchant to debit the customer’s bank
account, and is the primary payment method in use for online transactions in Germany.)
CashBox supports EDD in Germany, Austria, and the Netherlands through Chase
Paymentech as the payment processor.

• Boleto Bancário: This payment method, primarily used in Brazil, requires that the
customer first provide you with a fiscal number. The payment processor then creates a
payment slip with that number and other customer details. Finally, the customer
presents the payment slip to the bank to complete the transaction.

For real-time transactions, the payment processor sends the merchant a URL to a
website, which contains instructions for payment processing, which the merchant must
present to the customer. (The steps usually involve the customer printing the instructions
and a payment slip, which they then present to their bank.) Your customer must complete
the steps listed on the website, before the transaction can proceed. When complete, the
bank transfers the money to the payment processor, who captures the transaction, then
notifies CashBox. On the CashBox side, the transaction remains pending until the
payment is captured or the transaction expires.

For recurring billing (that is, an AutoBill object), the customer receives an email with the
URL to the website with payment processing instructions every billing period payment is
due. The corresponding transaction is generated and processed by CashBox in
coordination with the payment processor.

• PayPal: CashBox supports real-time transactions through PayPal Express Checkout.
CashBox also supports PayPal reference transactions for AutoBill-based recurring
billing through e-wallet, whereby PayPal maintains the customer’s payment information,
such as the credit card number, checking account number, and bank routing number.
© 2014 Vindicia, Inc. Table of Contents Working with Accounts 2 - 3

CashBox 5.0: Programming Guide Setting Up Account Payment Methods
When making a purchase on your site, the customer is redirected to PayPal’s login page
to complete the payment information then, after success or failure, redirected back to your
site to continue the process. For recurring bills with reference transactions, the customer
needs to visit the PayPal site only once at startup. The subsequent rebilling transactions
require no action on the customer’s part.

• Token: This is a Vindicia-specific payment method that measures usage or metering,
and enables you to support complex billing models that involve tracking token units in
addition to fixed-price billing cycles. You define the units, such as minutes, downloads,
incentive points, virtual currency, and storage. You also define token types, and manage
your customers’ balances by granting or decrementing tokens with CashBox objects
(Product, BillingPlan, and AutoBill) on the CashBox Portal or with the CashBox
API.

The tokens that you grant a customer are associated with a customer account, each token
type having a separate balance. For example, a customer account can have separate
balances for downloads, storage, and logins, which are displayed as payment methods on
the customer’s account page.

Define a Payment Method for an existing Account:

$paymentMethod1 = new PaymentMethod();
$paymentMethod1->setAccountHolderName("John Doe");

// To create billing address information, create an address object
$address = new Address();
$address->setAddr1('123 Main Street');
$address->setAddr2('Apt. 4');
$address->setCity('San Carlos');
$address->setDistrict('CA');
$address->setPostalCode('94070');
$address->setCountry('US');
$address->setPhone('123-456-7890');

$paymentMethod1->setBillingAddress($address);
// depending on the type specified below, you must populate the
// PaymentMethod object with correct sub-object (e.g. CreditCard)
// containing details of the payment method
$paymentMethod1->setType('CreditCard');

$card = new CreditCard();
$card->setAccount('4444222211113333');
$card->setExpirationDate(’xxxxxx’);'); // Use YYYYMM format

$paymentMethod1->setCreditCard($card);

Note: CashBox support for payment methods varies from payment
processor to payment processor. Contact Vindicia Client Services
for more information.
© 2014 Vindicia, Inc. Table of Contents Working with Accounts 2 - 4

CashBox 5.0: Programming Guide Setting Up Account Payment Methods
// Sort order specifies the position (preference)
// this payment method will occupy (have) in the list of
// payment methods associated with an account. When a payment
// method is not explicitly specified in an AutoBill object,
// the first payment method in the array that is active
// will be used to schedule a recurring billing transaction
$paymentMethod1->setSortOrder(1);
$paymentMethod1->setActive('true');

// Second payment method
$paymentMethod2 = new PaymentMethod();
$paymentMethod2->setAccountHolderName("John P Doe");
$paymentMethod2->setBillingAddress($address);
$paymentMethod2->setType('CreditCard');

$card2 = new CreditCard();
$card2->setAccount('5555444411112222');
$card2->setExpirationDate('xxxxxx'); // Use YYYYMM format for date

$paymentMethod2->setSortOrder(0);
$paymentMethod2->setActive('true');

// create a payment method array
$paymentMethods = array($paymentMethod1, $paymentMethod2);

// set the payment methods in the account and create the
// account using the update call
$account->setPaymentMethods($paymentMethods);
…

© 2014 Vindicia, Inc. Table of Contents Working with Accounts 2 - 5

CashBox 5.0: Programming Guide Accessing Existing Customer Accounts
2.3 Accessing Existing Customer Accounts

After creating a customer account, it must be accessed each time the customer is involved
in a transaction.

The following table lists the methods available to access the Account object.

The following example demonstrates all three methods. In production code, call only one
method at a time.

$customerID = '1234-5678-9000';
$accountVid = 'MyCustomerVindiciaId'; // for illustration purposes only!

// Create an account object
$account = new Account();

// now load a customer account into the account object
// this example illustrates all three methods back-to-back
// but in your code you'll use only one of these methods at a time

$response = $account->fetchByMerchantAccountId($customerID);
$response = $account->fetchByVID($accountVid);
// fetchByEmail returns an array of accounts with matching email
// So in that case $response will contain an array
$response = $account->fetchByEmail('somebody@yahoo.com');

if($response['returnCode'] == 200) {
print "ok\n"; # 200 is HTTP status code for success

}

The preceding example checks the return array’s returnCode, which corresponds to a
standard HTTP status code, to determine if the fetch is successful. A value of 200 indicates
success, that is, the Account object that you created earlier now contains the customer
record you would like to access.

For more information, see Section 1: The Account Object in the CashBox API Guide.

Table 2-1 Access Methods for Account Object

Method Description

fetchByEmail Returns the Account object with the specified email address.

fetchByMerchantAccountId Returns the Account object with the specified merchantAc-
countId.

fetchByPaymentMethod Returns all the Account objects with the specified payment meth-
od.

fetchByVid Returns the Account object with the specified VID.

fetchByWebSessionVid Returns the Account object with the specified WebSession VID.
© 2014 Vindicia, Inc. Table of Contents Working with Accounts 2 - 6

CashBox 5.0: Programming Guide Creating Account Hierarchies
2.4 Creating Account Hierarchies

CashBox supports two-level account hierarchies for payment and reporting. You may define
parent and children accounts. A parent can have multiple children, but a child may have only
one parent, and a child may not be a parent to another account.

A parent can pay for its own AutoBills or one-time transactions, or for any of its children's
AutoBills or one-time transactions, by including the parent’s Payment Method on an AutoBill
with the child's Account.

Children may have Payment Methods that differ from their Parent's, and can use either to
pay for their AutoBills.

When two accounts are linked or unlinked (as parent and child), an email will be sent to
both.

Create an Account hierarchy, by adding credit to the parent’s Account and transferring
the credit to the child’s Account:

// Create a new Account object for parent
$parent = new Account();

// Provide basic account information
$parent->setName('Somebody Q. Customer'); // Customer name
$parent->setMerchantAccountId('IN9430-8421');
// Unique customer id

// Create a new Account object for child
$child = new Account();
$child->setName('Somebody Q. Customer Jr.'); // Customer name
$child->setMerchantAccountId('IN9430-8421JR');
// Unique customer id

// Establish a parent->child relationship between
// $parent and $child
$childrenAdded = $parent->addChildren($parent, array($child))

//Grant credit to the parent
$curAmt = new CurrencyAmount ;
$curAmt->setCurrency('USD');
$curAmt->setAmount(100.00);

$cr = new Credit();
$cr->setCurrencyAmounts(array($curAmt));

// Now make the SOAP API call to grant credit to the parent
$response = $parent->grantCredit($cr);
if ($response['returnCode'] == 200) {

// Credit successfully granted to the account
$updatedAcct = $response->['account'];

}
else {

// Error while granting credit to the account
print $response['returnString'] . "\n";

}

© 2014 Vindicia, Inc. Table of Contents Working with Accounts 2 - 7

CashBox 5.0: Programming Guide Creating Account Hierarchies
//Define credits to be transferred from parent to child
$curTranAmt = new CurrencyAmount ;
$curTranAmt->setCurrency('USD');
$curTranAmt->setAmount(12.34);

$crTran = new Credit();
$crTran->setCurrencyAmounts(array($curTranAmt));

//Transfer specified credits from parent to child account
$response = $parent->transferCredit($child, $crTran);
if ($response['returnCode'] == 200) {

// Credit successfully granted to the account
}
else {
// Error while transferring credit between accounts
print $response['returnString'] . "\n";

For more information on methods related to Account hierarchy, see Section 1: The Account
Object in the CashBox API Guide.
© 2014 Vindicia, Inc. Table of Contents Working with Accounts 2 - 8

3 Working with Products

Product objects encapsulate information on your products or services. The Product
object contains product information, including the product’s name, description, and price. It
may be a specific piece of merchandise, a one-time event, a service, or a subscription.

Product objects may be pre-defined, for standard merchandise or subscription plans, or
created on the fly, for specialty items, such as event tickets, or limited availability objects.
© 2014 Vindicia, Inc. Table of Contents 3 - 1

CashBox 5.0: Programming Guide Creating Products
3.1 Creating Products

Use Product.update to create a Product and populate it with data.

// Create a new product
$product = new Product();

// Identify the product by your unique identifier, etc.
$product->setmerchantProductId('12345'); //SKU, Database ID, etc

// This becomes transaction line item description if the
// product is used for an autobill, so this must be set
// to some meaningful string
$product->setDescription('Online subscription with video access');

$product->setPreNotifyDays(7);
$product->setStatus('Active');
$product->setDefaultBillingPlan($billing_plan);

//From a previous update or fetch

$product->merchantEntitlementIds[0] =
(new MerchantEntitlementId

id => 'Video Only',
description => 'Video access'));

$response = $product->update(DuplicateBehavior::SucceedIgnore);

if($response['returnCode'] == 200) {
print "ok\n";
$prodVid = $product->getVID();

// capture the product VID for later use
}

When you create a Product object, CashBox assigns it a globally unique Vindicia identifier
(VID). As the preceding example illustrates, your application can capture the VID for later
use.

The Product object also includes a data member called merchantProductId, which
allows you to assign your own identifier, such as the stock-keeping unit (SKU), for the
product. The merchantProductId must be unique for each Product object you define.

Like BillingPlan objects, Product objects are stable objects that are usually created at
the start of a paid service by business analysts or people in business roles. The CashBox
Portal allows you to create and manipulate Product objects through a user interface. See
the CashBox User Guide for more information.

Note Do not make changes to an active Product object once
subscriptions are activated in the system (that is, once the related
Account, AutoBill, and BillingPlan objects that reference a
particular Product object are active). Create a new Product
object instead.
© 2014 Vindicia, Inc. Table of Contents Working with Products 3 - 2

CashBox 5.0: Programming Guide Creating Products
The Product object supports several information-only attributes, such as
endOfLifeTimestamp and status. These attributes may be used to sort or categorize
your products.

Product objects can grant any number of token types. When a real-time or recurring
transaction is made for a product that grants tokens, CashBox grants those tokens, and
associates them with the Account object in question.

For more information, see Section 13: The Product Object in the CashBox API Guide. For
information on how the Product object affects entitlements, see Section 7.1: Creating
Entitlements.
© 2014 Vindicia, Inc. Table of Contents Working with Products 3 - 3

CashBox 5.0: Programming Guide Creating Bundled Products
3.2 Creating Bundled Products

Bundling Products allows you to offer special packages, in which multiple Products are
included as a single item on the AutoBill. The price for a bundled Product is defined by the
top-level Product, but this price may be overridden by the Billing Plan or AutoBill, if desired.

Create a bundled Product.

$top_product = new Product();
$top_product->setMerchantProductId('top-1');
$top_product->update();

$bundled1 = new Product();
$bundled1->setMerchantProductId('sub-1');
$bundled1->update();

$bundled2 = new Product();
$bundled2->setMerchantProductId('sub-2');
$bundled2->update();

// of course, other attributes can be set on the above products

$top_product->bundledProducts(array($bundled1, $bundled2));

$response = $top_product->update();

if ($response['returnCode'] == 200) {

$ret_prod = $response['data']->product;
print "got product ", $ret_prod->merchantProductId(), "\n";
$bundledProds = $ret_prod->bundledProducts();

if ($bundledProds != null) {
foreach ($bundledProds as $bp) {

print $bp->merchantProductId(), " is bundled\n";
}

}
}

Note: The price for a Bundled Product is defined by the top-level Product.
This allows you to create groups of Products that may be purchased
for one set price.
© 2014 Vindicia, Inc. Table of Contents Working with Products 3 - 4

CashBox 5.0: Programming Guide Accessing Existing Products
3.3 Accessing Existing Products

After creating a Product object, access it each time a customer purchases or subscribes to
it.

The following table shows the methods of access to the Product object.

The following example calls two methods. In production, call only one method at a time.

$sku = '12345';
$productVid = 'MyProductVindiciaId'; // for illustration purposes only!

// Create a product object
$product = new Product();

// now load an existing product into the Product object
// this example illustrates both methods back-to-back
// but in your code you'll use only one of these methods at a time
$response = $product->fetchByMerchantProductId($sku);
$response = $product->fetchByVid($productVid);

if($response['returnCode'] == 200) {
print "ok\n"; # 200 is HTTP status code for success
}

The preceding example checks the return array’s returnCode to determine if the fetch
succeeded. A value of 200 indicates success; that is, the Product object created earlier
now contains the product record you would like to access.

For more information, see Section 13: The Product Object in the CashBox API Guide.

Table 3-1 Access Methods for the Product Object

Name Description

fetchAll Returns all the Product objects.

fetchByAccount Returns one or more Product objects whose Ac-
count object matches the input.

fetchByMerchantEntitlementId Returns all the Product objects whose entitlement
ID assigned by you (merchantEntitlementId)
matches the input.

fetchByMerchantProductId Returns an Account object with the specified mer-
chantAccountId.

fetchByVid Returns an Account object with the specified VID.
© 2014 Vindicia, Inc. Table of Contents Working with Products 3 - 5

4 Working with Billing Plans

Billing Plans define the rate and frequency of subscription charges. Billing Plans include
Billing Periods, which include the Billing Plan’s subset cycles, of varying frequency, duration,
and price. For example, a Billing Plan may be made up of an initial Billing Period, which bills
your customer $29.95 on the 5th of each month for three months, and a second Billing
Period, which bills your customer $199.95 on the 5th day of every 6th month (bills twice per
year), indefinitely.

The BillingPlan object encapsulates Billing Plan information, including the current status
of the Billing Plan, the number of Billing Periods contained within it, and any Entitlements
that may be associated directly with the Billing Plan.
© 2014 Vindicia, Inc. Table of Contents 4 - 1

CashBox 5.0: Programming Guide Creating Billing Plans
4.1 Creating Billing Plans

BillingPlan objects describe the amount and schedule for recurring charges. Product
objects describe the products or services that you sell. Both objects may include a Price..

For example, a business that sells access to online magazines, which cover different topics,
and are supported by different websites, but offer a standard subscription plan, might want
to create a single BillingPlan which offers a one-month free trial, followed by a recurring
bill of US$19.95 or C$22.40 per year.

Create a Billing Plan with a one-month free trial, followed by a recurring bill of US$19.95
or C$22.40 per year:

// Create a new BillingPlan
$bp = new BillingPlan();

$bp->setMerchantBillingPlanId('1MF1995Y');
$bp->setDescription('1 Free Month then followed by $19.95(USD),

$22.40(CAD) per year');
$bp->periods[0]=(new BillingPlanPeriod(

type => 'Month',
quantity => 1,
cycles => 1, //Just once
prices => [new BillingPlanPrices('amount' => 0,

'currency' => 'USD'),
new BillingPlanPrices('amount' => 0,

'currency' => 'CAD')]));
$bp->periods[1]=(new BillingPlanPeriod(

type => 'Year',
quantity => 1,
cycles => 0, //Repeat infinitely
prices => [new BillingPlanPrices('amount' => 19.95,

'currency' => 'USD'),
new BillingPlanPrices('amount' => 22.40,

'currency' => 'CAD')]));

Note: An AutoBill object includes a BillingPlan, and an array of
AutoBillItems. An AutoBillItem includes a Product, the
number of cycles the Product is to be included on the AutoBill.

For more information, see the AutoBillItem Subobject in the
CashBox API Guide.

Note: Although multiple Billing Plans may be created dynamically, as
shown in the following example, best practice recommendations are
to create stable BillingPlan objects to be used when individual
customers subscribe.

The CashBox Portal allows you to create and manipulate
BillingPlan objects through a user interface. See the CashBox
User Guide for details.
© 2014 Vindicia, Inc. Table of Contents Working with Billing Plans 4 - 2

CashBox 5.0: Programming Guide Creating Billing Plans
$bp->merchantEntitlementIds[0] = (new MerchantEntitlementId (
id => 'Standard',
description => 'Standard subscription access'));

$response = $bp->update();

if($response['returnCode'] == 200) {
print "ok\n";
$bpVid = $bp->getVID();

//capture the billing plan VID for later use
}

The BillingPlan object supports several information-only attributes, such as
endOfLifeTimestamp and status. These attributes may be used to sort or categorize
your customers. For example, you can fetch all BillingPlan objects, and display only
those objects for active customers, or for customers whose end-of-life timestamp has not yet
passed.

For details on how the BillingPlan object affects entitlements, see Section 7.1: Creating
Entitlements.

Billing Plans may also be used to grant Seasonal Entitlements, using the SeasonSet object.
For example, Create a 4-installment seasonal Billing Plan for the next 3 summers. The initial
purchase must result in 2 free weeks, but subsequent years should not include a free period.
(This is controlled using "skipInitialFreeWhenRepeating.")

Note: Once subscriptions have been activated in the system (that is, an
AutoBill object that uses a particular BillingPlan object is
active), do not make changes to the underlying BillingPlan
object, other than to change the BillingPlan Cycle amounts. For
all other changes, create a new BillingPlan object.

Note: Billing Plans may be processed in currency or in tokens, but not in
both. For example, you may set up your environment to support
several token types (such as downloads and storage) and charge
50 downloads per month for access to the system.
© 2014 Vindicia, Inc. Table of Contents Working with Billing Plans 4 - 3

CashBox 5.0: Programming Guide Creating Billing Plans
Create a Billing Plan with an attached Season Set:

// To create this BillingPlan, you must first create the SeasonSet.

$ss = new SeasonSet;
$ss->merchantSeasonSetId("Summer");

$s2014 = new Season;
$s2014->description("Summer 2014");
$s2014->startDate("2014-05-15");
$s2014->endDate("2014-10-10");

$s2015 = new Season;
$s2015->description("Summer 2015");
$s2015->startDate("2015-05-12");
$s2015->endDate("2015-10-11");

$s2016 = new Season;
$s2016->description("Summer 2016");
$s2016->startDate("2016-05-19");
$s2016->endDate("2016-10-08");

$ss->seasons([$s2014, $s2015, $s2016]);
$ss_factory->update($ss);

// Check the return code from update.

$bp = new BillingPlan;
$bp->merchantBillingPlanId("summer4installment");
$bp->description("Summer Installment Plan");
$bp->seasonSet($ss);
$bp->repeatEvery("1 Season");
$bp->timesToRun("unlimited");
$bp->skipInitialFreeWhenRepeating(1);

// Note that, although the code says to run this every 1 Season
// for an unlimited number of times, there are only 3 seasons
// in the SeasonSet. This is OK as long as you (later) add more seasons.
// (They must be added before the time we would bill for them;
// in this example they would have to be added by spring 2017.)

$bp_free = new BillingPlanPeriod;
$bp_free->free(1);
$bp_free->cycles(1);
$bp_free->quantity(2);
$bp_free->type("Week");

$bp_monthly = new BillingPlanPeriod;
$bp_monthly->free(0);
$bp_monthly->cycles(4);
$bp_monthly->quantity(1);
$bp_monthly->type("Month");

$bp->periods([$bp_free, $bp_monthly]);

$bp_factory->update($bp);

// Check the return code from update.
© 2014 Vindicia, Inc. Table of Contents Working with Billing Plans 4 - 4

5 Working with AutoBills

An AutoBill is used to manage a customer’s subscription to a Product. The AutoBill
combines a customer Account, a Product, and a Billing Plan to describe the subscription. An
AutoBill automates billing notifications and recurring billing over the life of the subscription,
by generating and submitting Transactions to payment processors.

The AutoBill object defines the relationship of a customer Account to a Product and a
BillingPlan. It includes information on the currency to be used for payment processing,
the day on which billing is to occur, and whether or not automated billing notifications should
be issued.
© 2014 Vindicia, Inc. Table of Contents 5 - 1

CashBox 5.0: Programming Guide Creating AutoBills
5.1 Creating AutoBills

The CashBox API makes it easy to set up automatically recurring billing. Construct an
AutoBill object and set its attributes to define the behavior of the recurring bill. AutoBills
contain three main components: the Account, Product, and BillingPlan.

CashBox automatically generates recurring transactions according to the definition in the
AutoBill object, and processes them with your payment processor.

Create a Product:

$sku = '12345';

// Create a Product object
$product = new Product();

$product->setMerchantProductId($sku);

//Describe (name) the product. This description will
//appear with the transaction item for each recurring bill

$product->setDescription("Virtual world game");

// You can define entitlements on products and billing plans.
// Entitlements provided by a product will be available to all
// AutoBills using this product, no matter which
// Billing Plan they use

$product->merchantEntitlementIds[0] =
(new MerchantEntitlementId (

id => 'VW Game',
description => 'Game subscription'));

// Now create the product
$response = $product->update(DuplicateBehavior::SucceedIgnore);

if($response['returnCode'] == 200) {
print "ok\n";

}

© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 2

CashBox 5.0: Programming Guide Creating AutoBills
Establish recurring billing with an AutoBill by specifying the initial commitment period:

$autobill = new AutoBill();

// Subscribe an existing customer to an existing product with a
// default billing plan specified

$autobill->setAccount($account);
$item = new AutoBillItem();
$item->setIndex(0);
$item->setProduct($product); // set the Product in the AutoBillItem
$autobill->setItems(array($item));

// Create a new BillingPlan
$bp = new BillingPlan();

$bp->setMerchantBillingPlanId('1MF1995Y');
$bp->setDescription('Basic monthly billed subscription plan');

// The billing plan offers gold level access
$bp->merchantEntitlementIds[0] = (new MerchantEntitlementId (

id => 'Gold',
description => 'Games with gold level access'));

// … Other billing plan definition code would go here

// Create a BillingPeriod object
$period = new BillingPlanPeriod();
// zero specifies an infinite number of rebilling periods
$period->count = 0;
// number of period types that comprise a single unit
$period->quantity = 1; // want to bill once per month
$period->type = 'Month';

// Associate the Billing Plan Period with the Billing Plan

$bp->periods[0]= $period;

//Now create the BillingPlan

$response = $bp->update();
if($response['return']->returnCode == 200) {

print "ok\n";
}

// Set the BillingPlan for the AutoBill

$autobill->setBillingPlan($bp)

// Set initial minimum commitment period
$autobill->setMinimumCommitment(2);
$autobill->setSourceIp('56.34.189.212');
© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 3

CashBox 5.0: Programming Guide Creating AutoBills
// If subscribed to Vindicia's risk screening service, you can
// specify the minimum chargeback probability (0-100)
// that you will tolerate. At creation time of the AutoBill,
// CashBox will generate and score a transaction with the
// payment method specified for the AutoBill and billing address
// on the account, and IP address on the
// AutoBill. If the risk score returned is less than the minimum
// chargeback probability specified here, the AutoBill will be
// created. Otherwise, it will fail.
// The evaluated score and messages explaining the score
// are available in the return parameters 'score' and 'scoreCodes'

$minChargebackProbability = 50;

// The duplicate behavior parameter is not in use.
// Its value does not currently affect the behavior of the
// AutoBill->update() call. In general, remember that
// the update() call will update an existing object if an
// AutoBill object with VID or merchantAutoBillId in the
// input object already exists. If such an object does not
// already exist in the CashBox database, a new one will be created.

$duplicateBehavior = 'Fail';

// When creating an AutoBill, specify whether or not the
// payment method associated with the AutoBill should be validated.
// If set to true, this flag causes CashBox to pre-auth
// the payment method. Type of validation and whether validation
// is performed depends on the payment method used.

$validatePaymentMethod = 'true';

// Call update to update or create the AutoBill in CashBox

$response = $autobill->update($duplicateBehavior,
$validatePaymentMethod, $minChargebackProbability);

if($response['returnCode'] == 200) {
print "ok\n";

}

© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 4

CashBox 5.0: Programming Guide Creating an AutoBill with Multiple Products
5.1.1 Creating an AutoBill with Multiple Products

CashBox allows you to include multiple line items on an AutoBill, which may include
multiple, recurring Products, and one-time, non-recurring Charges.

Add Products to an AutoBill using the AutoBillItem object. An AutoBillItem includes
a Product, the number of cycles the Product is to be included on the AutoBill, and an
amount (price).

For more information, see the AutoBillItem Subobject in the CashBox API Guide.

Create an AutoBill with two products:

$autobill = new AutoBill();
$autobill->setMerchantAutoBillId('ab-1');

$product1 = new Product();
$product1->setMerchantProductId('prod-AAA');

$product2 = new Product();
$product2->setMerchantProductId('prod-BBB');

$item1 = new AutoBillItem();
$item1->setIndex(0);
$item1->setAmount(4.50);
$item1->setCurrency('USD');
$item1->setCycles(null);
$item1->setProduct($product1);

$item2 = new AutoBillItem();
$item2->setIndex(1);
$item2->setAmount(7.95);
$item2->setCurrency('USD');
$item2->setCycles(null);
$item2->setProduct($product1);

$autobill->setItems([$item1, $item2]);

Note: Products and Charges may be added to or removed from the
AutoBill at any time, using the AutoBill.modify call. If a product
or charge is added or removed in the middle of a billing cycle, you
may set a flag to allow CashBox to determine the prorated amount
to charge or refund, based on the point in the billing cycle and the
billing date of the AutoBill.
© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 5

CashBox 5.0: Programming Guide Creating an AutoBill with Multiple Products
$autobill_factory = new AutoBill();
$response = $autobill_factory->update(

$autobill, // $autobill is of type Vindicia::Soap::AutoBill
'Fail', // $duplicateBehavior is of type

// Vindicia::Soap::DuplicateBehavior
true, //$validatePaymentMethod is of type xsd:boolean
100, // $minChargebackProbability is of type xsd:int
false, // $ignoreAvsPolicy is of type xsd:boolean
false, // $ignoreCvnPolicy is of type xsd:boolean
null, // $campaignCode is of type xsd:string
false, // $dryrun is of type xsd:boolean
);

// check $response

$response = $autobill->addCharge(
'prod-bac', // product Id for this charge 'fee for swapping tiles',
null, // will get tax class from Product
1.50,
'USD',
null, // not a token
1 // just once
);

// check $response
© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 6

CashBox 5.0: Programming Guide Updating and Validating AutoBill Objects
5.1.2 Updating and Validating AutoBill Objects

To ensure that a customer has entered a valid Payment Method, before accepting it for use
to pay AutoBills, turn on payment method validation by setting the validatePaymentMethod
or validate flag to true in either the AutoBill or PaymentMethod.update() method.
However, If you have already validated the payment method (for example, if you are
importing and creating AutoBill objects from previously successful transactions, or if you
have successfully performed a real-time transaction before creating the AutoBill object),
you might choose to turn validation off and reduce the number of calls that you make.

Validation generates and sends to the payment processor one of three types of transactions:

• $0 Authorization: Assuming that the payment processor supports $0 authorization, if
the creation of an AutoBill object does not result in an immediate billing, as in the
case of a free trial period, or if the AutoBill does not start immediately, CashBox
creates a real-time validation with a zero amount, and sends it to the payment
processor.

• $1 Authorization: If the payment processor does not support $0 authorization, and if
the creation of an AutoBill object does not result in an immediate billing, or if the
AutoBill object does not start immediately, CashBox creates a real-time transaction
with a 1.00 amount and sets the currency to the customer’s currency (for example,
US$1.00 if USD, or €1.00 if EUR is the currency associated with the Account object)
and sends it to the payment processor. CashBox authorizes this transaction instantly
with your payment processor, but does not mark the transaction for capture, so the
customer is not charged for it.

• Authorization for the full amount of the first billing cycle: Using a configuration
setting, you can enable CashBox to perform a real-time AuthCapture operation for the
full amount of the initial billing cycle. This operation occurs only if the AutoBill object
is set to start immediately, that is, it does not offer any initial free trial period or is not
scheduled to start today. Instead of performing a validation (for $0 or $1) and then an
AuthCapture operation for the full amount due later, CashBox simply performs
AuthCapture, saving you the cost of the validation.

If payment authorization fails on the attempted validation method, CashBox does not create
the AutoBill object, and you may request a different payment from the customer.

CashBox also validates other payment methods, such as ECP, if they are supported by the
payment processor. For example, with Chase Paymentech, CashBox validates ECP-based
payment methods by running initial checks on the related bank routing numbers and account
numbers. Part of this check verifies whether the routing number belongs to a known bank,
and if the account number is blacklisted in the Chase Paymentech database.

For more information, see the TransactionStatus Subobject in the CashBox API
Guide, and Section 4.1: AutoBill Data Members in the CashBox API Guide.

Note: (CVN is Vindicia’s generic term for credit-card security code, usually
located on the back of the card. Some credit-card companies call it
CVV, CVV2, CVC2, CCID, or other acronyms.)
© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 7

CashBox 5.0: Programming Guide Verifying AVS and CVN for Recurring Billing
5.1.3 Verifying AVS and CVN for Recurring Billing

Using AVS (Address Verification System) verification requires that the PaymentMethod
object that represents the credit card contain a billing address. Using CVN (Card Verification
Number) verification requires that the PaymentMethod object contain the security code
from the back of the card. Pass the security code from the credit-card owner to CashBox
using a name–value pair on the PaymentMethod object. In this pair, set the name to CVN,
the CashBox generic name for all security codes; and the value to the security code.

Authorization data from your payment processor for the transaction is located in the
transactionStatus field (see Section 18: The Transaction Object in the CashBox API
Guide, for more information) returned by the AutoBill.update() call. Ensure that your
code examines this field.

• If the credit card is approved, the TransactionStatus object’s status attribute is
set to Authorized; if not, it is set to Cancelled.

• CashBox interprets the AVS response code from your payment processor, which can
vary from processor to processor, and sets vinAVS to one of the values specified in the
AVSMatchType enumeration (see the AVSMatchType Subobject in the CashBox API
Guide).

The values of AVS response codes interpreted by CashBox from your payment
processor are in simple English: Match, Partial Match, No Match, No
Opinion, Not Supported, and Issuer Error. To retrieve the actual response
code, look up the TransactionStatusCreditCard object inside the
TransactionStatus object (creditCardStatus attribute). The
CreditCardStatus object contains an attribute called avsCode, which contains the
return code received from your payment processor.

• The values of CVN response codes interpreted by CashBox from your payment
processor are in simple English: Match, Not Processed, Not Supported, Not
Present, Invalid, and No Response. To examine the CVN response code, use the
cvnCode attribute of the TransactionStatusCreditCard object inside the
TransactionStatus object (creditCardStatus attribute). cvnCode contains the
response from your payment processor for the security code you sent with the payment
method.

Note PCI regulations prohibit storing a credit card’s CVN security code
beyond the limited time frame for verification. Do not store the CVN
security code in your system. Vindicia retains it only for as long as it
is needed for authorization, and then discards it.
© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 8

CashBox 5.0: Programming Guide Verifying AVS and CVN for Recurring Billing
Refer to the documentation from your payment processor for the translation of the return
codes; they vary from processor to processor.

$paymentMethod1 = new PaymentMethod();

$paymentMethod1->setAccountHolderName("John Doe");

// To create billing address information, create an address object
$address = new Address();
$address->setAddr1('123 Main Street');
$address->setAddr2('Apt. 4');
$address->setCity('San Carlos');

// populate other address attributes here

// Billing address on payment method is required to
// implement address verification
$paymentMethod1->setBillingAddress($address);

$paymentMethod1->setType('CreditCard');

$card = new CreditCard();
$card->setAccount('4444222211113333');
$card->setExpirationDate(’xxxxxx’); // Use YYYYMM format for date

$paymentMethod1->setCreditCard($card);

$nv = new NameValuePair();
$nv->setName("CVN");
$nv->setValue("123");

// this is the card security code provided by customer

// set the card security code inside the payment method
$paymentMethod1->setNameValues(array($nv));

$account = new Account();
// populate other account attributes here

$account->setPaymentMethods(array($paymentMethod1));

$abill = new AutoBill();
$abill->setAccount($account);

$minChargebackProbability = 50;
$duplicateBehavior = 'Fail';
$validatePaymentMethod = true;

// Now call update to create the autobill on CashBox servers

$response = $autobill->
update($duplicateBehavior,
$validatePaymentMethod,
$minChargebackProbability);

if($response['returnCode'] == 200) {
print "Credit card was approved and subscription created. \n";

}

© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 9

CashBox 5.0: Programming Guide Modifying AutoBills
else if ($response['returnCode'] == 402) {
print "Payment method was not approved "
$txStatus = $response['authStatus'];
$authCode = $txStatus->getCreditCardStatus()->getAuthCode();
print "Auth code received from processor " . $authCode . "\n";

}

5.2 Modifying AutoBills

AutoBill.modify may be used to add, remove, or exchange a Product on the existing
AutoBill, or to replace the existing Billing Plan with a new Billing Plan.

AutoBill.modify is designed to:

• Work with AutoBills that have any number of AutoBillItems.

• Allow the addition, removal or replacement of any AutoBillItems, in a single call.

• Work with Campaigns.

• Retain historic AutoBill data (such as payment history and Product choice evolution)
while making changes to existing AutoBills.

• Generate a pro-rated net charge or refund for the combined modification activity. This
charge or refund will appear through the API and GUI with other Transactions from this
AutoBill.

• Keep the AutoBill in its original state if any aspect of the call, including the modification
charge or refund, fails.

The AutoBill.modify call allows you to change the existing Products or Billing Plan for
an AutoBill, without losing the history of the subscription.

Do not use the AutoBill.modify call to change anything other than the Products or
Billing Plan for an AutoBill.

Note Use the results from the of credit-card security code verifications to
determine whether to create an AutoBill object, or update one
with a new payment method. Once you have created an AutoBill
object and started generating transactions, these verification
mechanisms may no longer be used. PCI regulations forbid the
storage of credit-card security codes. Because CashBox does not
store these numbers, CashBox is unable to perform verification for
subsequent transactions using the payment method for the
AutoBill object when it was first created.

Note: AutoBills containing Rated Products may not be modified.
© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 10

CashBox 5.0: Programming Guide Prorating Modification-Based Price Changes
5.2.1 Prorating Modification-Based Price Changes

When making the modify call, you must specify an effective date, which may be the next
billing date, or the current date. If you elect to set the billProratedPeriod input variable
to true, CashBox will calculate any prorated charges or refunds as of the effective date.
(The net charge or refund is calculated based on the difference between your customer’s
current AutoBill charge, and the modified AutoBill’s charge, as of the effective date.)

If you wish the change to take effect immediately, specify an effective date of TODAY, and
issue a pro-rated charge for the partial Billing Period that your customer will enjoy the new
Products.

For example, if customer is billed on the first of every month, and on the 7th day of a 30-day
month, they change from a $10/month product to a $15/month product, the month’s charges
will be calculated as follows:

(new plan cost - old plan cost) * (number of days on new plan / number of days in period) =

($15 - $10) * (24 / 30) = $4

$4 is the cost of the change today, and will be charged to the customer immediately. (Set the
billProratedPeriod flag of the AutoBill.modify method to false to skip this charge, if
desired). If you are performing a downgrade, the cost will be negative, and will be
immediately refunded.

Their next bill would then be on the first of the next month for $15.

Using the AutoBill.modify call to change the customer’s Billing Plan will always reset
the billing date to today. Any surcharges or refunds will be calculated appropriately.

5.2.2 Changing Products for an AutoBill

The following example demonstrates how to use the AutoBill.modify call to change
Products on an AutoBill, replacing an existing Product with a new Product, to which a
Campaign discount has been applied.

$abill = new AutoBill();
$abill->setMerchantAutoBillId('vin_test_abill1391561675069');

// This is ID of the AutoBill you want to modify.

$productRemoved = new Product(); // Product we want to remove.
$productRemoved->setMerchantProductId('regular-avataxed-product');

// Identify the Product by its ID. There is no need to fetch it.

Note: Please note that CashBox calculates prorated charges by the day.

Note: Use the dryrun input parameter for the AutoBill.modify call to
return any charges or credits that would be levied as a result of the
change, without modifying the AutoBill. This allows you to show
your customers a preview of changes to their subscription, without
saving the change.
© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 11

CashBox 5.0: Programming Guide Changing Products for an AutoBill
$itemRemoved = new AutoBillItem();
$itemRemoved->setProduct($productRemoved);

$productAdded = new Product(); // Product we want to add.
$productAdded->setMerchantProductId('avataxed-ott-product');

// Identify the Product by its ID. There is no need to fetch it.

$itemAdded = new AutoBillItem();
$itemAdded->setProduct($productAdded);
$itemAdded->setMerchantAutoBillItemId('item-987654'); // Unique item ID.
$itemAdded->setCampaignCode('OTT');

// To apply a promo to the Product being added.

$modification = new AutoBillItemModification();
$modification->setRemoveAutoBillItem($itemRemoved);
$modification->setAddAutoBillItem($itemAdded);

$modifications = [$modification];

$abmr = abill.modify(
true, // bill prorated period
'today', // make the change effective today
null, // not changing the billing plan
$modifications,
false // no dry run
);

if ($abmr->getReturnCode == 200) {
// We got a 200 response code back
// The modification may result a net refund or net charge
// to the customer.
$refunds = $abmr->getRefunds();
$tx = $abmr->getTransaction();
if ($refunds != null && $refunds->length > 0) {

// Modification resulted into net refund
// In most cases there should be only one refund
$the_refund = $refunds[0];
print('Total refund amount due to modification: '

. $refunds[0]->getAmount()

. ' . See break down below: ');

// To give the customer a break down of how we reached
// the refund amount, we must parse the $0 transaction
// that accompanies this.
if ($tx != null) {

printTxDetails($tx);
}

}
else {

// Refund is null, so there must be net cost to the customer
if ($tx != null) {

print('Total charge processed during modification: $'
. $tx->getAmount()
. ' - see break down below:');

printTxDetails($tx);
}

}

© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 12

CashBox 5.0: Programming Guide Changing the Billing Plan for an AutoBill
}

5.2.3 Changing the Billing Plan for an AutoBill

The following example demonstrates how to use the AutoBill.modify call to change the
Billing Plan on an AutoBill, replacing the existing with a new Billing Plan.

$abill = new AutoBill();
$abill->setMerchantAutoBillId('TEST-AB-2');

// this is ID of the AutoBill you want to modify

$newBp = new BillingPlan();
$newBp->setMerchantBillingPlanId('monthly');

// The ID of the Billing Plan you want change the AutoBill to.

$abmr = $abill->modify(
true, // bill prorated period
'today', // make the change effective today
$newBp, // changing the billing plan
null, // no product modifications
false // no dry run
);

if ($abmr->getReturnCode() == 200) {
// We got a 200 response code back
// The modification may result a net refund or net charge to the customer
$refunds = $abmr->getRefunds();
$tx = $abmr->getTransaction();
if ($refunds != null and $refunds->length > 0) {

// Modification resulted in a net refund.
// In most cases there should be only one refund.
$the_refund = $refunds[0];
print('Total refund amount due to modification: '

. $the_refund->getAmount() . '

. See break down below: ');

// To give customer break down of how we reached refund amount,
// we must parse the $0 transaction that accompanies this.
if ($tx != null) {

printTxDetails($tx);
}

}
else {

// Refund is null, so there must be net cost to the customer
if ($tx != null) {

print('Total charge processed during modification: $'
. $tx->getAmount()
. ' - see break down below:');

printTxDetails(tx);
}

}
}

© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 13

CashBox 5.0: Programming Guide Changing both Products and Billing Plan in a Single Call
5.2.4 Changing both Products and Billing Plan in a Single Call

The following example demonstrates how to use the AutoBill.modify call to change
both the Products and the Billing Plan for an AutoBill simultaneously.

$abill = new AutoBill();
$abill->setMerchantAutoBillId('vin_test_abill1391560836975');

// This is ID of the AutoBill you want to modify.

$productRemoved = new Product(); // Product we want to remove.
$productRemoved->setMerchantProductId('monthlySub');

// Simply identify the Product by its ID. No need to fetch it.

$itemRemoved = new AutoBillItem();
$itemRemoved->setProduct($productRemoved);

$productAdded = new Product(); // Product we want to add
$productAdded->setMerchantProductId('AnnualSubProduct');

// Simply identify the Product by its ID. No need to fetch it.

$itemAdded = new AutoBillItem();
$itemAdded->setProduct($productAdded);
$itemAdded->setMerchantAutoBillItemId('item-425304'); // Unique item ID.
$itemAdded->setCampaignCode('ANNUALPROMO');

// To apply a Promo to the Product being added.

$modification = new AutoBillItemModification();
$modification->setRemoveAutoBillItem($itemRemoved);
$modification->setAddAutoBillItem($itemAdded);

// We want to change to the annual plan.

$newPlan = new BillingPlan();
$newPlan->setMerchantBillingPlanId('annual-plan-2');

$modifications = [$modification];

$abmr = abill.modify(
true, // Bill prorated period.
'today', // Make the change effective today.
$newPlan, // Not changing the Billing Plan.
$modifications,
false // No dry run.
);
© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 14

CashBox 5.0: Programming Guide Changing both Products and Billing Plan in a Single Call
if ($abmr->getReturnCode() == 200) {
// We got a 200 response code back.
// The modification may result a net refund or
// net charge to the customer.
$refunds = $abmr->getRefunds();
$tx = $abmr->getTransaction();
if ($refunds != null && $refunds->length > 0) {

// Modification resulted into net refund
// In most cases there should be only one refund
$the_refund = $refunds[0];
print('Total refund amount due to modification: '

. refunds[0]->getAmount()

. ' . See break down below: ');

if ($tx != null) {
printTxDetails($tx);

}
}
else {

// Refund is null, so there must be net cost to the customer.
if ($tx != null) {

print('Total charge processed during modification: $'
. $tx->getAmount()
. ' - see break down below:');

printTxDetails($tx);
}

}
}

© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 15

CashBox 5.0: Programming Guide Cancelling AutoBills
5.3 Cancelling AutoBills

To stop recurring billing, cancel the corresponding AutoBill object. Either:

• Retrieve the object and call cancel() on it. For more information, see the
AutoBill.cancel method in the CashBox API Guide.

• Call stopAutoBilling() on the Account object that represents the customer. (See
the Account.stopAutoBilling method in the CashBox API Guide.)

(Both methods allow you to select whether to disentitle the customer immediately, or allow
the entitlements to continue until the end of the current Billing Period.)

When you make these calls, CashBox notifies the customer of the cancellation. For details,
see Section 9.2: Working with Billing Events.

CashBox allows you to automatically cancel an AutoBill if a customer charges back an
AutoBill transaction. To take advantage of this feature, contact Vindicia Client Services.

5.3.1 Cancelling AutoBills on Billing Day

If you cancel an AutoBill object on billing day, and the CashBox process that generates
the related transactions has already begun, CashBox still bills your customer. If you have set
up cancellation and success notifications, your customer could also, for a short period of
time, receive a cancellation notice followed by a success notification.

The result of the AutoBill.cancel() call returns a success code of 200 if the call
succeeded. Vindicia recommends that you also call Transaction.fetchByAutoBill()
to check the transaction status.
© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 16

CashBox 5.0: Programming Guide Importing AutoBills from other Billing Systems to CashBox
5.4 Importing AutoBills from other Billing Systems to CashBox

The CashBox AutoBill.migrate, Transaction.migrate, and Refund.report
calls allow you to import existing subscription and Transaction information from your billing
system to CashBox. The AutoBill.migrate call will create new AutoBills which reflect
the imported information.

AutoBill and Transaction.migrate allow you to:

• Bring a subscriber into the CashBox system,, while preserving their pre-CashBox
history.

• Refund transactions using CashBox, even if the transaction was not originally from
CashBox, eliminating the need for you to maintain multiple billing systems.

• Perform all customer service functionality (including modify) on existing subscribers
before CashBox has billed them, eliminating the need to maintain two customer service
flows.

After migration, these Transactions and AutoBills will be processed and treated as if they
had originated with CashBox, allowing you to use this method to:

• import existing customers in good standing.

• import customers who were in good standing, but whose most recent billing cycle was
unsuccessful

• import historic billing information for your customers, offering you a continuous record of
their subscriptions.

Use AutoBill.migrate to migrate existing active subscriptions from your billing system
to CashBox. The AutoBill and MigrationTransactions provided in this call will be
used to replicate your system's billing history, and future subscription behavior (to the
maximum extent possible) in CashBox. Once migrated to CashBox, you may perform
operations on the AutoBill (such as modify, cancel, and update) and expect behaviors that
replicate that of an AutoBill created in CashBox. MigrationTransactions included in the
AutoBill.migrate request will result in the creation of Transactions that can be operated
on as if they had originated in CashBox (including refund and fetch calls).

CashBox supports the following transaction status types on MigrationTransactions
included in an AutoBill.migrate call:

• Captured

• Cancelled

• Refunded

• Settled

• Void
© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 17

CashBox 5.0: Programming Guide Key Migrate Parameters
5.4.1 Key Migrate Parameters

Be certain to include a MigrationTransaction reflecting the most-recent subscription
billing attempt in your first migrate call for a given AutoBill. This
MigrationTransaction, and the nextPeriodStartDate will be used to reconstruct
the billing schedule for the AutoBill. Supplemental calls to AutoBill.migrate may be
made to back-fill historical data for a given AutoBill.

5.4.2 Migrating an AutoBill During a Billing Cycle

This example demonstrates how to migrate an AutoBill that has completed two monthly
billing cycles on a pre-existing billing system. The AutoBill is migrated to CashBox before its
third billing date.

// Construct the AutoBill to be migrated

$migrBill = new AutoBill();

// The subscription was originally started on the
// existing system on Dec. 27, 2013.
$migrBill->setStartTimestamp('2013-12-27');

// Set a unique subscription ID. If the subscription
// existing in your current system has an ID.
migrBill.setMerchantAutoBillId('SampleMigratedAutoBill-950681');

// Specify the Billing Plan the migrated AutoBill will be on.
// Make sure the Billing Plan used below preexists in CashBox.
$billPlanId = 'migrMonthly';
$bp = new BillingPlan();
$bp->setMerchantBillingPlanId($billPlanId);
$migrBill->setBillingPlan($bp);

// Specify the Product the migrated AutoBill will be using.
// Make sure the Product used below is created in CashBox in advance

// Now, fetch the Product to get more info about the Product.
// That info can be used to fill in the migration transactions.
// Exception handling code for the fetch call is omitted for brevity.
// This step is optional. The necessary product
// information can also be retrieved from your local store.

Note: Subsequent calls to AutoBill.modify will not result in
modifications to the AutoBill (only the MigrationTransactions
will be processed to create historic Transaction information). Also
note that Vindicia allows only one recurring Transaction to be
provided for each billing period in a subscription's billing history.
© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 18

CashBox 5.0: Programming Guide Migrating an AutoBill During a Billing Cycle
$product_factory = new Product();
$vrc = $product_factory->fetchByMerchantProductId('monthlySub');
$prod = $vrc->product(); // assuming here that the return is 200

$item = new AutoBillItem();
$item->setProduct($prod);
// The item was added the same day the AutoBill started,
// so you must specify the start date explicitly.

$migrBill->setItems([$item]);

// This sample creates a new customer Account
// and a new PaymentMethod for every run.
// For actual migration, the Account used here, and its associated
// PaymentMethod, is expected to be already present in CashBox.
$account_factory = new Account();
$vrc = $account_factory->fetchByMerchantAccountId('user_207408');
$acct = $vrc->account(); // assuming that the return is 200

$migrBill->setAccount($acct);

$paymentProcessor = 'Litle';
// Your merchant account must already have an active
// routing set to process transactions at Litle.

$paymentProcessorMerchantId = '9104658';

// ***

// Construct the Transaction for the first Billing Cycle to migrate.

$mt0 = new MigrationTransaction();
$mt0->setMerchantTransactionId('MIGR-SAMPL-0-196114'); // each transaction
should have unique ID
$mt0->setAutoBillCycle(0);
$mt0->setType('Recurring');
$mt0->setBillingPlanCycle(0);
$mt0->setMerchantBillingPlanId(billPlanId);
$mt0->setRetryNumber(0);
$mt0->setPaymentMethod(acct.getPaymentMethods()[0]);
$mt0->setAccount(acct);
$mt0->setSalesTaxAddress(acct.getPaymentMethods()[0].getBillingAddress());
$mt0->setPaymentProcessor(paymentProcessor);
$mt0->setPaymentProcessorTransactionId('Litle-' . curTime);
$mt0->setDivisionNumber(paymentProcessorMerchantId);

$mt0->setBillingDate('2013-12-27');

$mt0->setCurrency('USD');

$txTotal = 0.0; // This must match the total of the items,
// so we will add to this total as we construct line items.
© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 19

CashBox 5.0: Programming Guide Migrating an AutoBill During a Billing Cycle
$mTxItem00 = new MigrationTransactionItem();
$mTxItem00->

setItemType(com.vindicia.soap.v5_0.Vindicia.MigrationTransactionItemType
.RecurringCharge);

$mTxItem00->setSku(prod.getMerchantProductId());
$mTxItem00->setName(prod.getDescriptions()[0].getDescription()

. ' - includes discounts (if any)');
$discount = 0.15 ; // Customer got 15% discount for this transaction.
$price_array = $prod->getPrices();
$the_price = $price_array[0];
$productPrice = $prod->getAmount();
$discountedProductPrice = $productPrice - $productPrice * $discount;
$mTxItem00->setPrice($discountedProductPrice);
$txTotal = $txTotal + $discountedProductPrice;
$mTxItem00->setTaxClassification('DC010500');

// This should be the Avalara tax code associated with this product

$mTxItem00->setServicePeriodStartDate('2013-12-27');
$mTxItem00->setServicePeriodEndDate('2014-01-26');

$mTxTaxItem000 = new MigrationTaxItem();
$mTxTaxItem000->setAmount(7.50);
$mTxTaxItem000->setJurisdiction('STATE_06');
$mTxTaxItem000->setName('CALIFORNIA STATE SALES TAX');

// Let's add the tax to our transaction total.
$txTotal = $txTotal + 7.50;

$mTxTaxItem001 = new MigrationTaxItem();
$mTxTaxItem001->setAmount(1.00);
$mTxTaxItem001->setJurisdiction('COUNTY_085');
$mTxTaxItem001->setName('SANTA CLARA COUNTY SALES TAX');

// Let's add the tax to our transaction total.
$txTotal = $txTotal + 1.00;

$mTxItem00->setMigrationTaxItems([$mTxTaxItem000, $mTxTaxItem001]);

$mt0->setMigrationTransactionItems([$mTxItem00]);

// Let's set the transaction total.
$mt0->setAmount($txTotal); // Total tx amt should be same as.

// Report this transaction in 'captured' status so it can be refunded.
$status00 = new TransactionStatus();
$status00->setStatus('Captured');
$status00->setPaymentMethodType('CreditCard');
$status00->setTimestamp('2013-12-27 01:30:40');
$ccStatus00 = new TransactionStatusCreditCard();
$ccStatus00->setAuthCode('000');
$status00->setCreditCardStatus($ccStatus00);

$mt0->setStatusLog([$status00]);

// **
© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 20

CashBox 5.0: Programming Guide Migrating an AutoBill During a Billing Cycle
// Construct the Transaction for the second billing cycle to migrate.

$mt1 = new MigrationTransaction();
$mt1->setMerchantTransactionId('MIGR-SAMPL-1-' . curTime);
$mt1->setAutoBillCycle(1);
$mt1->

setType(com.vindicia.soap.v5_0.Vindicia.MigrationTransactionType
.Recurring);

$mt1->setBillingPlanCycle(1);
$mt1->setMerchantBillingPlanId(billPlanId);
$mt1->setRetryNumber(0);
$mt1->setPaymentMethod(acct.getPaymentMethods()[0]);
$mt1->setAccount(acct);
$mt1->setSalesTaxAddress(acct.getPaymentMethods()[0].getBillingAddress());
$mt1->setPaymentProcessor(paymentProcessor);
$mt1->setPaymentProcessorTransactionId('Litle-' . curTime);
$mt1->setDivisionNumber(paymentProcessorMerchantId);
$mt1->setCurrency('USD');
$mt1->setBillingDate('2014-01-27');

$txTotal = 0.0; // This must match the total of the items.

$mTxItem10 = new MigrationTransactionItem();
$mTxItem10->setItemType('RecurringCharge');
$mTxItem10->setSku($prod->getMerchantProductId());
$discount = 0.1 ;

// This product got a 10% discount.
// Specify a price that includes a discount.

$description_array = $prod->getDescriptions();
$the_description = $description_array[0];
$mTxItem10->setName($the_description->description()

. ' - includes discounts (if any)');
$price_array = $prod->getPrices();
$the_price = $price_array[0];
$productPrice = $the_price->getAmount();
$discountedProductPrice = $productPrice - $productPrice * $discount;
$mTxItem10->setPrice($discountedProductPrice);
$txTotal = $txTotal + $discountedProductPrice;

$mTxItem10->setTaxClassification('DC010500');
$mTxItem10->setServicePeriodStartDate('2014-01-27');
$mTxItem10->setServicePeriodEndDate('2014-02-26');
// Let's use same period as the Billing Period end.
// Construct tax line items applicable to the above product line item.
$mTxTaxItem100 = new MigrationTaxItem();
$mTxTaxItem100->setAmount(7.50);
$mTxTaxItem100->setJurisdiction('STATE_06');
$mTxTaxItem100->setName('CALIFORNIA STATE SALES TAX');
$txTotal = $txTotal + 7.50;

$mTxTaxItem101 = new MigrationTaxItem();
$mTxTaxItem101->setAmount(1.00);
$mTxTaxItem101->setJurisdiction('COUNTY_085');
$mTxTaxItem101->setName('SANTA CLARA COUNTY SALES TAX');
$txTotal = $txTotal + 1.00;
© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 21

CashBox 5.0: Programming Guide Migrating an AutoBill During a Billing Cycle
$mTxItem10->setMigrationTaxItems([$mTxTaxItem100, $mTxTaxItem101]);

$mt1->setMigrationTransactionItems([$mTxItem10]);

$mt1->setAmount($txTotal);

// Report this transaction in 'captured' status so it can be refunded.
$status10 = new TransactionStatus();
$status10->setStatus('Captured');
$status10->setPaymentMethodType('CreditCard');
$status10->setTimestamp('2014-01-27 02:36:57');
$ccstatus10 = new TransactionStatusCreditCard();
$ccstatus10->setAuthCode('000');
$status10->setCreditCardStatus($ccstatus10);

$mt1->setStatusLog([$status10]);

// Now construct an array of the Transactions to be migrated.
$migrTxs = [$mt0, $mt1];

// Next billing for the AutoBill should happen a
// month from the last billing (2nd transaction in the
// migrated transaction array above) i.e. on Dec. 27, 2013.

// Now make the CashBox SOAP API call to migrate the
// AutoBill along with the Transactions constructed above.

$vr = $migrBill->migrate('2014-01-27', $migrTxs);
if ($vr->getReturnCode() != 200) {
 print('Migrate call failed - return code '
 . vr->getReturnCode()
 . ' and return string '
 . vr->getReturnString());
 print('Soap id ' . $vr->getSoapId());
}
else {

print('Migration successful. Created autobill id '
. $migrBill->getMerchantAutoBillId()
. ' in CashBox. Its VID: '
. $migrBill->getVID()
. ' . This autobill is for customer Account ID '

. $migrBill->getAccount()->getMerchantAccountId());
}

© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 22

CashBox 5.0: Programming Guide Migrating an AutoBill During a Free Trial Period
5.4.3 Migrating an AutoBill During a Free Trial Period

This example demonstrates how to migrate an AutoBill that is currently within a one-month
free trial period. Once migrated, CashBox will begin billing when this trial period has
completed.

$migrBill = new AutoBill();

// The subscription was originally started,
// in the existing system, on Jan. 25, 2014.

$migrBill->setStartTimestamp('2014-01-25');

// Set unique subscription ID.
$migrBill->setMerchantAutoBillId('SampleMigratedAutoBill-ABC123');

// Specify the Billing Plan the migrated AutoBill will be on.
// Make sure the Billing Plan used below is created in CashBox in advance.
// This is a monthly Billing Plan with first cycle marked FREE.
$bp = new BillingPlan();
$bp->setMerchantBillingPlanId('first-free-monthly');
$migrBill->setBillingPlan($bp);

// Specify the Product the migrated AutoBill will be using.
// Make sure the Product used below is created in CashBox in advance.

// First, fetch the Product to get more info about the Product,
// which can be used to fill into the migration transactions.

$product_factory = new Product();
$vr = $product_factory->fetchByMerchantProductId('monthlySub');

// assuming here that the return is 200
$prod = $vr->getProduct(); // The product that the fetch returned.

$item = new AutoBillItem();
$item->setProduct($prod);

$migrBill->items[0] = $item;

// For actual migration the Account used here with its associated
// PaymentMethod is expected to preexist in CashBox.
$account_factory = new Account();
$vrc = $account_factory->fetchByMerchantAccountId('user_xyz123');
$acct = $vrc->account(); // Assuming that the return is 200.

$migrBill->setAccount($acct);

// ***
© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 23

CashBox 5.0: Programming Guide Migrating an AutoBill During a Free Trial Period
// Construct the "Free" Transaction for the first
// billing cycle to migrate.

$mt0 = new MigrationTransaction();
$mt0->setMerchantTransactionId('MIGR-SAMPL-0-987654');

// Each transaction should have a unique ID.

$mt0->setAutoBillCycle(0);
$mt0->setType('Recurring');
$mt0->setBillingPlanCycle(0);
$mt0->setMerchantBillingPlanId($bp->getMerchantBillingPlanId);
$mt0->setRetryNumber(0);
$pm_array = $acct->getPaymentMethods();
$target_pm = $pm_array[0];
$mt0->setPaymentMethod($target_pm);
$mt0->setAccount($acct);
$mt0->setSalesTaxAddress($target_pm->getBillingAddress());

$mt0->setBillingDate('2014-01-25');
$mt0->setCurrency('USD');
$mt0->setAmount(0.0);

// This amount must be 0 to make this transaction FREE.

$mTxItem00 = new MigrationTransactionItem();
$mTxItem00->setItemType('RecurringCharge');
$mTxItem00->setSku('FREE');
$mTxItem00->setName('Free Cycle');
$mTxItem00->setPrice(0.0);

$mTxItem00->setServicePeriodStartDate('2014-01-25');
$mTxItem00->setServicePeriodEndDate('2014-02-24');

$mt0->setMigrationTransactionItems([$mTxItem00]);

// Report this transaction in "captured" status.
$status00 = new TransactionStatus();
$status00->setStatus('Captured');
$status00->setPaymentMethodType('CreditCard');
$status00.setTimestamp('2014-01-25 01:30:40');

$mt0->setStatusLog([$status00]);

// Now construct the array of Transactions to be migrated.
$migrTxs = [$mt0];

// The next billing for the AutoBill should happen a month
// from the last billing (2nd transaction in the migrated
// transaction array above) i.e. on Dec. 27, 2013.
// Now, make the CashBox SOAP API call to migrate the AutoBill
// along with the transactions constructed above.

$vr = $migrBill->migrate('2014-01-25', $migrTxs);
© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 24

CashBox 5.0: Programming Guide Using EDD for Recurring Billing
if ($vr->getReturnCode() != 200) {
print('Migrate call failed - return code '

. $vr->getReturnCode()

. ' and return string '

. $vr->getReturnString());
print('Soap id ' . $vr->getSoapId());

}
else {

print('Migration successful. Created autobill id '
. $migrBill->getMerchantAutoBillId()
. ' in CashBox. Its VID: '
. $migrBill->getVID()
. ' . This autobill is for customer Account ID '
. $migrBill->getAccount()->getMerchantAccountId());

print('Next billing will be on '
. $migrBill->getNextBilling()
. ' for $'
. $migrBill->getNextBilling()->getAmount());

$transaction_factory = new Transaction();
$tx_array = $transaction_factory->fetchByAccount($acct, false);

// Because we migrated only the $0 transaction,
// there should be only one transaction.
$the_tx = $tx_array[0];
$status_log = $the_tx->getStatusLog();
$the_status = $status_log[0];

print('Last transaction for this account was for $'
. $the_tx->getAmount()
. ' processed on '
. $the_status->getTimestamp);

}

5.5 Using EDD for Recurring Billing

To implement AutoBill-based recurring billing for EDD, construct and populate a
PaymentMethod object and set it on the paymentMethod attribute of the AutoBill
object.

Note: If you do not specify a paymentMethod attribute, CashBox uses the first payment
method in the sort order on the associated Account object.
© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 25

CashBox 5.0: Programming Guide Using EDD for Recurring Billing
The following example constructs an EDD-based PaymentMethod object, and sets it as the
payment method for an AutoBill object. The example then creates the AutoBill object
on the Vindicia server by calling update() on AutoBill with payment method validation
turned on. (Note that this example shows a recurring transaction with a full rebill amount.)

// Create a payment method object to make the call
$edd_pm = new PaymentMethod();

$edd_pm->setType('DirectDebit');

$dd = new DirectDebit();
$dd->setAccount('8888888888');
$dd->setBankSortCode('12345678');
$dd->setCountryCode('DE');

$edd_pm->setDirectDebit($dd);

$bill_addr = new Address();
$bill_addr->setName('Lutz Haff');
$bill_addr->setAddr1('Leonrodstrasse 57');
$bill_addr->setCity('Munchen');
$bill_addr->setPostalCode('D-80636');
$bill_addr->setCountry('DE');

$edd_pm->setBillingAddress($bill_addr);
$edd_pm->setAccountHolderName('Lutz Haff');
$edd_pm->setCustomerSpecifiedType('EDD');
$edd_pm->setMerchantPaymentMethodId('pmid-edd-342123');

// Create a payment method object to make the call
$autobill = new AutoBill();

$autobill->setPaymentMethod($edd_pm);

// Populate other AutoBill attributes here
…

// Create the autobill while validating the payment method

$autobill->setCurrency('EUR');
// If you are enabling mandate storage for this AutoBill,
// as discussed later in this document, include the
// IP address from which the customer purchased this subscription.
// In some countries, the IP address is part of the
// signature on the mandate.

$autobill->setSourceIp('198.209.56.17');

$validate = true;
$fraudScore = 100 ; // do not want to do risk screening

$response =
$autobill->update('SucceedIgnore', $validate, $fraudScore);

if($['response['data']->refunds['returnCode'] == 200
&& $response['created']){

print "AutoBill created with VID " .
$response['data']->autobill->getVID() . "\n";

}

© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 26

CashBox 5.0: Programming Guide Using EDD for Recurring Billing
Once the AutoBill object is in place, the recurring EDD-based transactions it generates
determine its status and the entitlements it grants to the associated Account object, as
follows:

1. CashBox validates (the payment method for) a recurring transaction before submitting it
to the payment processor for capture. (For more information, see the
AutoBill.validate method in the CashBox API Guide.)

• If the validation fails, CashBox sets the AutoBill status to Hard Error. This
rarely happens if you validate the EDD payment method when creating an
AutoBill object or when updating its payment method.

• If the transaction passes the validation, CashBox submits it to the payment
processor. The processor checks the account number and bank routing number for
the EDD payment method against a negative file. If the transaction passes,
CashBox considers the transaction Authorized, and the fund withdrawal process
begins. CashBox sets the AutoBill status to Good Standing (or retains that
status), and AutoBill grants (or continues to grant) the customer entitlements.

2. During the fund deposit process:

• If the processor receives a decline return code (a soft error due to insufficient
funds, for example), the retry process starts. The payment processor triggers this
process according to the retry schedule defined by the merchant. A retry does not
affect the AutoBill status, which remains Good Standing. The rebill
Transaction moves to the DepositRetryPending status, which is internal to
CashBox. The customer continues to have the entitlements granted by the
AutoBill object.

• If the processor receives a reject return code, (a hard error because, for example,
the customer’s bank account has been closed), and you have not provided a retry
schedule to the processor, the rebill transaction fails. CashBox sets the transaction
status to Cancelled and the corresponding AutoBill status to Hard Error.

• If CashBox receives no response from the processor for four banking days,
CashBox sets the Transaction status to Captured. The AutoBill object
retains its Good Standing status until the beginning of the next billing period, and
the customer’s entitlements remain valid until the next billing date.
© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 27

CashBox 5.0: Programming Guide Understanding Mandates for Recurring Billing with EDD
5.5.1 Understanding Mandates for Recurring Billing with EDD

Mandates are written agreements from your customers that authorize you to withdraw funds
from their bank accounts. Although you can create AutoBills without mandates in
CashBox, Vindicia recommends that you store mandates, because it is required by law in
most countries that support EDD.

To enable mandate storage for an AutoBill paid through EDD:

1. Upload the HTML template of the mandate’s general text to Vindicia. Each template
must specify the country to which the template applies (see the valid values for
countryCode in the DirectDebit Subobject in the CashBox API Guide), the
language the template is in (specify the ISO code for the language), and the template’s
version number. Contact Vindicia Client Services to upload your mandate template.

The HTML mandate template contains placeholder tuples (tags), listed in the document
European Direct Debit for CashBox in The Netherlands, Germany, and Austria: An
Overview. When creating an instance of the mandate from the template for a subscription,
CashBox replaces those tuples with the values from the corresponding AutoBill object,
then stores the mandate instance with that AutoBill object in the Vindicia database.

2. Inform CashBox that you intend to store the mandate for a subscription by including
special flags in the form of name–value pairs in the AutoBill object before calling
update() to create the object. Table 5-1 lists the flags.

3. Include the source IP address from which the customer made this purchase in the
AutoBill object. Some countries consider the IP address, coupled with the timestamp
for the AutoBill’s creation, to be a valid replacement for the customer’s signature on
the mandate.

CashBox accepts transactions without IP addresses, to allow for cases in which a paper
mandate is kept on file, precluding the requirement for an IP address.

4. Add the name–value pairs to the code.

Table 5-1 AutoBill Object Flags for Mandates

Name of Flag Value

vin:MandateFlag A value of 1 indicates that you would like to store the mandate
for the associated AutoBill object.

vin:MandateVersion Specifies the mandate instance to be used for the associated
AutoBill object.

Note: If you do not specify this field, CashBox uses the most re-
cently added template for the customer’s preferred language
and country.

vin:MandateBankName Specifies the name of the customer’s bank used for the man-
date. (Required only in the Netherlands.)
© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 28

CashBox 5.0: Programming Guide Understanding Mandates for Recurring Billing with EDD
Enable mandate storage for an existing AutoBill:

(This example expands on the previous.)

…
$autobill->setPaymentMethod($edd_pm);

// Set flags in the autobill to enable mandate storage
// You must have uploaded a mandate template of version 1.0
// to Vindicia servers prior to this.

$nv1 = new NameValuePair();
$nv1->setName('vin:MandateFlag');
$nv1->setValue('1');

$nv2 = new NameValuePair();
$nv1->setName('vin:MandateVersion');
$nv1->setValue('1.0');

$nv3 = new NameValuePair();
$nv1->setName('vin:MandateBankName');
$nv1->setValue('Deutsche Bank');

// nameValues attribute is available in Vindicia's AutoBill
// object from API version 3.4 onwards

$autobill->setNameValues(array($nv1, $nv2, $nv3));

// update the AutoBill as shown in the previous example

Multiple mandate templates may be uploaded for different languages. When creating a
mandate instance to store with an AutoBill, CashBox uses the template that matches the
preferredLanguage attribute of the AutoBill object associated with the transaction.

Use the CashBox Portal to view and retrieve mandates. If you have enabled an AutoBill for
mandate storage, a link to view the mandate is displayed on the AutoBill Detail page on the
Portal. Click that link to display the PDF document for the mandate.

Note: If you do not specify a value for preferredLanguage, CashBox
defines the language for the mandate using the country specified in
the EDD payment method.
© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 29

CashBox 5.0: Programming Guide Using PayPal for Recurring Billing
5.6 Using PayPal for Recurring Billing

To set up AutoBill-based recurring billing with PayPal, you must be preapproved by PayPal
to conduct reference transactions. Contact Vindicia Client Services for more information.

Note: Not all merchants will be authorized to obtain the referenceId from PayPal. Work
with your PayPal representative to obtain the right to use this process.

Set up recurring billing in an AutoBill:

1. If the PaymentMethod exists and contains a ReferenceID for PayPal, turn off the
validatePaymentMethod flag in the update call. (This condition may exist if the
PaymentMethod was previously validated and approved.)

2. Set the following for the PayPal payment method (PaymentMethod object and its
payPal attribute) on AutoBill, or on the Account object if the settings are not
specified on AutoBill:

a. Set emailAddress to the subscriber’s email address.

b. Set returnUrl to an existing URL on your site to which the customer will be
redirected after a successful authentication with PayPal.

c. Set cancelUrl to an existing URL on your site to which the customer will be
redirected after a failed authentication, that is, if PayPal does not authorize the
payment information.

3. Call update() to create the AutoBill object, and return a TransactionStatus
object. The TransactionStatus object must contain a URL in the redirectUrl
field, to which the customer will be redirected to complete the PayPal payment process.
Without completion of this step, recurring billing will not begin.

Retrieve the redirectUrl:

$minChargebackProbability = 90;

$duplicateBehavior = 'Fail';

$validatePaymentMethod = 'true';

// Call update to update or create the autobill on Vindicia servers

$response = $autobill->update($duplicateBehavior,
$validatePaymentMethod, $minChargebackProbability);

if($response['returnCode'] == 200) {
printLog "AutoBill created \n";

$txnStatus = $response['data']->refundsauthStatus;
$redirectUrl = $txnStatus->payPalStatus->redirectUrl
print "Visit " . $redirectUrl .

" to complete payment at PayPal site"
}

While waiting for the customer to complete payment at PayPal, the AutoBill object will
have status: PendingCustomerAction. The object is dormant and will not perform any
billing.
© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 30

CashBox 5.0: Programming Guide Using PayPal for Recurring Billing
At the PayPal site, the customer logs in and agrees to the contract for recurring billing.
When the process is complete, the customer clicks a button that takes them to your success
page (returnUrl) or failure page (cancelUrl). From the success page, make the
finalizePayPalAuth() call to inform CashBox of successful authorization of the
PayPal-based payment method. After receiving the successful authorization, the status of
the AutoBill object changes to New, indicating that the subscription has started and that
the AutoBill will start billing the customer according to the specified dates.

Finalize the PayPal payment method authorization:

$soap_caller = new AutoBill();

// obtain id of the PayPal validation transaction
// from the redirect URL. It is the value associated with name
// 'vindicia_vid'

$payPalTxId = … ;

// if calling from return URL which is reached when the PayPal
// transaction is successfully authorized you should set the
// success input parameter to true

$success = true;
$response =

$soap_caller->finalizePayPalAuth($payPalTxId, $success);

if($response['data']->refunds['returnCode'] == 200) {
printLog "PayPal validation transaction successful";
printLog "- subscription started";

}

For every subsequent transaction performed by the AutoBill object, no action will be
required from the customer. PayPal will notify the customer when the transaction is
complete. That notification is in addition to any communication issued by your organization
through the CashBox email notification system.

For more information, see the Using CashBox with PayPal white paper, available from
Vindicia Client Services.
© 2014 Vindicia, Inc. Table of Contents Working with AutoBills 5 - 31

6 Working with One-Time Transactions

CashBox Billing Events occur when an AutoBill generated event passes through your
payment processor. A Billing Event might be a recurring or one-time transaction, a manually
accepted and entered payment, a credit check (for credit cards), a bank withdrawal (EDD),
or a customer refund.

One-Time Transactions may be generated for a single item purchase, or for the first in a
series of recurring billings. Note that some payment methods, supported by CashBox, do not
allow recurring transactions, and allow only one-time transactions.

While AutoBill payments are also processed as CashBox Transactions, this chapter deals
specifically with the Transaction object, with an emphasis on one-time purchases. For
more information on recurring billing, see Chapter 5: Working with AutoBills.

CashBox allows you to issue email notifications when these events occur. For more
information, see Chapter 9: Working with Customer Notifications.
© 2014 Vindicia, Inc. Table of Contents 6 - 1

CashBox 5.0: Programming Guide Setting Up Real-Time Billing for One-Time Purchases
6.1 Setting Up Real-Time Billing for One-Time Purchases

CashBox supports real-time billing for one-time purchases. In this case, you must explicitly
create a Transaction and send it to CashBox for processing. CashBox performs part of
this processing synchronously and returns the results to you. For example, for a credit card-
based transaction, the payment processor immediately authorizes it and CashBox returns
the results.

The Transaction object supports multiple API calls for real-time billing. You may set
Transaction attributes to specify details including line items, prices, total amount, and
payment method.

6.1.1 Monitoring Transaction Status

For all payment methods, the status of the transactions initiated through an
authCapture() call changes at several points after the call returns. The immediate status
returned by the call is simply the initial status that indicates the success or failure of the
transaction.

The Transaction object supports multiple ID fetch calls to enable you to retrieve
transactions from CashBox. To monitor the latest status of a Transaction object after the
authCapture() call is complete, call one of the object’s fetch methods, such as
fetchByMerchantTransactionId. Other calls retrieve transactions in batches. If you
are maintaining a local database of transactions, use a batch call to stay in sync with the
transaction statuses in CashBox.

Note: PaymentMethod: MerchantAcceptedPayment may not be
used for one-time payments.
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 2

CashBox 5.0: Programming Guide Using Credit Cards for One-Time Transactions
6.2 Using Credit Cards for One-Time Transactions

Create, populate, authorize, and capture a Transaction with payment method type:
CreditCard:

$tx = new Transaction();
$tx->setAmount('9.90');
$tx->setCurrency('USD');

// Merchant transaction id must be unique for each new
// transaction you wish Vindicia to process. If you use an id
// that has been used before, the authCapture() call will
// simply update the corresponding
// existing transaction with new data

$tx->setMerchantTransactionId('txid-123456');

$tx->setTimestamp('2006-09-11T22:34:32.265Z');
$tx->setSourceIp('34.67.89.234');
$tx->setSourcePhoneNumber('650-874-6784');

// Reference an existing account
$account = new Account();
$account->setMerchantAccountId('9876-5432');
$tx->setAccount($account);

// Different shipping address from Account?
$shippingAddress = new Address();
$shippingAddress->setName('Jane Doe');
$shippingAddress->setAddr1('44 Elm St.');
$shippingAddress->setAddr2('Apt 55');
$shippingAddress->setAddr3('');
$shippingAddress->setCity('San Mateo');
$shippingAddress->setDistrict('CA');
$shippingAddress->setPostalCode('94403');
$shippingAddress->setCountry('US');
$shippingAddress->setPhone('650-555-3444');
$shippingAddress->setFax('650-555-3445');

$tx->setShippingAddress($shippingAddress);

// The line items of the transaction
$tx_item = new TransactionItem();
$tx_item->setSku('sku-1234');
$tx_item->setName('Widget');
$tx_item->setPrice('3.30');
$tx_item->setQuantity('3');
$tx->setTransactionItems(array($tx_item));

$paymentMethod = new PaymentMethod();
$paymentMethod->setBillingAddress($address);
$paymentMethod->setType('CreditCard');
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 3

CashBox 5.0: Programming Guide Using Credit Cards for One-Time Transactions
$card = new CreditCard();
$card->setAccount('4444222211113333');
$card->setExpirationDate('xxxxxx'); // Use YYYYMM format for date
$paymentMethod->setCreditCard($card);

$tx->setSourcePaymentMethod($paymentMethod);

// CashBox can send an email notification to the customer
// associated with this transaction, if an email template
// for this is uploaded to the CashBox database

$sendEmailNotification=false;

$response = $tx->authCapture($sendEmailNotification);

if($response['returnCode']==200) {
// The transaction statuses can be found in statusLog attribute
// of the Transaction object. This is an array of
// TransactionStatus objects. The first entry in this array
// is the latest status of the transaction
if($tx->statusLog[0]->status=='Authorized') {

print "Captured\n";
}
else if($tx->statusLog[0]->status=='Cancelled') {

// The transaction did not go through
print "Declined.

Reason code received from payment processor: ";
print $tx->statusLog[0]->status->creditCardStatus->authCode

. "\n";
}

}

With the CreditCard payment method, the Transaction status after an
authCapture() call is Authorized. The payment processor has authorized the
transaction, and CashBox has marked it for capture with the payment processor. After
capture, the status changes to Captured. Although this change usually takes less than 24
hours, in most cases you can assume that if Authorized is returned as the status,
CashBox will capture the transaction.
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 4

CashBox 5.0: Programming Guide Verifying AVS and CVN for One-Time Transactions
6.2.1 Verifying AVS and CVN for One-Time Transactions

To verify security codes for real-time billing, set the name–value pair for the
PaymentMethod object. See Section 5.1.3: Verifying AVS and CVN for Recurring Billing for
details.

The authCapture() method authorizes a transaction and marks it for capture by a
CashBox back-end batch process. auth() also authorizes a transaction and returns the
authorization results, including the results from address and security-code verifications, but
does not mark the transaction for automatic capture. To capture the transaction using
auth(), you must call capture() before the authorization period expires. (The
authorization period varies by payment processor, but is typically three days for real-time
transactions, and seven days for recurring transactions.)

If you have shippable merchandise or want an additional risk review process before deciding
whether to capture a transaction, make two separate SOAP calls. (When calling
authCapture() to immediately mark a transaction for capture, the capture operation
might occur before you have a chance to call cancel().)

Payment processors recommend authorizing a transaction when the order is placed, and
capturing it only after you have shipped the merchandise. To do this, make a live auth()
call when a customer places an order. After the product is authorized or shipped, use a
capture() call in batch mode to process an array of transactions at the end of a day, or
more frequently, depending on the volume of your transactions.

The authCapture() call may save time if your one-time transactions are for relatively
small amounts and do not require physical shipments. However, Vindicia recommends that
you screen transactions for fraud risk with the score call before calling authCapture.

To verify address and security codes, retrieve AVS and CVN code responses, then examine
the TransactionStatus object in the Transaction. Look at the most recent entry in the
statusLog array of the Transaction object, located in the first position in the array.

If you specify a minChargebackProbability of less than 100 when calling auth(),
CashBox evaluates the risk score for the transaction, and includes the results in the return
parameters score and scoreCodes (codes and corresponding messages that explain the
score). If the score evaluates higher than minChargebackProbability, no authorization
with the payment processor is performed, saving you the cost of authorizing a transaction
with the payment processor if it is determined to be potentially fraudulent.

Note: To ignore the fraud score, set minChargebackProbability to
100.
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 5

CashBox 5.0: Programming Guide Verifying AVS and CVN for One-Time Transactions
Verify for real-time billing:

$tx = new Transaction();
$tx->setAmount('9.90');
$tx->setCurrency('USD');

$tx->setMerchantTransactionId('txid-123456');

$paymentMethod = new PaymentMethod();
$paymentMethod->setBillingAddress($address);
$paymentMethod->setType('CreditCard');

$card = new CreditCard();
$card->setAccount('4444222211113333');
$card->setExpirationDate('xxxxxx'); // Use YYYYMM format for date
$paymentMethod->setCreditCard($card);

$nv = new NameValuePair();
$nv->setName("CVN");
$nv->setValue("123"); // card security code provided by customer

// set the card security code inside the payment method
$paymentMethod->setNameValues(array($nv));
$tx->setSourcePaymentMethod($paymentMethod);

// set other transaction attributes here
$sendEmailNotification=false;
$minChargebackProbability = 100; // not doing risk screening

$response = $tx->auth($minChargebackProbability, $sendEmailNotification);

if($response['returnCode']==200) {

if($tx->statusLog[0]->status=='Authorized') {
print "Card approved.

Checking address and security code responses \n";
$txnStatus = $tx->statusLog[0];

// latest transaction status

if ($txnStatus->vinAVS == "FullMatch"
|| $txnStatus->vinAVS == "PartialMatch")

{
print " Address verified \n";
}

else {
$avs = $txnStatus->creditCardStatus->avsCode;

// work with the AVS response code here. If there is a
// certain value of the AVS code which is not acceptable,
// then cancel the transaction

if ($avs == "xyz") {
$soapCallerTxn = new Transaction();
$soapCallerTxn->cancel(array($tx));
exit();

}
}
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 6

CashBox 5.0: Programming Guide Verifying AVS and CVN for One-Time Transactions
// AVS is OK, now check the response to security code
// verification

$cvn = $txnStatus->creditCardStatus->cvnCode;

// work with the AVS response code here. If a certain
// value of the CVN response code is not acceptable, then
// cancel the transaction

if ($cvn == "abc") {
$soapCallerTxn = new Transaction();
$soapCallerTxn->cancel(array($tx));
exit();

}
else if($tx->statusLog[0]->status=='Cancelled') {

// The transaction did not go through
print "Declined. Reason code received from

payment processor: ";
print $tx->statusLog[0]->status->creditCardStatus->

authCode . "\n";
}

}

Capture multiple authorized Transactions in a batch:

$tx_soap = new Transaction();

$txn1 = new Transaction();

$txn1->setMerchantTransactionId('id1');
// this is a previously authed transaction

$txn2 = new Transaction();

$txn2->setMerchantTransactionId('id2');
// this is a previously authed transaction

$response = $tx_soap->capture(array($txn1, $txn2));

if($response['returnCode']==200) {
// capture success

}

© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 7

CashBox 5.0: Programming Guide Calling the auth and capture Methods Separately
6.2.2 Calling the auth and capture Methods Separately

If a Transaction object’s payment method is credit card, you may also set up real-time
billing by calling the auth() and capture() methods separately.

To specify a risk score threshold (also known as chargeback probability), call auth(). If the
score evaluates to a value higher than the threshold, CashBox does not authorize the
transaction. auth() also allows you to examine the responses to the AVS and CVN
verifications returned by the payment processor. If the risk score exceeds your allowable
value, or if the AVS or CVN return score is not acceptable, do not capture the transaction,
and set its status to Cancelled by calling Transaction.cancel().

For more detail on AVS and CVN Return Codes, please work with your Vindicia Client
Services representative.

To capture an authorized transaction before the authorization period expires, call
capture(). (The authorization period varies by card issuer, but is typically seven days.)

Capture an authorized Transaction:

$tx = new Transaction();

// populate the Transaction object as illustrated above
// for credit card based authCapture call

$sendEmailNotification = false;
$minChargebackProbability = 100; // not doing risk score based rejection
$response = $tx->auth($minChargebackProbability,

$sendEmailNotification);

if($response['returnCode']==200) {

if($tx->statusLog[0]->status=='Authorized') {
// Check AVS match. vinAVS attribute provides an abstraction
// for AVS response codes from various payment processors based
// on CashBox's interpretation. If vinAVS is set to NoOpinion,
// check $tx->statusLog[0]->status->creditCardStatus->avsCode
// for the response received from your payment processor

if ($txnStatus->vinAVS == "FullMatch"
|| $txnStatus->vinAVS == "PartialMatch") {
print " Address verified \n";

}
else {

$avs = $txnStatus->creditCardStatus->avsCode;
// work with the AVS response code here. If a return value for
// the ACS response code is not acceptable,
// cancel the autobill
if ($avs == "xyz") {

$autobill->cancel(true, true)
// immediate disentitle and forced cancellation

exit();
}

}
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 8

CashBox 5.0: Programming Guide Calling the auth and capture Methods Separately
// AVS is OK, now check the response to security code verification

$cvn = $txnStatus->creditCardStatus->cvnCode;
// work with the CVN response code here. If a return value for
// the CVN response code is not acceptable, cancel the autobill
if ($cvn == "abc") {

$autobill->cancel(true, true)
// immediate disentitle and forced cancellation

exit();
}
else {

$soapTxn = new Transaction();
$txnBatchToCancel = array($tx);
$soapTxn.cancel($txnBatchToCancel);

}
}
else if($tx->statusLog[0]->status=='Cancelled') {

// The transaction did not go through
print "Declined. Reason code received from payment

processor: ";
print $tx->statusLog[0]->status->creditCardStatus->authCode . "\n";

}
}

For more information, see Section 18: The Transaction Object in the CashBox API Guide.
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 9

CashBox 5.0: Programming Guide Using Carrier Billing for One-Time Transactions
6.3 Using Carrier Billing for One-Time Transactions

CashBox supports BOKU as a payment processor for Carrier Billing. Work with your BOKU
representative to define your pricing structures, and to configure your account as a sub-
merchant to Vindicia.

Before processing BOKU Transactions, you must create one or more services on the BOKU
website which define your pricing schedule(s). When constructing these services, the
“Forward To After Purchase” and “Forward To After Failed Purchase” attributes for each
service must point to URIs at your site. The “Callback Url” must point to Vindicia. (Work with
your Vindicia Client Services representative to define this URL.)

BOKU-based real-time transactions use the following payment flow:

1. When a customer clicks the BOKU button on your site, create a Transaction object
that specifies CarrierBilling as the payment method, and make a
Transaction.authCapture call.

2. When that call returns, examine the status of the returned Transaction object. If the
status is not a failure (Cancelled), it will be AuthorizedPending, which means that
the Transaction is in the CashBox and BOKU systems, and that it requires further action
from the customer for completion.

3. The returned Transaction object will also include a
TransactionStatusCarrierBilling subobject, which will include a buyUrl
which the customer should be presented (or redirected to) in order to complete the
transaction.

4. Once the customer has followed the buyUrl, and completes the BOKU payment, they
will be redirected to the “Forward To Url After Purchase” URL that you included in your
BOKU Service Configuration (or the “Forward To Url After Failed Purchase” URL if the
payment attempt fails).

5. You may verify the status of the Transaction by re-retrieving the CashBox
Transaction object, and verifying that the status is now Captured. (Note that there
may be a delay between the time the payment process completes, and the time that
BOKU notifies Vindicia about the status of the payment attempt.) You may also perform
a verify-trx-id dataRequest call, which will retrieve the Transaction status
information directly from BOKU (see below for details).

Note: This Transaction includes the BOKU Transaction ID in the
nameValues array (name = provider_trx_id), which will prove
useful when correlating Transaction data between your site and
BOKU/Vindicia.
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 10

CashBox 5.0: Programming Guide BOKU Static Pricing Transactions
6.3.1 BOKU Static Pricing Transactions

To use BOKU’s Static Pricing, create a Service ID on the BOKU website before creating a
Transaction. use the CashBox setMerchantServiceIdentifier call to pass in the
corresponding Service ID.

Create a Transaction using BOKU Static Pricing:

$txn = new Transaction;
//Populate this Transaction as shown in previous examples.

$criteria = new Criteria();
$criteria->setCurrency('USD');
$criteria->setCountryCode('US');
$criteria->setStaticPriceIncSalesTax(1.00);
$criteria->setMerchantServiceIdentifier('14246ab82c24e44bf9862406');

$paymentProvider = new PaymentProvider();
$paymentProvider->setName('BOKU');
$criteria->setPaymentProvider($paymentProvider);

$carrierBilling = new CarrierBilling();
$carrierBilling->priceCriteria($criteria);

$paymentMethod = new PaymentMethod();
$paymentMethod->setType('CarrierBilling');
$paymentMethod->setCarrierBilling($carrierBilling);

$txn->setSourcePaymentMethod($paymentMethod);

$response = $txn->authCapture();
if($response['returnCode'] ==200)
{

if($tx->statusLog[0]->status=='AuthorizedPending')
{

print "Successful\n";
display(print txn->statusLog[0]->status->

carrierBillingStatus->buyUrl);
}

}
else if($tx->statusLog[0]->status=='Cancelled')
{

// The transaction did not go through
}

© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 11

CashBox 5.0: Programming Guide BOKU Dynamic Pricing Transactions
6.3.2 BOKU Dynamic Pricing Transactions

BOKU also allows Dynamic Pricing, which allows you to define a target price, and an
allowable deviation from that price.

The following example specifies a target price of USD 10.00, and a desired country of BG
(with an allowed dynamic deviation of 50%). Note that the price (10.00) is shown in a floating
point format, indicating dollars and cents, rather than the BOKU "fractional amount" format
(1000).

Create a Transaction using BOKU Dynamic Pricing:

$criteria = new Criteria();
$criteria->setCurrency('USD');
$criteria->setCountryCode('BG');
$criteria->setMerchantServiceIdentifier('14246ab82c24e44bf9862406');
$criteria->setDynamicDeviation(50);
$criteria->setPricePointDeviationPolicy('HiPreferred');
$criteria->setDynamicMatch(11);
$criteria->setDynamicTargetPrice(10.00);
$criteria->setPaymentProvider($paymentProvider);

BOKU also allows you to define static service tables, from which you may reference a
defined dynamic price using its "row ref."

Create a Transaction using a BOKU service table:

$criteria = new Criteria();
$criteria->setMerchantServiceIdentifier('140ba94f2c24e44b5cb85730');
$criteria->setStaticSelectionRowRef(1);
$criteria->setCountryCode('NZ');
$criteria->setPaymentProvider($paymentProvider);
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 12

CashBox 5.0: Programming Guide Using CashBox to query BOKU
6.3.3 Using CashBox to query BOKU

CashBox also provides a “data pipe” which allows users to perform the following queries
directly against the BOKU web site:

price

service-prices

lookup

verify-trx-id

Create a simple BOKU price query:

$provider = new paymentProvider();
$rc = $provider->dataRequest('price',

[
NameValuePair->new(name => 'reference-currency',

value => 'USD'),
NameValuePair->new(name => 'service-id',

value => '140ba94f2c24e44b5cb85730')
]

);

// The return from this call (as well as all data request calls)
// includes two components:
$rc->request //Contains the Vindicia formatted request sent to BOKU.
$rc->response //Contains BOKU's response

Create a BOKU price request using dynamic pricing criteria:

$provider = new paymentProvider();
$rc = $provider->dataRequest('price',

[
NameValuePair->new(name => 'reference-currency',

value => 'USD'),
NameValuePair->new(name => 'service-id',

value => '140ba94f2c24e44b5cb85730'),
NameValuePair->new(name => 'dynamic-price-mode',

value => 'price'),
NameValuePair->new(name => 'dynamic-deviation',

value => 20),
NameValuePair->new(name => 'dynamic-deviation-policy',

value => 'hi-preferred'),
NameValuePair->new(name => 'dynamic-match',

value => 0),
NameValuePair->new(name => 'currency',

value => 'USD'),
NameValuePair->new(name => 'target',

value => 1000)
]

);
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 13

CashBox 5.0: Programming Guide Using CashBox to query BOKU
This request would produce a BOKU query similar to the following:

[BOKU URL]?action=price&service-id=14246ab82c24e44bf9862406
&dynamic-price-mode=price&dynamic-deviation=20
&dynamic-deviation-policy=hi-preferred
&dynamic-match=0¤cy=USD&target=1000

Create a BOKU service-prices request:

Service-prices requests allow you to restrict output by (service table) row and country. The
following example restricts output to row: 2, and country: New Zealand.

$provider = new paymentProvider();
$rc = $provider->dataRequest('service-prices',

[
NameValuePair->new(name => 'service-id',

value => '140ba94f2c24e44b5cb85730'),
NameValuePair->new(name => 'country',
value => 'NZ'),
NameValuePair->new(name => 'row-ref',

]
);

Create a "lookup" data request to determine the country associated with an IP address:

$provider = new paymentProvider();
$rc = $provider->dataRequest('lookup',

[
NameValuePair->new(name => 'ip-address',

value => '23.11.248.110')
]

);

Check the status of a BOKU Transaction:

$provider = new (paymentProvider();
$rc = $provider->dataRequest('verify-trx-id',

[
NameValuePair->new(name => 'trx-id',

value => [THE ID ASSIGNED TO THIS TRANSACTION BY BOKU])
]

);
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 14

CashBox 5.0: Programming Guide Using Boleto Bancario for One-Time Transactions
6.4 Using Boleto Bancario for One-Time Transactions

For the payment method Boleto Bancário, the Transaction status after an
authCapture() call is Authorized. That means that CashBox has validated the fiscal
number and will prepare the transaction for the payment processor. After the payment
processor has accepted the fiscal number in the payment method, the transaction status
changes to AuthorizedPending. In response, the payment processor returns a URL in
the TransactionStatus object.

Send the customer this URL, which points to further instructions from the payment processor
for completing the transaction. When the transaction is complete, the payment processor
notifies CashBox, which updates the status to Captured or Cancelled, depending on the
success or failure of the transaction.

Create a Transaction with Boleto Bancário as the payment method, and set the fiscal
number:

$txn = new Transaction();

// populate the transaction as shown in the previous example
// When associating a customer account with this transaction,
// ensure that the account has language preference indicated.
// This will set the language used in the payment instructions
// displayed to the customer
$tx->setAccount($account);

$paymentMethod = new PaymentMethod();

// For Boleto payment make sure country is specified in the address

$paymentMethod->setBillingAddress($address);

$paymentMethod->setType('Boleto');
$blt = new Boleto();
$blt->setFiscalNumber('123456789');
$paymentMethod->setBoleto($blt);

$tx->setSourcePaymentMethod($paymentMethod);
$sendEmailNotification=false;

$response = $tx->authCapture($sendEmailNotification);

if($response['returnCode'] ==200) {
if($tx->statusLog[0]->status=='AuthorizedPending') {

print "Successful\n";
display(print $tx->statusLog[0]->status->boletoStatus->uri);

}
else if($tx->statusLog[0]->status=='Cancelled') {

// The transaction did not go through
}

}

Note For Boleto Bancário, be sure to specify the country in the billing
address, and the language preference in the customer account.
Those two attributes determine the language for CashBox customer
notifications (for payment instructions, for example).
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 15

CashBox 5.0: Programming Guide Using ECP for One-Time Transactions
6.5 Using ECP for One-Time Transactions

For the ECP payment method, the status of a transaction after an authCapture() call is
Authorized. The payment processor has performed a real-time validation of the payment
information to ensure, for example, that the bank routing number is not blacklisted. CashBox
then submits the transaction to the payment processor for further processing (deposit or
withdrawal from the specified bank), and changes the status to AuthorizedPending, to
indicate that processing of the transaction has begun.

Six banking days must elapse before CashBox sets the status to Captured. If, during that
time, CashBox receives notice (by a reason code) from the payment processor that the
transaction failed, CashBox changes the transaction status to Cancelled.

If the reason code from the payment processor indicates that there will be an internal retry of
the transaction, CashBox changes the transaction status to RetryPending. The retry date
depends on the retry schedule that the payment processor has previously defined with you
according to your division ID. (Be sure to provide Vindicia with your division ID’s retry
schedule.)

If CashBox does not receive any decline codes during the six banking days after the retry,
CashBox sets the transaction status to Captured.

Create a Transaction with ECP as the payment method:

$txn = new Transaction();

// populate the transaction as shown in the previous example
$paymentMethod = new PaymentMethod();
$paymentMethod->setBillingAddress($address);
$paymentMethod->setType('ECP');

$ecp = new ECP();

// specify account number where funds will be with withdrawn from
$ecp->setAccount('123456789');

// specify bank routing number
$ecp->setRoutingNumber('3409284043');
$ecp->setAccountType('ConsumerChecking');
$paymentMethod->setECP($ecp);

// If this is an inbound payment (a withdrawal from a
// specified bank account and deposit into the merchant's
// account), set the source payment method in the transaction.
// For paying out (a deposit into a specified bank account and
// withdrawal from the merchant's bank account), set the
// destinationPaymentMethod attribute of the transaction

$tx->setSourcePaymentMethod($paymentMethod);
$tx->setEcpTransactionType('Inbound');

$sendEmailNotification = false;
$response = $tx->authCapture($sendEmailNotification);
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 16

CashBox 5.0: Programming Guide Creating Outbound Payment Transactions with ECP
if($response['returnCode'] ==200) {
if($tx->statusLog[0]->status=='Authorized') {

print "Successful\n";
}
else if($tx->statusLog[0]->status=='Cancelled') {

// The transaction did not go through
print "Declined. Reason code from payment processor: ";
print $tx->statusLog[0]->status->ecpStatus->authCode . "\n";

}
}

6.5.1 Creating Outbound Payment Transactions with ECP

The majority of transactions, real-time or recurring, processed by CashBox are inbound, as
they originate with your customers, and are inbound to your bank. For the ECP payment
method, CashBox also supports real-time outbound transactions, where money is withdrawn
from your bank account and deposited into someone else’s account. This may result from
payments to customers, or payments to business partners and vendors.

Note: Outbound ECP support is available only to clients currently using Chase
Paymentech as their processor.

When creating an outbound ECP Transaction object:

1. Set the destPaymentMethod attribute with an ECP-based PaymentMethod object
that contains information on the payee’s bank account. Leave the
sourcePaymentMethod attribute unspecified.

2. Set the ecpTransactionType attribute to the value Outbound.

3. Point the account attribute to an Account object that contains the payee’s
information.

$txn = new Transaction();

// populate the transaction as shown in the previous example

$paymentMethod = new PaymentMethod();
$paymentMethod->setBillingAddress($address);
$paymentMethod->setType('ECP');

$ecp = new ECP();

// specify the account number where funds will be deposited
// (payee's account)
$ecp->setAccount('123456799');

// specify bank routing number (payee's bank)
$ecp->setRoutingNumber('3409284044');
$ecp->setAccountType('ConsumerChecking');
$paymentMethod->setECP($ecp);
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 17

CashBox 5.0: Programming Guide Creating Outbound Payment Transactions with ECP
// Since this is an outbound payment i.e. a deposit into
// payee's bank account and withdrawal from merchant's bank
// account, set the destPaymentMethod attribute of the transaction

$tx->setDestPaymentMethod($paymentMethod);
$tx->setEcpTransactionType('Outbound');
$sendEmailNotification = false;
$response = $tx->authCapture($sendEmailNotification);

if($response['returnCode']==200) {
if($tx->statusLog[0]->status=='Authorized') {

print "Successful\n";
}
else if($tx->statusLog[0]->status=='Cancelled') {

// The transaction did not go through
print "Declined. Reason code received from payment processor: ";
print $tx->statusLog[0]->status->ecpStatus->authCode . "\n";

}
}

The status changes on outbound transactions are similar to those for ECP inbound
transactions. When the status changes to Captured, assume that the outbound payment is
complete.
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 18

CashBox 5.0: Programming Guide Using EDD for One-Time Transactions
6.6 Using EDD for One-Time Transactions

For real-time EDD-based billing, construct a one-time Transaction object and call either
the auth() or authCapture() method on it. If you call auth(), capture all the authorized
transactions by making the batch capture() call later.

If a transaction’s source payment method is of type Direct Debit (DD), that is, if the
sourcePaymentMethod attribute of the Transaction object is set to a PaymentMethod
object that uses EDD, the transaction will process through the following status cycle:

1. CashBox assigns the transaction an immediate status of Authorized, indicating that
both CashBox and the payment processor have performed a real-time validation of the
payment information, and verified that the bank sort code and account number are not
blacklisted. The processor has accepted the transaction, and the deposit process can
begin. At this time, no funds are transferred.

2. The payment processor submits the transaction to the payment network for continued
processing (withdrawal from the specified bank). The transaction status in CashBox
changes to AuthorizedPending, indicating that the deposit process has started.

3. After four European banking days have elapsed, CashBox sets the transaction status to
Captured. Note that the number of banking days varies between payment processors.

During the four European banking days:

• If CashBox is notified by the payment processor that the transaction failed, that is,
received a hard-error reason code from the processor, CashBox changes the
transaction status to Cancelled. (For example, if the account specified in the
payment method does not exist at the bank in question.)

• If the payment processor sends CashBox a soft-error reason code that indicates
that there will be an internal retry of the transaction (for example, due to insufficient
funds), CashBox changes the transaction’s status to DepositRetryPending. The
processor determines when to retry the transaction according to the retry schedule
defined by you for your division ID registered with the processor. If the processor
does not have such a schedule on file, it hard-fails the transaction, and returns a
hard-error reason code. In response, CashBox changes the transaction status to
Cancelled.

If during the four European banking days subsequent to the retry attempt, CashBox
does not receive any hard or soft error codes from the processor, CashBox sets the
transaction status to Captured.

The following example constructs a one-time Transaction object and calls
authCapture() on it to process the transaction. This example also verifies that the
processor has accepted the transaction for deposit, by ensuring that the immediate status of
the transaction after the call is Authorized.

Note Be sure to send Vindicia your retry schedule by division ID.
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 19

CashBox 5.0: Programming Guide Using EDD for One-Time Transactions
Use EDD for a one-time transaction:

$txn = new Transaction();

// Populate the transaction with other attributes such
// as account, transaction items, and amount.

// Assume that there is an existing Account with
// the merchantAccountId specified. If mandate storage
// is required for this transaction, this
// account must have a preferred language setting on it.

$acct = new Account();
$acct->setMerchantAccountId('lhaff1');

$txn->setAccount($acct);
$txn->setAmount(34.99);
$txn->setCurrency('EUR');
$txn->setMerchantTransactionId('MRCH-3402284');

// If you are enabling mandate storage for this transaction,
// include the IP address from which the purchase was made.
// In some countries the IP address is part
// of the signature on the mandate.

$txn->setSourceIp('198.209.56.17');

$txItem = new TransactionItem();
$txItem->setSku('5492');
$txItem->setName('Online video access');
$txItem->setPrice(34.99);
$txItem->setQuantity(1);
$txn->setItems(array($txItem));

// set EDD as source payment method

$paymentMethod = new PaymentMethod();

$bill_addr = new Address();
$bill_addr->setName('Lutz Haff');
$bill_addr->setAddr1('Leonrodstrasse 57');
$bill_addr->setCity('Munchen');
$bill_addr->setPostalCode('D-80636');
$bill_addr->setCountry('DE');

$paymentMethod->setBillingAddress($bill_addr);
$paymentMethod->setType('DirectDebit');

$dd = new DirectDebit();

// specify the account number from which funds will be withdrawn
$dd->setAccount('8888888888');

// specify bank sort code of the bank from which funds will
// be withdrawn
$dd->setBankSortCode('12345678');

$dd->setCountry('DE');
// needed for Vindicia's internal validation

$paymentMethod->setDirectDebit($dd);

// If this is an inbound payment, i.e. a withdrawal from a
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 20

CashBox 5.0: Programming Guide Understanding Mandates for Real-Time Billing with EDD
// specified bank account, and a deposit into the
// merchant's account, set the source payment method in the
// transaction.
// Outbound payments (from the merchant's bank account to the
// customer’s), defined by setting the destination
// payment method in the transaction, are not supported.

$tx->setSourcePaymentMethod($paymentMethod);

$sendEmailNotification = false;

$response = $tx->authCapture($sendEmailNotification);

if($response['returnCode']==200) {
if($tx->statusLog[0]->status=='Authorized') {

print "Successful\n";
}
else if($tx->statusLog[0]->status=='Cancelled') {

// The transaction did not go through
print "Declined. Reason code received from payment processor: ";
print $tx->statusLog[0]->status->directDebitStatus

->authCode . "\n";
}

}

After initial authorization of the real-time transaction, monitor the transaction’s subsequent
status changes by either looking it up on the CashBox Portal, or by calling one of the
Transaction object’s fetch methods. For details, see Section 18: The Transaction Object
in the CashBox API Guide.

6.6.1 Understanding Mandates for Real-Time Billing with EDD

Mandates may be used for real-time billing with EDD. While recurring billing associates the
mandate with an AutoBill object, real-time billing associates a mandate with a
Transaction object.

For more information on working with mandates, see Section 5.5.1: Understanding
Mandates for Recurring Billing with EDD.

To enable mandate storage for a real-time transaction:

1. Upload the HTML template of the mandate’s general text to the Vindicia servers.

2. Inform CashBox that you intend to store the mandate for a transaction by including
special flags in the form of name–value pairs in the Transaction object before calling
auth() or authCapture().

Note Outbound payment transactions are those in which you have set the
destPaymentMethod attribute to pay your customers. EDD does
not support outbound transactions.
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 21

CashBox 5.0: Programming Guide Understanding Mandates for Real-Time Billing with EDD
The following table lists the flags.

3. Include the source IP address from which the customer made this purchase in the
Transaction object.

4. Add the name–value pairs to the Transaction object before calling authCapture()
on it.

Enable mandate storage for a transaction:

$tx->setSourcePaymentMethod($paymentMethod);

// Set flags in the transaction to enable mandate storage
// You must have uploaded a mandate template of version 1.0
// to Vindicia servers prior to this.

$nv1 = new NameValuePair();
$nv1->setName('vin:MandateFlag');
$nv1->setValue('1');

$nv2 = new NameValuePair();
$nv1->setName('vin:MandateVersion');
$nv1->setValue('1.0');

$nv3 = new NameValuePair();
$nv1->setName('vin:MandateBankName');
$nv1->setValue('Deutsche Bank');

$tx->setNameValues(array($nv1, $nv2, $nv3));

// authCapture the transaction as shown in the previous example.

When creating a mandate instance to store with a transaction, CashBox uses the template
that matches the preferredLanguage attribute of the Account object associated with the
transaction.

Note: If you do not specify a value for preferredLanguage, CashBox defines the
language for the mandate using the country specified in the EDD payment method.

Use the CashBox Portal to view and retrieve mandates. If you have enabled a transaction
for mandate storage, a link to view the mandate is displayed on the Transaction Detail
page. Click that link to display the PDF of the mandate.

Table 6-1 Transaction Object Flags

Name of Flag Value

vin:MandateFlag A value of 1 indicates that you would like to store the mandate
for the associated Transaction object.

vin:MandateVersion Specifies the mandate instance to be used for the associated
Transaction object. If you do not specify this field, CashBox
uses the most recently added template for the customer’s pre-
ferred language and country.

vin:MandateBankName Specifies the name of the customer’s bank used for the man-
date. (Required only in the Netherlands.)
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 22

CashBox 5.0: Programming Guide Using PayPal for One-Time Transactions
6.7 Using PayPal for One-Time Transactions

For the PayPal payment method, the status of a transaction after an authCapture() call is
AuthorizationPending. The payment flow for PayPal-based real-time transactions
proceeds as follows:

1. When a customer clicks the PayPal button on your site, create a Transaction object
that specifies PayPal as the payment method, and make a
Transaction.authCapture() call.

2. When that call returns, examine the status of the returned Transaction object. If the
status is not a failure (Cancelled), it is AuthorizationPending, which means that
the transaction is in the CashBox and PayPal systems, and that it requires further action
from the customer for completion.

3. PayPal notifies CashBox of the successful creation of the Transaction by issuing a
PayPal token, which keeps the transaction valid for the next few hours.

4. The returned Transaction object contains a PayPal-specific status along with a URL,
which contains the token information. Redirect the customer to that URL to complete
PayPal’s payment process.

5. Depending on the customer’s success or failure in completing the payment process,
PayPal redirects the customer to a CashBox landing page, along with an indication of
whether the payment succeeded or failed. That landing page in turn redirects the
customer to a success or failure URL on your site. (Provide CashBox the success and
failure URLs as attributes returnUrl and cancelUrl of the PayPal payment method
for the transaction.) From this page, make a call to CashBox to finalize the PayPal
authorization so that CashBox can update the status of the transaction. This call
requires you to pass in the ID of the transaction, which you can find in the redirected
URL. It is value-associated with name: vindicia_vid in the redirect URL.

Use PayPal for a one-time transaction:

$tx = new Transaction();

// populate the transaction as shown in earlier examples

$paymentMethod = new PaymentMethod();
$paymentMethod->setType('PayPal');

$payPal = new PayPal();

// request a ReferenceId from PayPal
$payPal->setRequestReferenceId('true');

// Set the URL to which the customer will be redirected after
// completing the payment process at PayPal’s site, and
// returning to Vindicia’s landing page.

$payPal->setReturnUrl('http://myshoppingcart.merchant.com');

// specify the bank routing number
$payPal->setCancelUrl('http://tryagain.merchant.com');

$paymentMethod->setPayPal($payPal);

$tx->setSourcePaymentMethod($paymentMethod);
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 23

CashBox 5.0: Programming Guide Using PayPal for One-Time Transactions
$sendEmailNotification = false;
$response = $tx->authCapture($sendEmailNotification);

if($response['returnCode']==200) {

if($tx->statusLog[0]->status=='AuthorizationPending') {
$payPalUrl = $tx->statusLog[0]->payPalStatus->redirectUrl;

// send customer to this URL for completion of payment
// formalities at PayPal's site

}
else if($tx->statusLog[0]->status=='Cancelled') {

// The transaction was not accepted by PayPal
}

}

After successfully completing the payment process, the customer is redirected to the return
URL in the PayPal-based PaymentMethod object. From this page, finalize the Transaction
to update its status in CashBox.

$soap_caller = new Transaction();

// obtain id of the PayPal transaction
// from the redirect URL. It is the value associated with name
// 'vindicia_vid'

$payPalTxId = … ;

// if calling from return URL which is reached when the PayPal
// transaction is successfully authorized you should set the
// success input parameter to true, from the cancelUrl it should
// be set to false. Let’s assume success here:

$success = true;
$response =

$soap_caller->finalizePayPalAuth($payPalTxId, $success);

if($response['returnCode'] == 200) {
printLog "Transaction authorized";

}

CashBox updates the Transaction status to Authorized, which changes to Captured
after CashBox has finished processing this and other PayPal transactions in a batch.

Note: If you request that PayPal return a referenceId for the Transaction, its
paymentMethod may be used for recurring payments. For more information, see Section
5.6: Using PayPal for Recurring Billing, and the Using CashBox with PayPal white paper,
available from Vindicia Client Services.
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 24

CashBox 5.0: Programming Guide Recording a Payment Manually
6.8 Recording a Payment Manually

Entering a payment manually allows a merchant to enter a transaction that occurs outside
the CashBox automated process. This may be used to enter cash or check payments made
in person to the merchant, goods or services accepted in trade for an outstanding invoice, or
any other payment method the merchant allows.

CashBox offers two ways to enter a payment manually though the API: using
Account.makePayment, and using AutoBill.makePayment. (You may also enter a
payment through the CashBox Portal.)

A merchant-entered payment is applied to outstanding AutoBills with a PaymentMethod of
"Merchant Recorded Payment." Unless otherwise specified by the Merchant, CashBox
credits the Account’s AutoBills as follows:

• A manually entered payment is applied first to the oldest outstanding AutoBill.

• Any remaining monies are applied to the next oldest AutoBill, until the payment is
exhausted, or all AutoBills have been paid.

• Any monies left after all AutoBills have been paid appear as a credit to the account.

Use the makePayment method on the AutoBill object to apply a payment directly to an
outstanding AutoBill. To make a payment to the oldest open invoice, use
Account.makePayment instead.

If a payment fails at the financial institution, or if you wish to reverse a payment for other
reasons, use reversePayment on the corresponding object to reverse a payment entered
using makePayment.

Record a payment manually:

$autobill = new AutoBill();
$autobill->setMerchantAutoBillId($abID); // for some $abID

$pm = new PaymentMethod();
$pm->setType('MerchantAcceptedPayment');
$pm->setMerchantPaymentMethodId('macc cash '. $time);

$macc = new MerchantAcceptedPayment();
$macc->setAmount(4.50);
$macc->setCurrency('USD');
$macc->setTimestamp($now);
$macc->setPaymentId('macc cash ' . $time);
$macc->setNote('cold hard cash');

$pm->setMerchantAcceptedPayment($macc);

$pm->update(
true, // validate
0, // chargeback probability
false, // replace on all AutoBills
null, // ip
null, // AVS
null // CVN

);
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 25

CashBox 5.0: Programming Guide Recording a Payment Manually
$response = $autobill->makePayment(
$pm,
null, // amount - see $macc
null, // currency - see $macc
'inv-bac', // invoice id
null,
null,
'$4.50 in cold hard cash'

);

// check $response
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 26

CashBox 5.0: Programming Guide Importing Transactions from other Billing Systems to CashBox
6.9 Importing Transactions from other Billing Systems to CashBox

Use Transaction.migrate to migrate historic Transaction information into CashBox.
Each MigrationTransaction included in the migrate call will result in the creation of a
Transaction that can be operated on (fetch, refund, and etc.) as if it had originated in
CashBox. Note, however, that some operations (refund) require that the Transaction be
in one of the following states:

• Captured

• Refunded

• Settled

After you send data to CashBox, CashBox will issue a Return object with returnCode and
returnString to inform you if the call completed successfully. (Codes for the Return object
are modeled after standard HTTP return codes). If the call succeeds, you receive a code of
200 and the string OK. returnCode and returnString may be used to interpret errors. If one
or more of the MigrationTransactions included in the migrate call failed to be
migrated, the return will also include an array of TransactionValidationResponse
objects describing how/why the migration attempt failed. Be certain to act upon the
TransactionValidationResponses returned.

For more information, see Transaction.migrate in the CashBox API Guide.
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 27

CashBox 5.0: Programming Guide Refunding Customers
6.10 Refunding Customers

Use the Refund object to refund customers. For compliance reasons, CashBox allows
refunds for no more than the amount of the original transaction, but supports both full and
partial refunds of the original charge.

CashBox automatically creates transactions for recurring billing from AutoBill objects.
Fetch these transactions from CashBox by calling Transaction->fetchDeltaSince(),
or search for them on the CashBox Portal. Use transaction data as a basis for your customer
refund. Search by merchantTransactionId for an AutoBill-related transaction and for
the refund amount.

Refund a previously completed Transaction:

// Create a new Refund object
$refund = new Refund();

$txn = new Transaction();

// specify a known transaction by its merchant ID. This transaction
// should be in the 'Captured' state so it can be refunded
$txn->setMerchantTransactionId('WID-CUS-9302871');

// associate the account and refund objects
$refund->setTransaction($txn);

// set the amount of the refund
$refund->setAmount(10.00);
$refund->setTimestamp('2009-02-11T22:34:32.265Z');
$refund->setReferenceString('myRefundId101');

// object created so we can call perform() method on it
$refundFactory = new Refund();

// refund the transaction using the SOAP call
$response = $refundFactory ->perform(array($refund));

For more information, see the Section 15: The Refund Object in the CashBox API Guide.
© 2014 Vindicia, Inc. Table of Contents Working with One-Time Transactions 6 - 28

7 Working with Entitlements

An Entitlement defines the goods or services to which a customer is entitled, as obtained
through a subscription. An Entitlement object associated with an Account object
specifies whether a customer has access to a service or product on the date the
Entitlement object is retrieved from CashBox.

Entitlements may be associated with Accounts, Billing Plans, or Products.

The Entitlement object encapsulates the Entitlement’s description, status, start and end
timestamp, and the Account to which the Entitlement applies.

Note: If you are upgrading from CashBox 4.1 or previous, you must
contact Vindicia Client Services to enable a merchant configuration
setting which will allow Entitlements to work properly for CashBox
4.2 and greater.
© 2014 Vindicia, Inc. Table of Contents 7 - 1

CashBox 5.0: Programming Guide Creating Entitlements
7.1 Creating Entitlements

Entitlement IDs are optional, and are simple strings that are merchant-defined. The example
in Section 4.1: Creating Billing Plans, defines the merchantEntitlementId: “Standard,”
and associates it with the BillingPlan object. The example in Section 3.1: Creating
Products, defines the merchantEntitlementId: “Video Access,” and associates it with
the Product object. Billing plans and products may contain an unlimited number of
entitlement IDs.

Use the online magazine site as an example in defining a customer’s access using
entitlement IDs. Define one merchantEntitlementId for general access, and name it
Standard. Create another merchantEntitlementId for more extensive access to the
site, and name it Premium. Then, design your site so that premium customers can access a
special multimedia content area in addition to the magazines available to standard
subscribers.

To grant an entitlement to an Account, create an AutoBill that includes a Product with the
entitlement, or assign the entitlement directly to the Account.

Entitlements granted directly to an Account must be granted and revoked manually; they
will not be automatically generated by CashBox.

Entitlements granted to an Account through an AutoBill (with a Product or Billing Plan
holding Entitlements), remain on the Account as long as the AutoBill is in Good Standing
status.

The entitlement.fetch* methods will return entitlements granted both ways.

For example, if an AutoBill for an Account includes one Product that offers Video
access entitlement, and a second Product that offers Premium entitlement, the effective
entitlements available to the Account while the AutoBill object is active, are Video
access and Premium.
© 2014 Vindicia, Inc. Table of Contents Working with Entitlements 7 - 2

CashBox 5.0: Programming Guide Entitlement Status
7.2 Entitlement Status

CashBox manages Entitlements with the assumption that your customers will continue to
pay their bills. Working under this premise, an Entitlement is deemed to be active until the
end of Billing Plan associated with the AutoBill. If the Billing Plan defines an unlimited series
of payments, the endTimestamp for the Entitlement will be infinite, and the
Entitlement will be considered active until the Billing Plan ends, or the AutoBill is stopped
due to customer request, or failure to pay.

In creating Entitlement object, CashBox assumes that the Entitlement will be active as long
as the Billing Plan is in effect.

An Entitlement object becomes inactive:

• when the AutoBill ends.

• when the AutoBill is cancelled with immediate disentitlement.

• if your customer has failed to pay a scheduled payment, and their grace period has
expired. (The grace period allows your customers continued access after the Billing
date, to allow for attempted retries, if necessary. Note that the grace period does not
extend the end-date if the AutoBill object has been cancelled.)

7.3 Caching Entitlements

Do not make a SOAP call to CashBox to check a customer’s account’s entitlements every
time the customer logs in or attempts to access a certain resource. Instead, cache
entitlements locally, and query their status at periodic intervals (for example, by making a
$entitlement->fetchDeltaSince() call once a day).

While caching an Entitlement object for an Account object, remember that the active
status of the entitlement is valid only until the endTimestamp value specified on the
Entitlement object. If you make periodic Entitlement->fetchDeltaSince() calls,
you may receive an updated Entitlement object. If you do not receive such an update,
assume that the Entitlement object is still valid.

If you are not making periodic Entitlement->fetchDeltaSince() calls to
automatically receive updated Entitlement objects, the cached active status of an
entitlement is valid until endTimestamp. To proactively obtain an update to the
Entitlement object, make an entitlement-
>fetchByEntitlementIdAndAccount() or Entitlement->fetchByAccount() call.
If the Entitlement object is revoked prematurely due to an AutoBill cancellation, your
cached records will not be up-to-date. Therefore, make a periodic Entitlement-
>fetchDeltaSince() call that returns all Entitlement objects that might have changed
since the specified timestamp, to maintain current entitlement status.
© 2014 Vindicia, Inc. Table of Contents Working with Entitlements 7 - 3

CashBox 5.0: Programming Guide Monitoring Entitlement Status
7.4 Monitoring Entitlement Status

When a customer logs into your site and tries to access a resource, examine the (cached)
Account’s Entitlements and their expiration dates, to determine whether to allow the
customer entry. Do not retrieve the AutoBill object for the Account and examine its
status, as Entitlements may remain active after an AutoBill has been stopped. For example,
if a subscription is cancelled midway through a Billing Period, the AutoBill status will be
Stopped, but the customer may be granted access until the paid period expires.

The Entitlement object provides two methods for retrieving entitlements by the Account
object, entitlementID, or both:

$entitlement->fetchByEntitlementIdAndAccount()

and
$entitlement->fetchByAccount().

Call these methods to determine if a customer can access a specific resource on your site.
Both methods return Entitlement objects, each specifying an Account object, an
entitlementID, and an endTimestamp value. To show if the Entitlement object is
active on the date fetched, CashBox sets the value of the active flag on the Entitlement
objects returned by the calls according to the status of the associated AutoBill object and
its end-date (the time until which the customer is expected to pay).

Tip: Create a descriptive and consistent entitlement ID naming system
to prevent confusion due to multiple entitlements linked to a single
AutoBill or Account object.

For example, instead of creating entitlements for one AutoBill
object called Standard and Video Only, and for another AutoBill
called Blog Access and Video Only, name the entitlements for the
first AutoBill Standard Access and Video Only, and the second
Blog Access and Blog Video Only.

This allows you to reuse previously defined Entitlement objects in
new combinations, without ambiguity. For those customers who
wish to access video across your site, you could create an AutoBill
which grants Video Only and Blog Video Only entitlements. For
your customers who don’t wish to read the Blogs, but do want
access to their video content, you could offer an AutoBill that
combines Standard Access with Blog Video Only entitlements.
© 2014 Vindicia, Inc. Table of Contents Working with Entitlements 7 - 4

8 Working with Rate Plans

CashBox Rate Plans allow you to create tiered pricing structures for your Products. These
may be License or Usage based, and the units by which they are measured may be defined
to fit your needs.

Most Rate Plan operations should be performed using the CashBox GUI, including creating
and applying Rate Plans to existing Products. Use the CashBox API to create an AutoBill
that includes a AutoBillItem with a pre-defined Rate Plan, to upload collected Rated
Units, or to fetch a history of reported Events.
© 2014 Vindicia, Inc. Table of Contents 8 - 1

CashBox 5.0: Programming Guide Recording Rated Units
8.1 Recording Rated Units

“Rated Units” are the means by which CashBox measures the number of Licenses or units
of a Rated Product for which your customers should be billed. CashBox does not
automatically record or track Rate Plan use by your customers, nor does it tally the number
of Rated Units applied to any AutoBill. To enter customer use for billing calculations, you
must report Rated Units to CashBox through the CashBox API.

Rated Units are grouped into Events for reporting purposes. Each Event must be
associated with a single AutoBillItem; but one AutoBillItem may include several
Events.

When Events are reported, CashBox replaces the previous total for License based plans,
and augments the previous total for Usage based plans. For example, in a License based
Plan, if the previous number of recorded Units was 15, and you call the recordEvent
method to report 12, your customer’s current number of unbilled Rated Units will be 12. With
a Usage based Plan, reporting 12 new units of use will increase the number of Unbilled
Units from 15 to 27.

Use the RatePlan.recordEvent method to pass an array of Events to your CashBox
system. If you wish to pass more than 50 Events, you must break your call into several
separate Record calls.

Each Event refers to exactly one AutoBillItem, and the Event object must identify the
item that is intended. When reporting Events, be certain to identify a unique AutoBillItem
for each Event. The AutoBillItem may be identified using any combination of the
following objects’ identifiers: Account, AutoBill, AutoBillItem, or Product. CashBox
requires that at least one of the following three data members be specified: Account,
AutoBill, or AutoBillItem.

When reporting Events, CashBox will issue an error if two AutoBillItems exist which
fulfill the reported Event parameters. Be certain to pass in enough information to uniquely
identify the AutoBillItem to which the Event should refer.

The following example identifies the AutoBillItem directly.

Note: CashBox allows 50 Events to be reported through each Record
call. Vindicia best practices recommendation is to use the
recordEvent method to report batches of Events, at designated
moments throughout the day.
© 2014 Vindicia, Inc. Table of Contents Working with Rate Plans 8 - 2

CashBox 5.0: Programming Guide Recording Rated Units
Record a Rated Unit Event:

$rateplan = new RatePlan;
$event = new Event;

$event->setMerchantEventId('rating_123');
$event->setMerchantAutoBillItemId('abitem_321');
$event->setAmount(42);

$response = $rateplan->recordEvent(array($event));

While the merchantEventId is optional, it may be used to guarantee that a single Event is
not reported multiple times. If you report the same Event twice with the same identifier,
CashBox will reject the second reported Event. It is also useful in customer support, when
searching for a questioned billing item.

In the previous example, rating_123 is used as an identifier for the Reported Event.

Record an Event for a specific AutoBill:

The following example identifies the rated AutoBillItem by its MerchantAutoBillId. If
there is only one AutoBillItem on the listed AutoBill, this method will uniquely identify
the AutoBillItem. If there is more than one AutoBillItem on the AutoBill, CashBox
will return an error string saying the input AutoBillItem is not unique.

$rateplan = new RatePlan;
$event = new Event;

$event->setMerchantEventId('rating_124');
$event->setMerchantAutoBillId('ab_715');
$event->setAmount(42);

$response = $rateplan->recordEvent(array($event));

Record an Event for a specific AutoBill and Product:

$rateplan = new RatePlan;
$event = new Event;

$event->setMerchantEventId('rating_125');
$event->setMerchantAutoBillId('ab_715');
$event->setMerchantProductId('pr_29');
$event->setAmount(42);

$response = $rateplan->recordEvent(array($event));

If there are multiple rated Products on an AutoBill, identifying both the AutoBill and the
Product ID may uniquely identify the AutoBillItem associated with the Event.

Note: When working with Rate Plans, assign a name to AutoBillItems,
to facilitate working with Events.
© 2014 Vindicia, Inc. Table of Contents Working with Rate Plans 8 - 3

CashBox 5.0: Programming Guide Deducting Rated Units
8.2 Deducting Rated Units

CashBox also allows you to deduct unbilled Rated Units from an AutoBill.

Use the deductEvent method to reduce the outstanding, unbilled balance of Events for
an AutoBill, by creating a new Event, with a negative value. Use the reverseEvent call to
remove a specific, previously recorded Event.

Use reverseEvent to credit an Account for previously billed Events.

Deduct Events:

$rateplan = new RatePlan;
$event = new Event;

$event->setMerchantEventId('rating_129');
$event->setMerchantAutoBillId('ab_715');
$event->setAmount(2);

$response = $rateplan->deductEvent(array($event));

CashBox tracks this deduction as a distinct Event, available in any audit trail of Events.

8.3 Reversing (Billed) Rated Unit Events

reverseEvent is similar to deductEvent, but differs in that it must refer to an Event that
has been previously recorded. reverseEvent may not be used to add a negative number
of Rated Units to an Account; it may only be used to reverse a previously recorded Event.

reverseEvent may only be applied to Events for which the customer has not yet been
billed. Therefore, CashBox will not construct a Credit or process a refund for the item.

Reverse Rated Unit Events:

$rateplan = new RatePlan;
$event = new Event;

$event->setMerchantEventId('rating_124');
$event->setMerchantAutoBillId('ab_715');

$response = $rateplan->reverseEvent(array($event));

Note: Calling deductEvent will fail if it results in a negative Rated Unit
balance on the AutoBillItem. CashBox does not support
negative balances on Rated Units.
© 2014 Vindicia, Inc. Table of Contents Working with Rate Plans 8 - 4

CashBox 5.0: Programming Guide Fetching and Reporting Rated Units
8.4 Fetching and Reporting Rated Units

In working with Rated Products, your customers’ access will be measured (and billed) in
Rated Unit Events. CashBox offers an API interface to work with this reporting system.

8.4.1 Fetching a Summary (Total) of Unbilled Rated Unit Events

Calling fetchUnbilledRatedUnitsTotal calculates the number of Units and the
currency amount billable for a given AutoBill (or AutoBills) at the moment of the call. This call
returns a RatedUnitSummary object, which contains the totals for a single
AutoBillItem.

This example requests a report for all the unbilled Rated Units for a specified AutoBill, and
returns an array of one Summary for each rated AutoBillItem included on the AutoBill.
For example, if an AutoBill has two rated AutoBillItems, the call will return an array of
two RatedUnitSummary objects.

Fetch a summary of unbilled Rated Unit Events:

$rateplan = new RatePlan;
$response = $rateplan->fetchUnbilledRatedUnitsTotal(

null, # $account
$myAutoBill,# $myAutoBill
null, # $product
null, # $ratePlan
null, # $startTimestamp
null, # $endTimestamp
0, # $page
50, # $pageSize

);
$summaries = $response->['data']->ratedUnitSummary;
foreach ($summaries as $sum) {

print $sum->ratedUnitTotal;
print $sum->currentTotalRatedUnitsBill;

}

Note: This call returns the number of unbilled Units at the moment of the
call. This call may not reflect the amount for which your customer
will be billed, if more Events are reported before the end of the
current Billing Cycle.
© 2014 Vindicia, Inc. Table of Contents Working with Rate Plans 8 - 5

CashBox 5.0: Programming Guide Fetching a Summary (Total) of Unbilled Rated Unit Events
Fetch a summary of unbilled Events for a specified AutoBill and Product:

$rateplan = new RatePlan;
$response = $rateplan->fetchUnbilledRatedUnitsTotal(

null, # $account
$myAutoBill,# $myAutoBill
$myProduct,# $myProduct
null, # $ratePlan
null, # $startTimestamp
null, # $endTimestamp
0, # $page
50, # $pageSize

);
$summaries = $response->['data']->ratedUnitSummary;
foreach ($summaries as $sum) {

print $sum->ratedUnitTotal;
print $sum->currentTotalRatedUnitsBill;

}

This call returns two Summary objects, as shown below.

1st object

accountVid 0b69d0...

autoBillItemVid ae3992...

autoBillVid 60263a...

productVid 8479ce9...

ratePlanVid b4130b...

merchantAccountId account_13345386734

merchantAutoBillId autobill_13345386734

merchantAutoBillItemId autobillitem_13345386734

merchantProductId product_13345386734

merchantRatePlanId rateplan_13345386734

currentTier basic

currentTotalRatedUnits-
Bill

4.27

eventCount 1

ratedUnit 'namePlural' => 'minutes'
'nameSingular' => 'minute'

ratedUnitTotal 37
© 2014 Vindicia, Inc. Table of Contents Working with Rate Plans 8 - 6

CashBox 5.0: Programming Guide Fetching a Summary (Total) of Unbilled Rated Unit Events
This example returns two RatedUnitSummary objects, because there are two different
AutoBillItems that match the query. The first bills for 37, and the second for 21 minutes
of use on different Rate Plans. There is one event for each. If the customer were to be billed
now, they would be charged for one minute at $4.27, and one hour at $3.15.

2nd object

accountVid 0b69d0...

autoBillItemVid 370de7...

autoBillVid 60263a...

productVid 8479ce...

ratePlanVid 496c89...

merchantAccountId account_13345386734

merchantAutoBillId autobill_13345386734

merchantAutoBillItemId autobillitem_23345386734

merchantProductId product_13345386734

merchantRatePlanId rateplan_13345386734

currentTier basic

currentTotalRatedUnits-
Bill

3.15

eventCount 1

ratedUnit namePlural' => 'hour'
nameSingular' => 'hours’

ratedUnitTotal 21
© 2014 Vindicia, Inc. Table of Contents Working with Rate Plans 8 - 7

CashBox 5.0: Programming Guide Fetching Billed or Unbilled Rated Unit Events
8.4.2 Fetching Billed or Unbilled Rated Unit Events

CashBox allows you to fetch both billed and unbilled Rated Unit Events, allowing you to
compare your customer’s current with previous use patterns.

Calling fetchUnbilledEvents returns the (unbilled) Events themselves, rather than a
Summary Report. Use this call to display your customer’s (not yet billed) use for the current
Billing Cycle.

fetchEvents differs from this call only in that it will return ALL Events for the given input
parameters, billed or unbilled. Use this call to compare your customer’s previous use with
their current use, or to determine applicable upgrade plans to offer.

Fetch unbilled Rated Unit Events:

$rateplan = new RatePlan;
$response = $rateplan->fetchUnbilledEvents(

null, # $account
$myAutoBill,# $myAutoBill
$myProduct,# $myProduct
null, # $ratePlan
null, # $startTimestamp
null, # $endTimestamp
0, # $page
50, # $pageSize

);
$events = $response->['data']->event;
foreach ($events as $ev) {

print $ev->amount;
print $ev->description;
print $ev->eventDate;
print $ev->billedStatus;
print $ev->VID;

}

For this call, the arguments are the same as those for
fetchUnbilledRatedUnitsTotal, but the objects returned are different;
fetchUnbilledRatedUnitsTotal returns all Events corresponding to the
AutoBillItems for the given AutoBill and Product, rather than simply a summary.

The returned Events include two fields in addition to those passed in using recordEvent:

• billedStatus lists whether the event has been billed (in items returned from
fetchUnbilledEvents, this will always be false; if you call fetchEvents, it could be
true or false).

• VID is Vindicia's unique identifier for the Event.

For more information on returned data members for the Event, see the Event Subobject in
the CashBox API Guide.

Note: All optional data members identifying the event (such as the autoBillVid) will be
entered by CashBox, if available.
© 2014 Vindicia, Inc. Table of Contents Working with Rate Plans 8 - 8

9 Working with Customer Notifications

CashBox can automatically issue customer notifications at predefined moments in the billing
cycle, using customized templates. Templates may be defined to notify your customer of
billing events (imminent, in-process, successful, or failed), to submit invoices, to warn of a
pending subscription expiration, to inform of an overdue balance, or to simply keep them
informed of changes in their subscription plan. Work with Vindicia Client Services to create
templates to keep your customers informed and engaged in their relationship with your
company and your products.

CashBox requires that you submit an email template as well, if you wish Billing and Invoicing
notifications to be emailed to your customers. The email template contains the email
headers; the Billing and Invoicing templates include the email contents.

Note:

• If you do not submit an email template, no notifications will be emailed to your
customers.

• If you do not define any templates, no notifications will occur. For example, if no Soft Fail
notification is in the database, CashBox will not notify the customer on a soft fail.

• If you do not set a preferred language for any template and an English template exists in
the database, CashBox notifies the customer using the English template.

If the prenotifyDays setting in a BillingPlan object is 0 or is not set, CashBox sends no
prebilling notifications.

Note: Creating CashBox templates differs for Billing notifications and
Invoicing events, in that Billing templates use a different tag format
than Invoicing templates. Be certain to use the appropriate system
when creating your Templates.
© 2014 Vindicia, Inc. Table of Contents 9 - 1

CashBox 5.0: Programming Guide Setting the Preferred Language
9.1 Setting the Preferred Language

CashBox allows you to offer templates in multiple languages. For example, you may define
billing notification templates in English, German, French, and Chinese. The notification
template used will be based on the customer’s preferred language setting in the Account
object.

To define the preferred language, use the W3C IANA Language Subtag Registry standard.
(CashBox supports the ISO-639.2 standard, but recommends the IANA Language Subtag
Registry, which is more recent and complete than the ISO-639.2.)

If no active template in the customer’s preferred language exists for a billing event, CashBox
sends the English version. If the English version does not exist, CashBox sends no
notifications.

9.2 Working with Billing Events

CashBox may be configured to automatically send email notifications to your customers for
various billing events, including impending transactions, AutoBill expiration or renewal, or
payment processing. To enable these events, you must both set the corresponding flags
through the Cashbox API, and supply Vindicia with the corresponding email templates. If no
template is supplied, no email can be sent.

Contact your Client Services representative for more information.

9.2.1 CashBox Billing Events

CashBox may be configured to issue email notification of the following billing events. To
generate the email, the appropriate flag must be set to true, and the corresponding email
template must be available to CashBox.
© 2014 Vindicia, Inc. Table of Contents Working with Customer Notifications 9 - 2

CashBox 5.0: Programming Guide CashBox Billing Events
The following table lists the CashBox billing events and suggested email content.

Table 9-1 Billing Events

Notice / Event Suggested Content

Prebilling

The billing event is pending.

Product information, AutoBill expiration date, the date on which billing
will occur, the amount of the bill, the opt-out procedure, and contact in-
formation for your support team.

Specify when to send this notification in the prenotifyDays data
member of the BillingPlan object.

Initial Success

The first billing event for a new AutoBill has
been successful.

Use this email to welcome new customers to the business.

The date of the next billing attempt, with product information, billing ad-
dress, and transaction details (transaction number, billing date, and
payment information), and the total amount for the transaction.

(If the payment method is Tokens, replace the currency with the Token
type.)

Success

A successful billing event has occurred.

The date of the next billing attempt, with product information, billing ad-
dress, and transaction details (transaction number, billing date, and
payment information), and the total amount for the transaction.

(If the payment method is Tokens, replace the currency with the Token
type.)

Soft Fail

The billing attempt has failed. The payment
processor’s return code indicates that if the
card is resubmitted, the billing might suc-
ceed. CashBox will retry.

The date of the next billing attempt, with product information, billing ad-
dress, and transaction details (transaction number, billing date, and
payment information), and the total amount for the transaction.

Include instructions for your customer to update their billing information.

Hard Fail

The billing attempt has failed. The payment
processor’s return code indicates that no
more transactions will be accepted.

Product information, billing address, and transaction details (transaction
number, billing date, and payment information), and the total amount for
the transaction.

Include instructions for your customer to update their account informa-
tion to remain in good standing.

Cancellation

The customer has opted out of the AutoBill
Subscription, and an upcoming bill has been
cancelled.

(Sent only if a prebilling notification has al-
ready been issued.)

Notification that the transaction has been cancelled, and that your cus-
tomer will not be billed on the next billing date (if a recurring bill.)

Include contact information for re-subscribing to your service.

Billing Delay

Issued upon a billing delay (extension of en-
titlements, without captured payment), only
if the customer has not been pre-notified of
the billing event.

The date of the next billing attempt, with product information, billing ad-
dress, and transaction details (transaction number, billing date, and
payment information), and the total amount for the transaction.

Prenotification: No Payment Method

Issued as a Prebilling Notification, when no
Payment Method is listed for the AutoBill.

Product information, AutoBill expiration date, the date on which billing
will occur, the amount of the bill, the opt-out procedure, and contact in-
formation for your support team.

Include instructions for your customer to update their billing information.

Specify when to send this notification in the prenotifyDays data member
of the BillingPlan object.
© 2014 Vindicia, Inc. Table of Contents Working with Customer Notifications 9 - 3

CashBox 5.0: Programming Guide CashBox Billing Events
Failure: No Payment Method

The billing attempt has failed due to lack of a
defined Payment Method.

The date of the next billing attempt, with product information, billing ad-
dress, and transaction details (transaction number, billing date, and
payment information), and the total amount for the transaction.

Include instructions for your customer to update their billing information.

Expiration

The billing plan is about to expire with no
more periods defined.

Product information, an expiration date for the subscription, and infor-
mation on how to extend the subscription.

End of Trial

The customer’s free trial period is about to
expire.

Product information, the duration and expiration date of the free trial,
subscription amount, and other billing details for the paying subscription
that is about to begin.

Include opt-out instructions.

Real-Time Inbound Failure

A real-time transaction initiated by a custom-
er for you has failed.

Product information, billing address, and transaction details, including
the transaction number, billing date, account number, amount, currency
and sales tax (if applicable).

Include instructions on how to update the account and remedy any is-
sues.

Real-Time Inbound Success

A real-time transaction initiated by a custom-
er for you has succeeded.

Product information, billing address, and transaction details, including
the transaction number, billing date, account number, amount, currency
and sales tax (if applicable).

Real-Time Outbound Failure

A real-time transaction initiated by you for a
customer has failed.

Line-item details on the transaction and on the account to which the
payment applies.

Real-Time Outbound Success

A real-time transaction initiated by you for a
customer has succeeded.

Line-item details on the transaction and on the account to which the
payment applies.

Refund

A refund to the customer has succeeded.

Product information, billing address, and refund details: transaction
number, refund date, payment method, and amount.

(If the Payment Method is Tokens, provide a Token balance in the mes-
sage.)

Push Initiation

A push payment has begun.

Product information, and instructions on how to complete the transac-
tion, including the URL for the payment slip form.

Push Reminder

The customer has not completed a push
payment transaction within the allotted time.

Product information, and instructions on how to complete the transac-
tion, including the URL for the payment slip form.

Failure: Insufficient Tokens

Not enough tokens are available to pay for a
recurring Transaction.

Token information, and instructions on how to obtain additional tokens.

Failure: Insufficient Tokens

Not enough tokens are available to pay for a
one-time Transaction.

Token information, and instructions on how to obtain additional tokens.

Table 9-1 Billing Events (Continued)

Notice / Event Suggested Content
© 2014 Vindicia, Inc. Table of Contents Working with Customer Notifications 9 - 4

CashBox 5.0: Programming Guide Billing Event Settings
9.2.2 Billing Event Settings

The following table lists the customizations available to your notification timing through the
CashBox API.

Table 9-2 Settings for Notification Templates

Notification Settings

Prebilling BillingPlan.prenotifyDays: Sets the number of days before billing will occur to
send the notification. If the prenotifyDays setting in a BillingPlan object is 0 or
not set, CashBox sends no prebilling notifications.

Account.warnBeforeAutobilling: Specifies whether or not to send prebilling
notifications to the customer.

doNotNotifyOnFirstBill: Cancels the first prebilling notification for a Billing-
Plan period, to prevent the customer from receiving a prebilling notification on the
same day that they sign up.

Initial Success None.

Success None.

Hard Fail Work with Vindicia to map the payment processor reason codes to hard fails, to de-
fine the number of days after the billing attempt fails CashBox should retry, and to de-
fine the number of retries. By default, CashBox retries hard fails only once, and sends
notifications if the first retry fails.

(CashBox may also be set to send hard-fail notifications for push payment methods
after the transaction has expired, for example, if a customer does not perform the
tasks necessary to complete the transaction.)

Soft Fail Work with Vindicia to map the payment processor reason codes to soft fails, to define
the number of days after the billing attempt fails CashBox should retry, and to define
the number of retries. CashBox retries soft fails until it exhausts the number of retries
specified. If the final retry fails, CashBox sets the Soft Fail to Hard Fail.

Cancellation None.

End of Trial BillingPlan.expireWarningDays: Sets the number of days before a free trial
ends to send a warning email. Whether to send this notification may also be defined
at the AutoBill level.

Expiration BillingPlan.expireWarningDays: Sets the number of days before a subscrip-
tion ends to send a warning email. Whether to send this notification may also be de-
fined at the AutoBill level.

Refund None.

Real-Time Inbound Success None.

Real-Time Outbound Success None.

Real-Time Inbound Failure None.

Push Initiation None.
© 2014 Vindicia, Inc. Table of Contents Working with Customer Notifications 9 - 5

CashBox 5.0: Programming Guide Parent-Child Account Billing Notifications
9.2.3 Parent-Child Account Billing Notifications

CashBox automatically determines which Accounts will receive Billing Notifications in a
Parent-Child relationship, depending on which Account is the holder of the Payment Method
attached to the AutoBill.

(In all cases, email generation is dependent upon your notification settings.)

For AutoBills held by a Child Account, but paid by the Parent’s Payment Method, the
following notifications are sent to both the Parent and the Child Account:

• Billing Delay, No Payment Method?

• Cancellation

• Expiration

• Failure (Insufficient Tokens or No Payment Method)

• Pre-billing, No Payment Method

The following notifications are sent only to the Parent Account (the holder of the Payment
Method associated with the AutoBill):

• Billing Delay

• End of Trial

• Hard Fail

• Pre-billing

• Real-Time Tx Outbound Fail

• Real-Time Tx Outbound Success

• Real-Time Tx, Insufficient Tokens

• Refund Success

• Soft Fail

• Success

Push Reminder Contact Vindicia Client Services to set the number of days after initiation to send this
reminder, and to specify the number of reminders (retry times).

Insufficient Tokens None.

Tokens Granted None.

Table 9-2 Settings for Notification Templates (Continued)

Notification Settings

Note: If a Child Account is the holder of the Payment Method, only the
Child Account will receive these notifications.
© 2014 Vindicia, Inc. Table of Contents Working with Customer Notifications 9 - 6

CashBox 5.0: Programming Guide Creating Billing Notification Templates
9.2.4 Creating Billing Notification Templates

To create a notification template, use variables, or “tags,” that pull information from CashBox
to provide customer- and Account-specific information. Work with Vindicia Client Services to
submit your templates for inclusion in your CashBox system.

Create billing notification templates in HTML. Vindicia recommends that you use an
industry-standard HTML editor (not Word HTML). Host graphics, if any, from your site and
point to them in the templates using HTML href tags.

Billing Event Template Tags

Tags are used to provide a place holder in the template where CashBox data will be inserted
when the billing event notification is rendered. CashBox notification templates support
looping, to allow for multiple charges, credits, or payments.

The following tags may be used in a Billing Event template:

Table 9-3 Billing Event Template Tags (Variables)

CashBox Tag Description

<tpl name="address"/> The billing address (multiple lines).

Note: This tuple will print the customer’s name, as well as all lines in-
cluded in the billing address.

<tpl name="amount"/> The total transaction amount.

Note: This is a deprecated tag. Specify grand_total instead.

<tpl name="billing_plan_desc"/> The Billing Plan’s description.

<tpl name="billing_plan_id"/> The merchantBillingPlanId.

<tpl name="ccnum"/> The credit-card number (the last four digits only).

<tpl name="cctype"/> The credit-card type, such as Visa or MasterCard.

<tpl name="currency"/> The currency code, for example, USD, or the description of the token
type that serves as payment, for example, Award Points, Downloads, or
Transférer.

<tpl name="currency_symbol"/> The Billing Plan’s currency, as indicated by the ISO 4217 currency code
entered for the BillingPlanPrice object’s currency data member.

<tpl name="date"/> The billing date (MM-DD-YYYY).

<tpl name="desc[n]"/> An array of line-item descriptions that accompany real-time transaction
notifications. Specify each item of the array and provide the maximum
number of line items expected. For example:

<tpl name="desc[0]"/>
<tpl name="desc[1]"/>
<tpl name="desc[2]"/>

<tpl name="expirationdate"/> The subscription’s expiration date (MM-DD-YYYY).

<tpl name="formaction"/> The URL for a push payment method slip from the payment processor.
© 2014 Vindicia, Inc. Table of Contents Working with Customer Notifications 9 - 7

CashBox 5.0: Programming Guide Creating Billing Notification Templates
<tpl name="grand_total"/> The grand total of the transaction. For prebilling and postbilling notifica-
tions, this is the total cost (subtotal plus tax). For tokens, this value is
the same as amount.

<tpl name="interval"/> The length of the billing period, such as 12 months.

<tpl name="invoiceno"/> The transaction ID, available only after you have submitted a transac-
tion.

<tpl name="ISOdate"/> The billing date (YYYY-MM-DD).

<tpl name="ISOexpirationdate"/> The subscription’s expiration date (YYYY-MM-DD).

<tpl name="ISOnextdate"/> The next billing date, that is, the next retry after failure or the next
scheduled billing (YYYY-MM-DD).

<tpl name="length"/> The length of the current billing period, for example, 2-week or 1-month.
CashBox supports this tag only in the End of Trial and Expiration tem-
plates.

<tpl name="merchant"/> Merchant’s name.

<tpl name="merchant_affiliate"/> The partner or affiliate associated with the Billing event.

<tpl name="name"/> The customer’s first and last names.

<tpl
name="name_on_entitlement_account"/>

The Account name (merchantAccountId) referenced in the email.
(The Account holding the entitlements referenced in the email.) When a
parent Account is notified about a child Account's entitlements, this field
will display the child Account's name.

<tpl name="name_on_payer_account"/> The name of the payer account. When a child account is sent an email
notification, this field will display the parent Account's name.

<tpl name="nextdate"/> The next billing date, that is, the next retry after failure or the next
scheduled billing (MM-DD-YYYY).

<tpl name="payment_provider"/> The Payment Provider who handled the Billing event.

<tpl name="payment_token_balance"/> Valid for tokens only, this tag, which supports English only, returns the
sentence “Your token-account balance is X,” where token-account is
the description of the token type and X is the balance. For example:
“Your Award Points balance is 50.00.” Note that the balance is the token
balance after the transaction.

If multiple token types apply to the customer account, this tag returns
multiple lines, with each line corresponding to a different token type.

Note: If included in an email notification template but tokens are not in
use, this tag returns a blank.

Table 9-3 Billing Event Template Tags (Variables) (Continued)

CashBox Tag Description
© 2014 Vindicia, Inc. Table of Contents Working with Customer Notifications 9 - 8

CashBox 5.0: Programming Guide Creating Billing Notification Templates
<tpl name="grand_total"/> The grand total of the transaction. For prebilling and postbilling notifica-
tions, this is the total cost (subtotal plus tax). For tokens, this value is
the same as amount.

<tpl name="interval"/> The length of the billing period, such as 12 months.

<tpl name="invoiceno"/> The transaction ID, available only after you have submitted a transac-
tion.

<tpl name="ISOdate"/> The billing date (YYYY-MM-DD).

<tpl name="ISOexpirationdate"/> The subscription’s expiration date (YYYY-MM-DD).

<tpl name="ISOnextdate"/> The next billing date, that is, the next retry after failure or the next
scheduled billing (YYYY-MM-DD).

<tpl name="length"/> The length of the current billing period, for example, 2-week or 1-month.
CashBox supports this tag only in the End of Trial and Expiration tem-
plates.

<tpl name="merchant"/> Merchant’s name.

<tpl name="merchant_affiliate"/> The partner or affiliate associated with the Billing event.

<tpl name="name"/> The customer’s first and last names.

<tpl
name="name_on_entitlement_account"/>

The Account name (merchantAccountId) referenced in the email.
(The Account holding the entitlements referenced in the email.) When a
parent Account is notified about a child Account's entitlements, this field
will display the child Account's name.

<tpl name="name_on_payer_account"/> The name of the payer account. When a child account is sent an email
notification, this field will display the parent Account's name.

<tpl name="nextdate"/> The next billing date, that is, the next retry after failure or the next
scheduled billing (MM-DD-YYYY).

<tpl name="payment_provider"/> The Payment Provider who handled the Billing event.

<tpl name="payment_token_balance"/> Valid for tokens only, this tag, which supports English only, returns the
sentence “Your token-account balance is X,” where token-account is
the description of the token type and X is the balance. For example:
“Your Award Points balance is 50.00.” Note that the balance is the token
balance after the transaction.

If multiple token types apply to the customer account, this tag returns
multiple lines, with each line corresponding to a different token type.

Note: If included in an email notification template but tokens are not in
use, this tag returns a blank.

Table 9-3 Billing Event Template Tags (Variables) (Continued)

CashBox Tag Description
© 2014 Vindicia, Inc. Table of Contents Working with Customer Notifications 9 - 9

CashBox 5.0: Programming Guide Creating Billing Notification Templates
<tpl name="payment_type"/> A descriptor of the payment method, as follows:

• For credit cards, the descriptor is “credit card.”
• For ECP, the descriptor is "bank account.”
• For PayPal, the descriptor is “PayPal account.”
• For direct debits, the descriptor is “direct debit accounts.”
• For Boleto Bancário, the descriptor is “conta bancária” (Portuguese

only).
• For tokens, the descriptor is the token type for payment, followed

by account. For example, if the token type is Award Points, the
descriptor is “Award Points account.”

<tpl name="price"/> An array of product prices that accompanies recurring or real-time
transaction notifications. If used in conjunction with multiple line items
and the desc tag, specify the maximum number of line items for each
item, for example:

<tpl name="price[0]"/>
<tpl name="price[1]"/>
<tpl name="price[2]"/>

<tpl name="product"/> The product name.

Note: This tuple will be populated only for AutoBills, and not for One-
Time Transactions.

<tpl name="refid"/> The Refund ID.

<tpl name="refund_amount"/> The amount of the refund. In the case of tokens, this is the number of
units of the token type that serves as payment.

<tpl name="refund_approval_code"/> The Payment Processor’s refund approval code.

<tpl

name="refund_capture_timestamp"/>

The Refund object’s timestamp.

<tpl name="refund_currency"/> The currency of the refund. In the case of tokens, this is the description
of the token type that serves as payment, for example, Award Points,
Downloads, or Transférer.

<tpl name="refund_currency_symbol"/> The refund’s currency symbol, as indicated by the ISO 4217 currency
code of the Refund object’s currency data member.

<tpl name="refund_merchant_identifier"/> The Refund object’s merchantRefundId.

<tpl name="refund_note"/> A note on the refund.

<tpl name="refund_payment_provider"/> The Payment Processor for the refund.

<tpl name="refund_pp_order_number"/> The Payment Provider’s order number for the refund.

<tpl name="refund_status"/> The refund’s status.

<tpl name="refund_timestamp"/> The timestamp in the format “2008-09-19 15:20:04.”

<tpl name="send_to_email"/> The email address to which the Billing Event email should be sent.

<tpl name="serialnum"/> Your identifier for the AutoBill object.

Table 9-3 Billing Event Template Tags (Variables) (Continued)

CashBox Tag Description
© 2014 Vindicia, Inc. Table of Contents Working with Customer Notifications 9 - 10

CashBox 5.0: Programming Guide Creating Billing Notification Templates
<tpl name="sku"/> Your product identifier.

<tpl name="statementno"/> The statement number for the Billing event.

<tpl name="subtotal"/> The pretax amount. For tokens, this value is the same as amount.

<tpl name="tax"/> The applicable tax. If the payment method is tokens, the value is 0.

<tpl name="token_balance"/> Available remaining Tokens for the Account.

<tpl name="token_change"/> The change in number of Tokens available to the Account as a result of
this Billing event.

<tpl name="token_id"/> The merchantTokenId for the Tokens transferred in this Billing event.

<tpl name="uri"/> The URL the Payment Processor returned in response to the present-
ment of a fiscal number (for Boleto Bancario.)

<tpl name="vid"/> CashBox’s unique identifier for the AutoBill object, which is useful if
embedded in a URL to which your site is redirected when you call Au-
toBill.fetchByVid().

Table 9-3 Billing Event Template Tags (Variables) (Continued)

CashBox Tag Description

Note: Not all Billing Event tags are available to all Billing events. For
example, refund tuples may not be available to pre-billing
notifications. Please work with your Vindicia Client Services
representative for more information.
© 2014 Vindicia, Inc. Table of Contents Working with Customer Notifications 9 - 11

CashBox 5.0: Programming Guide Working with Invoices
9.3 Working with Invoices

An invoice is used to notify customers of their closing balance for the current billing cycle.
You may define the number of days before a Billing Cycle closes for an Invoice to be issued.

An Invoice typically lists an opening balance, previously submitted invoices, payments,
credit memos, debit memos, and an ending balance for a given billing cycle.

CashBox automatically generates email messages in parallel with Invoice processing, to
which a rendered Invoice template may be attached. You may create your own, custom
template, or use one of the default templates provided. In either case, CashBox saves an
image of each Invoice sent to a customer, as a PDF, which may be retrieved at a later date
for bookkeeping or record keeping purposes.

To generate Invoice emails from CashBox:

• Supply an email template to Vindicia Client Services. This template will be used to
generate email notifications to your customers, and must be supplied or no invoice or
dunning notifications will be mailed to your customers.

• Supply an invoice template to Vindicia Client Services. Vindicia provides a Default
Invoice Template, which may be used in place of your own, customized template.

• Supply a dunning template to Vindicia. If no template is supplied, dunning notices will
not be sent to your customers.

Note: If you supply a dunning template you must also provide an invoice template.

Work with Vindicia Client Services to enable Invoice and Dunning Notice generation, and to
define the timing for these notifications.

Dunning Notices

Dunning is an extension of Invoicing, and is the process of systematically reminding a
customer that payment is overdue, and informing them of the payment process. Dunning
notices typically progress from reminders of overdue payment, to notice of imminent account
closure. The last dunning notice usually informs the customer of account closure, and
entitlement revocation.

CashBox allows you to define the timing of each step in this process. By default, the first
dunning/overdue notice is issued a week after the initial due date, to allow time for payments
arriving on the due date to be processed and entered into the system. The sequence may be
customized to change the timing, content, or inclusion of dunning notices.

(For all steps in this process, CashBox recommends that you include appropriate links and
phone numbers to contact your Customer Service department to arrange payment.)

As with all CashBox customer notifications, you must supply CashBox with an email
template and a Dunning Notice template for these notices to be rendered and mailed.

Note: Dunning notice timing is set by Vindicia Client Services. Please
speak with your Vindicia representative to define these intervals for
your company.
© 2014 Vindicia, Inc. Table of Contents Working with Customer Notifications 9 - 12

CashBox 5.0: Programming Guide CashBox Invoicing Events
9.3.1 CashBox Invoicing Events

CashBox provides several pre-defined invoice events, which will automatically generate an
email notification to your customers. Emails will be sent to the email address specified on
the Account on the AutoBill, with the subject line "Invoice <invoice number> dated
<date>," and your email address (if supplied) as the From: field.

Work with Vindicia Client Services if you wish to alter the invoicing schedule or if you wish to
send more than two dunning notices.

CashBox can be configured to render and issue the following emails in relation to the
Invoicing cycle:

9.3.2 Creating Invoice Templates

Invoice templates allow you to create custom Invoices. They may include custom text, like
customer support information, marketing information, or custom graphics. CashBox also
provides a generic Invoice Template, if you do not wish to create your own.

If you create a customized template, create both a plain text, and an HTML version, to
provide for customers' email preferences settings. You may use text and standard HTML
markup in the template.

The tags used in Invoice Templates map directly to your CashBox database, as described in
Table 9-5: Invoice Template Tags (Variables).

Note: If you do not supply CashBox with an email template, no invoices
will be issued. An Invoice will be rendered, but it will not be mailed
to your customer.

Table 9-4 Invoicing Events

Notice / Event Suggested Content

Open Invoice

An open invoice may be generated a
merchant-specified number of days be-
fore the end of every billing cycle.

An email message to the customer, with the invoice attached
as a PDF, or inline as plain text or HTML (depending on the
customer’s email preferences).

Payment Due (1st dunning Notice)

An invoice becomes Due a merchant-
defined number of days after the billing
cycle closes.

A reminder that payment is now due. This may include notice
of any interest charges or penalties will be added to the ac-
count.

Overdue (2nd Dunning Notice)

An account becomes Overdue a mer-
chant-defined number of days after the
Due date.

A notice that payment is overdue, which may include any inter-
est charges or penalties that have been added to the account.
This notice often includes information on future action, includ-
ing account closure and collection agency involvement.
© 2014 Vindicia, Inc. Table of Contents Working with Customer Notifications 9 - 13

CashBox 5.0: Programming Guide Creating Invoice Templates
Default Invoice Template

CashBox supplies a default Invoice template in both plain text and HTML. This Template
includes the most common Invoice components.

Figure 9-1 Default Invoice Template (HTML)

[% format_amount=format(%10.2f);-%]

[% merchant %]

[% cust_name %]

[%cust_address %]

Previous Balance

Invoice #: [% invoice_num %]

Date: [% invoice_date %]

[% format_amount(balance_forward) %]

Payments:

[% FOR x IN payments %]

[% x.amount %] [% x.date %]

[% END %]

[% format_amount %]

Total Payments: [% format_amount(total_payments %]

Balance: [% format_amount(opening_balance) %]

Current Charges:

[% FOR x IN charges %]

[% x.product %] [% x.desc %]

[% x.quantity %] [% x.total %]

[% END %]

[% format_amount %]

Total Current Charges:

Credits:

[% FOR x IN credits %]

[% x.date %]

[% END %]

[% format_amount(total_charges) %]

[% format_amount %]

Total Credits:

Tax:

[% format_amount(total_credits) %]

[% format_amount(tax) %]

Total Amount Due:

Pay By:

[% format_amount(balance_due) %]

[% payment_due_date %]
© 2014 Vindicia, Inc. Table of Contents Working with Customer Notifications 9 - 14

CashBox 5.0: Programming Guide Creating Invoice Templates
Invoice Template Tags

Tags are used to provide a place holder in the template where CashBox data will be inserted
when the Invoice is rendered. CashBox Invoice templates support looping, to allow for
multiple charges, credits, or payments.

The following tags may be used in an Invoice template:

Note: Arrays are shown in Vindicia Red in the following table.

Note: Because CashBox allows for complex charge calculations, the
charges tags are called out separately in the table.

Table 9-5 Invoice Template Tags (Variables)

CashBox Tag Description

Invoice Information

[% date %] Today’s date.

[% merchant %] Your merchant name as it is currently defined in CashBox.

Note: If this value is not as you expect, please work with your Vin-
dicia Client Support contact to change it.

[% invoice_num %] Your Invoice number.

[% opening_balance %] The amount after payments have been subtracted from the balance
forward.

[% payment_type %] The payment type (MAP, CC, EDD, etc.) used to make payment of
the balance due.

[% balance_forward %] The balance carried forward from previous invoices.

[% balance_due %] The balance due after all payments, credits, charges and taxes
have been applied to the balance forward.

[% transaction_id %] Unique identifier, generated by CashBox for the Invoice.

Note: This field will be populated only after a payment is made
against the Invoice.

[% invoice_date %] The date the invoice was created and sent.

[% currency %] The currency used for the transaction.

[% payment_due_date %] The date the invoice becomes due.

Customer Information

[% cust_name %] The customer’s name.

[% cust_email_address %] The customer’s email address.

[% cust_address %] The customer’s address. A concatenation of all available customer
address information.

For example: 1820 Gateway St${sep}Apt. A${sep}Foster City, Cali-
fornia 94403${sep}US
© 2014 Vindicia, Inc. Table of Contents Working with Customer Notifications 9 - 15

CashBox 5.0: Programming Guide Creating Invoice Templates
[% cust_address_street1 %] The customer’s street address (1st line).

[% cust_address_street2 %] The customer’s street address (2nd line).

[% cust_address_street3 %] The customer’s street address (3rd line).

[% cust_address_city %] The customer’s city.

[% cust_address_district %] The customer’s state.

[% cust_address_postal_code %] The customer’s zip code.

[% cust_address_city_dist %] The customer’s city, state, and zip code.

For example: Foster City, California 94403

Payments

[% total_payments %] Currency value of all the payments.

[% payments %] An array of payments applied to the AutoBill.

[% FOR x IN payments %]

[% x.pay_type %]

[% x.pay_date %]

[% x.pay_amount %]

[% END %]

type Used with the [% payments %] tag to retrieve the type of payment
used.

date Used with the [% payments %] tag to retrieve the date the payment
was applied to the account.

amount Used with the [% payments %] tag to retrieve the payment amount.

Credits

[% total_credits %] Currency value total of all credits.

[% credits %] An array of credits applied to the AutoBill.

[% FOR y IN credits %]

[% y.credit_date %]

[% y.credit_amount %]

[% END %]

date Used with the [% credits %] tag to retrieve the date the credit was
made to the account.

amount Used with the [% credits %] tag to retrieve the credit amount.

Table 9-5 Invoice Template Tags (Variables) (Continued)

CashBox Tag Description
© 2014 Vindicia, Inc. Table of Contents Working with Customer Notifications 9 - 16

CashBox 5.0: Programming Guide Creating Invoice Templates
Charges

[% total_charges %] Currency value total of all charges.

[% charges %] An array of charges applied to the AutoBill.

[% FOR c IN charges %]

[% c.product %]

[% c.desc %]

[% c.price %]

[% c.quantity %]

[% c.total %]

[% c.rate_plan_id %]

[% c.rate_plan_description %]

[% c.included_units %]

[% c.min_fee %]

[% c.max_fee %]

[% c.unit_name_singular %]

[% c.unit_name_plural %]

[% c.unit_total_amount %]

[% c.unit_amount_and_name %]

[% c.rate_plan_tiers %]

[% c.rated_unit_events %]

[% END %]

product Used with the [% charges %] tag to retrieve the Product’s ID.

desc Used with the [% charges %] tag to retrieve the Product’s descrip-
tion.

price Used with the [% charges %] tag to retrieve the Product’s price.

quantity Used with the [% charges %] tag to retrieve the number of Prod-
ucts.

total Used with the [% charges %] tag to retrieve the total charge.

rate_plan_id Your Rate Plan ID.

rate_plan_description Your description for the Rate Plan.

included_units The number of Units included with the Rate Plan.

min_fee The minimum fee for the Rate Plan.

max_fee The maximum fee for the Rate Plan.

unit_name_singular The singular version of the Unit name.

unit_name_plural The plural version of the Unit name.

unit_total_amount The total number of reported Units.

Table 9-5 Invoice Template Tags (Variables) (Continued)

CashBox Tag Description
© 2014 Vindicia, Inc. Table of Contents Working with Customer Notifications 9 - 17

CashBox 5.0: Programming Guide Creating Invoice Templates
unit_amount_and_name The number and name of the reported Units. (CashBox will auto-
matically return the singular or plural name, dependent upon the re-
ported number of Units.)

[% rate_plan_tiers %] An array of all the Tiers in the Rate Plan.

[% FOR t IN c.rate_plan %]

[% t.tier_name %]

[% t.tier_begins_at_level %]

[% t.tier_ends_at_level %]

[% t.tier_rate_price %]

[% t.tier_rated_units_tier_total %]

[% t.tier_cost_total %]

[% END %]

tier_name Used with the [% rate_plan_tiers %] tag to retrieve the name of the
Tier.

tier_begins_at_level Used with the [% rate_plan_tiers %] tag to retrieve the beginsAt-
Level for the Tier.

tier_ends_at_level Used with the [% rate_plan_tiers %] tag to retrieve the endsAt-
Level for the Tier.

tier_rate_price Used with the [% rate_plan_tiers %] tag to retrieve the ratePrice
for the Tier.

tier_rated_units_tier_total Used with the [% rate_plan_tiers %] tag to retrieve the number of
Rated Units reported for the Tier.

tier_cost_total Used with the [% rate_plan_tiers %] tag to retrieve the total charge
for the Tier.

[% rated_unit_events %] An array of all (unbilled) Rated Unit Events applied to the AutoBill.

[% FOR e IN c.rated_unit_events %]

[% e.event_date %]

[% e.received_date %]

[% e.amount %]

[% e.unit_name %] // singular or plural, based on # of units

[% e.description %]

[% e.rate_plan_id %]

[% e.rate_plan_description %]

[% e.product_id %]

[% e.product_description %]

[% END %]

event_date Used with the [% rated_unit_events %] tag to retrieve the date the
specified Event occurred, or the date the Event was reported to
CashBox.

Table 9-5 Invoice Template Tags (Variables) (Continued)

CashBox Tag Description
© 2014 Vindicia, Inc. Table of Contents Working with Customer Notifications 9 - 18

CashBox 5.0: Programming Guide Creating Invoice Templates
received_date Used with the [% rated_unit_events %] tag to retrieve the date the
event was received.

amount Used with the [% rated_unit_events %] tag to retrieve the number
of Rated Units included in the Event.

unit_name Used with the [% rated_unit_events %] tag to retrieve the name for
the Unit associated with the Event. CashBox will automatically re-
turn the singular or plural version of the name, dependent upon the
number of Units reported for the Event.

description Used with the [% rated_unit_events %] tag to retrieve the descrip-
tion for the Event.

rate_plan_id Used with the [% rated_unit_events %] tag to retrieve the Rate Plan
ID for the Event.

rate_plan_description Used with the [% rated_unit_events %] tag to retrieve the descrip-
tion for the Rate Plan associated with the Event.

product_id Used with the [% rated_unit_events %] tag to retrieve the Product
ID associated with the Event.

product_description Used with the [% rated_unit_events %] tag to retrieve the descrip-
tion for the Product associated with the Event.

Taxes

[% tax %] The total of all taxes applied to the Invoice.

[% taxes %] An array of taxes applied to the AutoBill.

[% FOR t IN taxes %]

[% t.taxes_description %]

[% t.taxes_amount %]

[% END %]

description Used with the [% taxes %] tag to retrieve the description of the tax.

amount Used with the [% taxes %] tag to retrieve the amount of the tax.

Table 9-5 Invoice Template Tags (Variables) (Continued)

CashBox Tag Description
© 2014 Vindicia, Inc. Table of Contents Working with Customer Notifications 9 - 19

10 Working with Tokens

A Token object represents a metering or virtual-currency unit of a specific type, and may be
used to support billing models that use arbitrary tracking units with tokens and related
objects in the CashBox API. The units are of your own choosing and may be minutes,
downloads, incentive points, virtual currency, storage space, number of users, or any other
imaginable unit. In the CashBox API, those units are represented by a generic Token object.
Tokens allow you to define token types, and associate them with a customer Account.
Tokens may be purchased, granted, decremented, or refunded, and you may retrieve Token
balances for customer Accounts.

The following table describes the three token-related objects.

You may define any number of Tokens, and can manage each customer’s associated
balance of units by granting (incrementing), and decrementing Token counts through
Products, Billing Plans, or AutoBills.

Token Transactions pass through the CashBox Token Processor, and appear as
Transactions in all applicable CashBox Portal pages, including generated Reports.

Table 10-1 Token-Related Objects

CashBox Object Description

Token Defines a token of a certain type. It must have a unique ID.

TokenAmount The number of tokens, of a certain type, used to define a Billing Plan or
product price in terms of tokens.

TokenTransaction A purchase made with tokens. TokenTransaction contains attributes that
specify the customer account that made the purchase, the amount, and the
token type. TokenTransaction also includes a timestamp that shows
when the transaction occurred. The purchase is a lightweight transaction
that can be conducted in lieu of standard CashBox transaction.
© 2014 Vindicia, Inc. Table of Contents 10 - 1

CashBox 5.0: Programming Guide Understanding CashBox Token Objects
10.1 Understanding CashBox Token Objects

Any number of token types may be defined that include token IDs and descriptions. The
description attribute provides a user-friendly token name, which can be included in email
notifications. To create Tokens with multiple language-descriptions, create multiple
language-specific token types.

For example, if you have customers in the United States and France, define the token types
as shown below.

The following CashBox objects are related to tokens:

• BillingPlan: You can create billing plans for recurring billing in tokens or in currency.
Use tokens or currency, but do not mix them in billing. Specify the quantity and token
type for token billing plans. At billing time, if the customer does not have enough tokens
in the account, have CashBox notify the customer with instructions for obtaining
additional tokens. For billing plans with multiple token types, CashBox uses the type
specified in the payment method for the related AutoBill object to determine the
amount for the bill.

• Account: An Account object can possess multiple token types. The Account
object’s tokenBalances data member houses the current amounts of different token
types that are available to the Account.

• AutoBill: An AutoBill object may have a billing plan that is priced in terms of
tokens of a certain type. If the payment method associated with the AutoBill is
token-based, then the AutoBill’s recurring billings will be transacted in tokens.

• Transaction: A Transaction object may be for Product objects (used as
transaction line items) that grant tokens. Tokens granted by each Product are
defined by the Product’s creditGranted attribute. A transaction may also be
performed in tokens, if the transaction uses a token-based payment method. The line
items include the tokens that will be consumed when the transaction is captured.

In refunding a transaction which originally granted tokens, you may leave the token
balance unchanged (default), zero out the balance, or specify a negative balance for the
token type. In refunding a transaction in tokens, CashBox adds the number of tokens to
the customer’s applicable token balance.

Table 10-2 Multiple Language-Specific Token Types

Token ID Description

01_EN_Downloads Downloads

01_FR_Downloads Transférer

04_EN_Storage Storage

04_FR_Storage Entreposage
© 2014 Vindicia, Inc. Table of Contents Working with Tokens 10 - 2

CashBox 5.0: Programming Guide Understanding Token Activities
10.2 Understanding Token Activities

View token activities on the CashBox Portal by selecting Search > Token Activity from the
menu bar, then specifying your company name. The four token activity types are:

• Decrement: When a customer accesses a service (downloads music or uses storage),
make an API call to deduct the appropriate number of tokens.

• Grant: Grant tokens to a customer by making an API call or by performing a customer-
service action of Grant Tokens on the CashBox Portal.

• Purchase: A one-time or recurring transaction that references a product with tokens
granted, or a transaction whose payment method is tokens.

• Refund: Refund a purchase that was transacted in tokens or that was for a product that
had tokens granted.

Table 10-3 Token Activity Types

Activity Type Example Description Results
Token
Balance

Decrement The customer ac-
cesses a service, and
the merchant reduc-
es the customer’s to-
ken balance.

Call the API’s dec-
rementTokens
method on the cus-
tomer account.

• Reduced token balance.
• Updated token activity on

customer’s Account Details
page.

• Updated token balance for the
related payment method.

• Details on the Token Activity
Results page.

Decremented

Grant Add tokens to a cus-
tomer’s account for
filling out a survey.

Call the API’s in-
crementTokens
method on the cus-
tomer account.

• Increased token balance.
• Updated token activity on

customer’s Account Details
page.

• New token payment methods,
if they do not already exist.

• Details on the Token Activity
Results page.

Incremented

Grant Add tokens to a cus-
tomer’s account to
compensate for de-
graded service.

Grant tokens on the
CashBox Portal.

• Notification email to the
customer on the tokens
granted.

• New token payment methods,
if they do not already exist.

• Increased token balance.
• Updated token activity on the

customer’s Account Details
page.

• Updated token balance for the
related payment method.

• Details on the Token Activity
Results page.

Incremented
© 2014 Vindicia, Inc. Table of Contents Working with Tokens 10 - 3

CashBox 5.0: Programming Guide Understanding Token Activities
Purchase A customer makes a
purchase that adds
token types to the
customer’s account
balance. The trans-
action is successfully
captured.

Grant tokens to a
one-time purchase.

• Notification email to the
customer on the token activity
and account balance.

• New token payment methods,
if they do not already exist.

• Increased token-type balance.
• Display of line items

associated with each token
type in the Token Activity
table on the Transaction
Details page.

• Updated token activity on the
customer’s Account Details
page.

• Updated token balance for the
related payment method.

• Details on the Token Activity
Results page.

• Reference of the transaction
ID by the activity.

Incremented

Purchase A customer has an
AutoBill subscription
for a product that
adds multiple token
types to the custom-
er’s account bal-
ance. The transaction
is successfully cap-
tured.

Grant tokens to an
AutoBill subscription
with a product that
has associated to-
kens granted.

Same as above. Decremented

Purchase A customer makes a
purchase for which
you accept tokens as
the payment meth-
od. Afterwards, you
submit a transaction
to CashBox and ref-
erence the token
type.

Transact a one-time
purchase in tokens.

• Notification to the customer:
Real-Time Statement of
Success or Real-Time
Statement of Failure.

• Reduced token-type balance.
• Inclusion of the line items

associated with the token type
in the transaction.

• Updated token activity on the
customer’s Account Details
page.

• Updated token balance for the
related payment method.

• Details on the Token Activity
Results page.

Decremented

Table 10-3 Token Activity Types (Continued)

Activity Type Example Description Results
Token
Balance
© 2014 Vindicia, Inc. Table of Contents Working with Tokens 10 - 4

CashBox 5.0: Programming Guide Understanding Token Activities
Purchase A customer has an
AutoBill subscription
for a product associ-
ated with a billing
plan that is transact-
ed in tokens. There
are enough tokens in
the related account to
cover the cycle cost.

Transact an AutoBill
subscription with a
billing-period cycle in
tokens.

• Prebilling notification to the
customer.

• A success notification to the
customer if there are enough
tokens in the account.
Otherwise, the notification
states that not enough tokens
are available.

• Reduced token-type balance.
• Inclusion of the line items

associated with the token type
in the transaction.

• Updated token balance for the
related payment method.

• Details on the Token Activity
Results page.

• Updated token activity on the
customer’s Account Details
page.

Decremented

Refund A customer makes a
purchase with to-
kens and then re-
quests a refund.

(CashBox only sup-
ports full refunds for
token transactions.)

Refund a real-time
transaction that was
paid for in tokens.

• Refund notification.
• Updated transaction in

question.
• Increased token-type

balances.
• Updated token balance for the

related payment method.
• Details on the Token Activity

Results page.
• Updated token activity on the

customer’s Account Details
page.

Incremented

Table 10-3 Token Activity Types (Continued)

Activity Type Example Description Results
Token
Balance
© 2014 Vindicia, Inc. Table of Contents Working with Tokens 10 - 5

CashBox 5.0: Programming Guide Understanding Token Activities
Refund A customer who has
an AutoBill subscrip-
tion that references a
billing plan transact-
ed in tokens, re-
quests a refund.

Refund an AutoBill
transaction that was
paid for in tokens.

• Refund notification.
• Updated transaction in

question.
• Increased token-type

balances.
• Updated token balance for the

related payment method.
• Details on the Token Activity

Results page.
• Updated token activity on the

customer’s Account Details
page.

Incremented

Refund A customer purchas-
es a product that has
tokens granted and
then requests a re-
fund.

Refund a one-time
purchase transacted
in currency for a
product for which to-
kens were granted.

• Refund notification.
• Reduced token-type balances.
• Updated token balance for the

related payment method.
• Details on the Token Activity

Results page.
• Updated token activity on the

customer’s Account Details
page.

Decremented

Refund A customer has an
AutoBill subscription
for a product that has
tokens granted and
requests a refund.

Refund of an AutoBill
subscription transact-
ed in currency for a
product for which to-
kens were granted.

• Refund notification.
• Reduced token-type balances.
• Updated token balance for the

related payment method.
• Details on the Token Activity

Results page.
• Updated token activity on the

customer’s Account Details
page.

Decremented

Table 10-3 Token Activity Types (Continued)

Activity Type Example Description Results
Token
Balance
© 2014 Vindicia, Inc. Table of Contents Working with Tokens 10 - 6

CashBox 5.0: Programming Guide Defining New Token Types
10.3 Defining New Token Types

Define new token types by instantiating Token objects and making API calls to specify the
new types in the CashBox database.

Define a new Token type:

$tok = new Token();

// Use a unique id when defining a new token type
$tok->setMerchantTokenId("US_FREQ_BOOK_BUYER_PT");

$tok->setDescription("A frequent book buyer point for US customers");

// Make SOAP call to create token in CashBox database
$response = $tok->update();

if($response['returnCode']==200)
{

print "Token created successfully";
}

10.4 Incrementing Token Balances

You can increment a customer account’s token balance in several ways: through a
successfully captured transaction (purchase), through a refund of a transaction that was
paid for in tokens, with a grant-tokens call through a customer-service interaction, or with the
increment method.

If a token balance is incremented but does not exist in the related Account object, CashBox
creates a new PaymentMethod object of type Token.
© 2014 Vindicia, Inc. Table of Contents Working with Tokens 10 - 7

CashBox 5.0: Programming Guide Purchasing Tokens
10.4.1 Purchasing Tokens

Because token balances are associated with an Account object, to allow customers to
purchase tokens, you must define Product objects and specify how many tokens of a
certain type to grant to a customer (Account object) when that customer purchases the
related products. After each purchase, CashBox adds the appropriate number of tokens to
the balance attached to the Account object.

The following example creates a Product object that grants 10 tokens, of the type defined
in the previous example, to an Account object that purchases the Product object.

Use a Product purchase to grant Tokens:

$prod = new Product();
$prod->setMerchantProductId("sku101");

// Populate various product attributes here
$tok = new Token();

// we created token with this id already – we want to refer to the
// same token type

$tok->setMerchantTokenId("US_FREQ_BOOK_BUYER_PT");

// create a TokenAmount object and populate it with token type
// and quantity
$tokAmt = new TokenAmount();
$tokAmt->setToken($tok);
$tokAmt->setAmount(10);

// we need an array of token amounts since a product can
// grant multiple token types. However, in our example the
// product grants only one token type
$tokAmounts = array($tokAmt);

$cr = new Credit();
$cr->setTokenAmounts($tokAmounts)

// Specify token amounted granted by purchase of this product
$prod->setCreditGranted($cr);

// Make SOAP call to create the product in CashBox database
$response = $prod->update();

if($response['returnCode']==200) {
print "Product created successfully";

}

© 2014 Vindicia, Inc. Table of Contents Working with Tokens 10 - 8

CashBox 5.0: Programming Guide Purchasing Tokens
The Product object created can be used in both one-time and recurring billing:

• Recurring billing: Construct an AutoBill object with the Product object. With
successful capture of each recurring transaction generated by the AutoBill, CashBox
adds the tokens granted by the Product to the Account object associated with the
AutoBill.

• Real-time billing: Construct a one-time transaction that refers to the Product object
as one of its transaction items. Specify the SKU of TransactionItem as
merchantProductId for Product. With a successful capture of a one-time
transaction, CashBox adds the tokens granted by Product to the Account object
associated with the transaction.

Use a Product that grants Tokens in a one-time Transaction:

$tx = new Transaction();

// Reference an existing account to which tokens are to be granted
$account = new Account();
$account->setMerchantAccountId('9876-5432');
$tx->setAccount($account);

// One of the line items of the transaction should be the product
// that grants tokens
$tx_item = new TransactionItem();
$tx_item->setSku('sku101'); // the id of the product that grants tokens
$tx_item->setName('Token granter product');
$tx_item->setPrice(75.00);
$tx_item->setQuantity(1);
$tx->setTransactionItems(array($tx_item));

// set other transaction attributes here

$sendEmailNotification=false;
$response = $tx->authCapture($sendEmailNotification);

// SOAP call
if($response['returnCode']==200) {

if($tx->statusLog[0]->status=='Authorized') {
print "Purchase complete. Tokens granted";

}
}

© 2014 Vindicia, Inc. Table of Contents Working with Tokens 10 - 9

CashBox 5.0: Programming Guide Granting Tokens to Accounts
10.4.2 Granting Tokens to Accounts

To grant a customer tokens outside the framework of recurring or real-time billing
transactions (for example, to compensate a customer for an issue, or to reward a customer
for completing a survey) the Account object supports calls to directly increment or
decrement token balances.

Increment an Account’s Token balance:

// Reference an existing account to which tokens are to be granted
$acct = new Account();
$acct->setMerchantAccountId('9876-5432');

// Refer to an existing token type using its id
$tok = new Token();
$tok->setMerchantTokenId("US_FREQ_BOOK_BUYER_PT");

// create a TokenAmount object and populate it with token type and
// quantity
$tokAmt = new TokenAmount();
$tokAmt->setToken($tok);
$tokAmt->setAmount(5);
// want to award the Account with 5 tokens of this type

// Refer to another existing token type using its id
$tok2 = new Token();

$tok2->setMerchantTokenId("US_FREQ_DVD_BUYER_PT");

// create a TokenAmount object and populate it with token type and
// quantity
$tokAmt2 = new TokenAmount();
$tokAmt2->setToken($tok2);
$tokAmt2->setAmount(2);
// want to award the Account with 2 tokens of this type

$tokAmounts = array($tokAmt, $tokAmt2);

// make the SOAP call to increment tokens
$response = $acct->incrementTokens($tokAmounts);

if($response['returnCode']==200) {
// the call returns new token balances on the account
// print those out
$newTokBalances = $response['tokenAmounts'];
foreach ($newTokBalances as $newTokBal) {

print "Token type"
. $newTokenBal->token->merchantTokenId; . "\n";

print "Token amount available" . $newTokenBal->amount;
. "\n";

}
}

The drawback of incrementing tokens on an Account object is that the action is not
registered in CashBox’s transaction framework. It is, however, tracked and available on the
CashBox Portal (choose Search > Token Activity). You may also obtain all token activities
with SOAP 3.5 API calls.
© 2014 Vindicia, Inc. Table of Contents Working with Tokens 10 - 10

CashBox 5.0: Programming Guide Decrementing Token Balances
10.5 Decrementing Token Balances

Your customers can spend tokens by purchasing a product that is priced in tokens, or by
signing up for a subscription (represented by an AutoBill object) with a billing plan priced
in tokens.

Reduce a customer’s token balance, as the result of a billing event, by making a
decrement call. Because decrement calls are made directly on Account objects, the
action lies outside of Vindicia’s transaction framework, with no accounting of the spent
tokens unless you develop separate client-side mechanisms to maintain an audit trail.
However, Vindicia tracks the action and makes it available on the CashBox Portal (choose
Search > Token Activity). You may also obtain all token activities with SOAP 3.2 API calls.

Decrement an Account’s Token balance:

// Reference an existing account from which the tokens
// are to be decremented
$acct = new Account();
$acct->setMerchantAccountId('9876-5432');

// Refer to an existing token type using its id
$tok = new Token();
$tok->setMerchantTokenId("US_FREQ_BOOK_BUYER_PT");

// create a TokenAmount object and populate it with token type and
// quantity
$tokAmt = new TokenAmount();
$tokAmt->setToken($tok);
$tokAmt->setAmount(20); // remove 20 tokens from the account's balance

// Refer to another existing token type using its id
$tok2 = new Token();
$tok2->setMerchantTokenId("US_FREQ_DVD_BUYER_PT");

// create a TokenAmount object and populate it with token
// type and quantity
$tokAmt2 = new TokenAmount();
$tokAmt2->setToken($tok2);
$tokAmt2->setAmount(40);
// want to decrement 40 tokens from the account's balance
$tokAmounts = array($tokAmt, $tokAmt2);

// make the SOAP call to decrement tokens
$response = $acct->decrementTokens($tokAmounts);

if($response['returnCode']==200) {
// the call returns new token balances on the account
// print those out
$newTokBalances = $response['tokenAmounts'];
foreach ($newTokBalances as $newTokBal) {

print "Token type"
. $newTokenBal->token->merchantTokenId; . "\n";

print "Token amount available" . $newTokenBal->amount; . "\n";
}

}

© 2014 Vindicia, Inc. Table of Contents Working with Tokens 10 - 11

CashBox 5.0: Programming Guide Transacting Purchases in Tokens
10.5.1 Transacting Purchases in Tokens

You may also decrement a customer’s token balance by conducting a transaction with the
TokenTransaction object. Unlike the Transaction object, which works with both tokens
and money (currency), TokenTransaction deals only with tokens. The advantage of
using TokenTransaction over Transaction is that you need not define a token-based
BillingPlan or Product object. Use TokenTransaction if you wish to take advantage
of CashBox’s token ledger for token accounting and record-keeping, but do not have
BillingPlan objects explicitly priced in tokens, or do not want to browse transaction
reports and make refunds on the CashBox Portal.

Conduct multiple Token transactions, for multiple Token types, in a single call:

//Create a new TokenTransaction object
$tokTxn1 = new TokenTransaction();

// Reference an existing account to which this transaction is to be
// applied
$acct = new Account();
$acct->setMerchantAccountId('9876-5432');

$tokTxn1->setAccount($acct);

// Specify information about the token type that will be used
// for this transaction
$tok1 = new Token();
$tok1->setMerchantTokenId("US_FREQ_BOOK_BUYER_PT");

$tokAmt1 = new TokenAmount();
$tokAmt1->setToken($tok1);
$tokAmt1->setAmount(4); // number of tokens used with this transaction

$tokTxn1->setTokenAmount($tokAmt1);

$tokTxn1->setDescription("Purchase: Infinite Jest-Paperback");

$tokTxn2 = new TokenTransaction();

$tokTxn2->setAccount($acct);
// Specify information about the tokens that will be used for this
// transaction
$tok2 = new Token();
$tok2->setMerchantTokenId("US_FREQ_BOOK_BUYER_PT");

$tokAmt2 = new TokenAmount();
$tokAmt2->setToken($tok2);
$tokAmt2->setAmount(3); // Number of tokens used with this transaction

$tokTxn2->setTokenAmount($tokAmt2);
$tokTxn2->setDescription("Purchase: Blink-Paperback");
$tokTxns = array($tokTxn1, $tokTxn2);

// make the SOAP call to perform the token transaction
// Ensure that the Account set in each TokenTransaction object is
// the same object on which you make the following SOAP call

$response = $acct->tokenTransaction($tokTxns);
© 2014 Vindicia, Inc. Table of Contents Working with Tokens 10 - 12

CashBox 5.0: Programming Guide Token Transactions in Real Time
if($response['returnCode']==200) {
// the call returns new token balances on the account.
// print the new balances.
$newTokBalances = $response['tokenAmounts'];

print "New token balances for account with id "
. $acct->merchantAccountId . "\n";

foreach ($newTokBalances as $newTokBal) {
print "Token type"

. $newTokenBal->token->merchantTokenId; . "\n";
print "Token amount available" . $newTokenBal->amount; . "\n";

}
}

10.5.2 Token Transactions in Real Time

To track your customers’ token transactions in CashBox, execute standard Transaction
objects. For example, if your customer makes a one-time purchase for which the price is a
token type instead of currency, construct a real-time Transaction object.

Note:

• The Transaction object’s sourcePaymentMethod attribute must refer to a
PaymentMethod object called Token.

• The transaction items in the Transaction object must all be for amounts that are in
tokens.

• Token transactions must have a _VT setting for currency, which is Vindicia’s internal
code for token-based payment.

• You cannot mix items priced in currency and tokens. Apply only a token type to the
Transaction object.

Create and process a real-time Transaction:

//Create a new Transaction object
$tx = new Transaction();

// Reference an existing account to which tokens are to be granted
$account = new Account();
$account->setMerchantAccountId('9876-5432');
$tx->setAccount($account);

// One of the line items of the transaction must be the
// product that grants tokens
$tx_item = new TransactionItem();
$tx_item->setSku('sku112');
$tx_item->setName('Product priced in token);
$tx_item->setPrice(2); // this is the number of tokens
$tx_item->setQuantity(1);
$tx->setTransactionItems(array($tx_item));

// The source payment method used for the transaction must be
// a token payment method
$srcPm = new PaymentMethod ();
$srcPm->setType('Token');
© 2014 Vindicia, Inc. Table of Contents Working with Tokens 10 - 13

CashBox 5.0: Programming Guide Token Transactions in Real Time
// because the product we want to purchase uses tokens of a
// certain type, create Token objects of that type to specify
// in the payment method
$tok = new Token();
$tok->setMerchantTokenId("US_FREQ_BOOK_BUYER_PT");

$srcPm->setToken($tok);

// set the payment method in the transaction

$tx->setSrcPaymentMethod($srcPm);

// set currency of the Transaction to be tokens

$tx->setCurrency('_VT');

// set other transaction attributes here

…

$sendEmailNotification=false;
$response = $tx->authCapture($sendEmailNotification);
// SOAP call

if($response['returnCode']==200) {
if($tx->statusLog[0]->status=='Authorized') {

print "Purchase complete";
}

}

© 2014 Vindicia, Inc. Table of Contents Working with Tokens 10 - 14

CashBox 5.0: Programming Guide Handling Recurring Billing with Tokens
10.6 Handling Recurring Billing with Tokens

To enable customers to pay for recurring billing with tokens, construct an AutoBill object
with a BillingPlan object that is transacted in tokens, and a token-based
PaymentMethod object.

Create a Billing Plan priced in Tokens:

//Create a new BillingPlan object
$bp = new BillingPlan();

// first, create a TokenAmount object that will be used as price of
// the billing plan
$tok = new Token();
$tok->setMerchantTokenId("US_FREQ_BOOK_BUYER_PT");

$tokAmt = new TokenAmount();
$tokAmt->setToken($tok2);
$tokAmt->setAmount(2);

// Price of the billing plan in terms of tokens
$price = new BillingPlanPrice();
$price->setTokenAmount($tokAmt);

// create a billing plan period that uses the token-based price
$bperiod = new BillingPlanPeriod();
$bperiod->setType('Month');
$bperiod->setQuantity(1); // a billing period of 1 month
$bperiod->setCycles(0); // infinite
$bperiod->setPrices(array($price));
// token-based price as defined above

// now create a billing plan that uses the period that uses
// token-based price
$bp->setMerchantBillingPlanId("bpid-111");
$bp->setDescription("Token priced billing plan");
$bp->setPeriods(array($bperiod)); // use the period defined above

// set other billing plan attributes below

…

// Next, create an AutoBill object for the BillingPlan object:
$abill = new AutoBill();

// Reference an existing account. The monthly transaction will
// deduct tokens from this account
$acct = new Account();
$acct->setMerchantAccountId('9876-5432');
$abill->setAccount($acct);

// Use the token-based billing plan created above
$abill->setBillingPlan($bp);

// you may also reference a Product that grants Tokens for
// an AutoBill (use this to exchange one type of tokens for
// another)
© 2014 Vindicia, Inc. Table of Contents Working with Tokens 10 - 15

CashBox 5.0: Programming Guide Handling Recurring Billing with Tokens
// The payment method used for the autobill must be a token-based
// payment method
$pm = new PaymentMethod ();
$pm->setType('Token');

// since the billing plan uses tokens of certain type, create
// Token object of that type to specify in the payment method
$tok = new Token();
$tok->setMerchantTokenId("US_FREQ_BOOK_BUYER_PT");
$pm->setToken($tok);

// set the payment method in the autobill
$abill->setPaymentMethod($pm);

// Populate other autobill attributes here
…
$dupBehave = 'Duplicate';
$minChargebackProb = 100; // don't check for risk screen
$validatePm = false;

// do not validate payment method since it is tokens

// Make SOAP call to create the autobill
$response = $abill->update($dupBehave, $validateP, $minChargebackProb);

if($response['returnCode']==200) {
print 'AutoBill created!';

}

The AutoBill object you created generates monthly transactions that decrement tokens
from the related Account object. If you fetch the transactions with the CashBox API, note
the following:

• The PaymentMethod object in the Transaction object’s sourcePaymentMethod
attribute has a type setting of Token. The token attribute of the PaymentMethod
object contains the token type for the transaction.

• The currency attribute of the Transaction object is _VT, CashBox’s internal
currency code for tokens.

• The Transaction object’s amount attribute refers to the total number of tokens used
(decremented from the Account object in question) for the transaction.
© 2014 Vindicia, Inc. Table of Contents Working with Tokens 10 - 16

CashBox 5.0: Programming Guide Handling Recurring Billing with Tokens
Process a Token-based Transaction fetched from CashBox:

// Create a transaction object so we can make the fetch call
$soapTx = new Transaction();
// now load the most recently changed 100 transaction records,
// using a date prior to Jan 1 1970
$paymentMethod = null;

// do not filter returned transactions by payment method
$since = '1969-01-01T00:00:00Z';
$today = '2009-05-19 T00:00:00Z'; // until today
$pageNumber = 0; // want to get the first page
$pageSize = 100; // want 100 records in a page
$response = $tx->fetchDeltaSince($since, $today, $paymentMethod,

$pageNumber, $pageSize);
if($response['returnCode'] == 200) {

$fetchedTxs = $response['transactions'];
foreach ($fetchedTxs as $fetchedTx) {

$srcPm = $fetchedTx->sourcePaymentMethod;
if (srcPm->type == 'Token'&& $fetchedTx->currency == '_VT')
{
// This is a token-based transaction
print "This transaction used tokens of type "

. $srcPm->token->merchantTokenId . "\n";
print "Amount of tokens decremented by this transaction "

. $tx->amount;
}

}
}

© 2014 Vindicia, Inc. Table of Contents Working with Tokens 10 - 17

CashBox 5.0: Programming Guide Refunding Transactions in Tokens
10.7 Refunding Transactions in Tokens

The CashBox API allows you to refund transactions that granted or decremented tokens.
Refunding token transactions returns the tokens to the token balance in the customer’s
account.

If a refund is for a Product that granted tokens, be sure to define the action to take for the
tokens. When creating the Refund object, specify the tokenAction attribute, which is an
enumeration of the following three values:

• None: Makes no changes to the token balance. All previous token balances will stand as
if the transaction had not been refunded.

• CancelZeroBalance: CashBox will cancel all previous token transactions. If the
cancellation causes the token balance to drop below zero, CashBox will reset it to zero.

• CancelNegativeBalance: CashBox will cancel all previous token transactions. If the
cancellation causes the token balance to drop below zero, the negative balance will
remain, and subsequent token-based transactions will fail until the balance rises above
zero.

Refund a Transaction that granted Tokens to an Account:

//Create a new refund object
$refund = new Refund();

$txn = new Transaction();

// specify a known transaction by its merchant ID. This transaction
// should be in the 'Captured' state so it can be refunded
$txn->setMerchantTransactionId('WID-CUS-9302871');

// associate the account and refund objects
$refund->setTransaction($txn);

// set the amount of the refund
$refund->setAmount(10.00);
$refund->setTimestamp('2009-02-11T22:34:32.265Z');
$refund->setReferenceString('myRefundId101');
$refund->setTokenAction('CancelNegativeBalance');

$tempSoapRef = new Refund();

// refund the transaction
$response = $tempSoapRef ->perform(array($refund));
© 2014 Vindicia, Inc. Table of Contents Working with Tokens 10 - 18

CashBox 5.0: Programming Guide The CashBox Token Processor
10.8 The CashBox Token Processor

Token transactions are processed using Vindicia’s Token Processor. Like other payment
processors, the Token Processor returns reason codes for transaction requests, as shown
below.

The reason code describes whether a token transaction succeeded or failed, and suggests
appropriate action. For example, in the case of an insufficient token balance, direct the
customer to a site to purchase a product that grants the token type in question.

Table 10-4 Token Processor Reason Codes

Reason Code Description

000 Approved.

001 Fractional funds.

002 No customer tokens.

003 Insufficient funds.

004 Authorization failed.
© 2014 Vindicia, Inc. Table of Contents Working with Tokens 10 - 19

11 Working with Campaigns

CashBox Campaigns allow you to offer discounts on existing Products, or time grants to
existing AutoBills. Discounts may be currency or percentage based, and may be single
purchase, or period based offers. Time grants serve to grant customers free time extensions
to their existing AutoBills.

Use the CashBox Portal to define Campaign parameters, then generate and retrieve
Campaign Codes. Use the CashBox API to apply a (Coupon or Promotion) Campaign to an
AutoBill.

CashBox offers several ways in which a Campaign discount may be applied to an AutoBill.

• Use AutoBill.update to create an AutoBill and apply a Campaign discount Code
simultaneously.

• Use AutoBill.addCampaign to apply a Campaign Code to an existing AutoBill.

• Use AutoBill.modify to add a new Product, and its corresponding Campaign
discount, to an existing AutoBill.
© 2014 Vindicia, Inc. Table of Contents 11 - 1

CashBox 5.0: Programming Guide Creating an AutoBill with a Campaign discount
11.1 Creating an AutoBill with a Campaign discount

CashBox allows you to create an AutoBill and apply a Campaign discount Code in a
single operation, using AutoBill.update.

Create an AutoBill with an attached Campaign Code:

$autobill = new AutoBill();
$response = $autobill->update(

'SucceedIgnore',// Duplicate Behavior
false, // validate PaymentMethod?
100, // min Chargeback Probability
true, // ignore Avs Policy?
true, // ignore Cvn Policy?
'promoABC' // promoCode

);

// check $response

Note: This example neither validates the Payment Method, nor checks the
chargeback probability or AVS and CVN returns. These parameters
must be populated so that the promoCode is the 6th parameter.
© 2014 Vindicia, Inc. Table of Contents Working with Campaigns 11 - 2

CashBox 5.0: Programming Guide Adding a Campaign Code to an AutoBill
11.2 Adding a Campaign Code to an AutoBill

Both AutoBill.update and AutoBill.addCampaign may be used to apply a
Campaign discount to an existing AutoBill. With these methods, CashBox will automatically
apply the Campaign discount to all eligible Products that do not yet have a discount applied.

For more information on discount calculation, see the Chapter 10: Campaigns in the
CashBox User Guide.

If there are any eligible Products on an existing AutoBill, a Campaign discount may be
applied toward it, regardless of the history of the AutoBill, or the length of its duration.

11.2.1 Applying a Campaign Code to an existing AutoBill

Use AutoBill.addCampaign to add a Campaign Code to an existing AutoBill.

Add a Campaign Code to an existing AutoBill:

First, create the AutoBill:

$autobill = new AutoBill();
$autobill->update(

'SucceedIgnore',// Duplicate Behavior
false, // validate PaymentMethod?
100, // min Chargeback Probability
true, // ignore Avs Policy?
true, // ignore Cvn Policy?
null // NO promoCode

);

To attach the Campaign Code, use AutoBill.update, or AutoBill.addCampaign.
(AutoBill.addCampaign works similarly to AutoBill.update when adding a
Campaign Code to an existing AutoBill.)

$response = $autobill->addCampaign(
'promoABC' // promoCode
);

// check $response

If there is an error with the discount, CashBox will not process the AutoBill.update, and
will return an error code of 400, with a text string explanation. The error may be that no
Product on the AutoBill is eligible for the Promotion, or that the Coupon Code has already
been used against its defined number of AutoBills, or that the Promotion Code is out of date.

Note: This example neither validates the Payment Method, nor checks the
chargeback probability or AVS and CVN returns. The default
behavior for duplicateBehavior is used. These parameters must
be populated, simply to set a variable for the last in the sequence
(ignoreAvsPolicy).
© 2014 Vindicia, Inc. Table of Contents Working with Campaigns 11 - 3

CashBox 5.0: Programming Guide Applying a Campaign Code to a Specific Product on an AutoBill
11.2.2 Applying a Campaign Code to a Specific Product on an AutoBill

Using AutoBill.addCampaign will automatically calculate the Product(s) to which the
Campaign should apply, based on the eligible products, as defined in the Campaign.

To specify the Product to which a Campaign Code should be applied, use
AutoBill.modify to add a Product and Campaign Code simultaneously.

Add a Product, with an attached Campaign Code, to an AutoBill:

Using modify with a Campaign Code as a parameter forces the discount to be applied to
the added Product. It will not be applied to any other Product on the AutoBill.

$response = $autobill->modify(
$ab_item// AutoBillItem
false, // addNextPeriod
false, // proRate
'promoABC'// promoCode

);

// check $response

Using modify without specifying the campaignCode parameter, then using addCampaign
against the same AutoBill, will apply the Campaign discount to all Products in the AutoBill
eligible for the discount.
© 2014 Vindicia, Inc. Table of Contents Working with Campaigns 11 - 4

12 Credit Grants and Gift Cards

CashBox supports multiple payment methods, such as credit cards, PayPal, and electronic
checks, that you may attach to an AutoBill object. In a recurring billing model, CashBox
uses the PaymentMethod object as the source Payment Method for the periodic billing
transactions it processes with the payment processor, charging the customer for every
periodic bill.

CashBox also allows you to place credit on an AutoBill, or on a customer’s Account. Any
transaction generated by an AutoBill will first attempt to use credits on that AutoBill, or
on the customer’s Account, and bill the AutoBill PaymentMethod for the remaining
balance after available credit is redeemed. CashBox may also automatically adjust one-time
transactions by the amount of credit available on a customer’s Account, redeem the
appropriate credits, then adjust the transaction for the remaining balance.

Credits are stored in the form of tokens (see Section 17: The Token Object in the CashBox
API Guide), time or currency. Token and currency credits are automatically deducted from
available balances when a transaction is processed using the same token type or currency.
Time credits serve to delay an AutoBill’s billing process by the amount of time granted.

CashBox redeems Credit automatically when Transactions are processed, in an order
determined by the Credit’s Type, sort value, and timestamp. Time and Currency credits may
also be assigned a sort value upon grant, which may be used to customize the order in
which they are redeemed.

All credit activity is marked with a timestamp, which allows you to analyze your Credit
process.

Add credits to an Account or AutoBill directly using the CashBox Portal or an API call, or
indirectly by making a call to redeem a gift card. (CashBox currently supports gift cards
issued by InComm.)
© 2014 Vindicia, Inc. Table of Contents 12 - 1

CashBox 5.0: Programming Guide Working with Credit
12.1 Working with Credit

The Credit object encapsulates the different types of credit that can be stored on a
Product, Account or AutoBill, and applied to one-time or recurring transactions.

• Tokens: Tokens may be used as both payment methods, and credit options. The
merchantTokenId attribute of a Token object identifies its type. Use this data member
to define your Token types.

For example, create an AutoBill with a monthly BillingPlan whose price is
defined in terms of Tokens of a certain type. Create a Product object which grants
credit for a number of Tokens of that type. Allow your customer to purchase the
Product, and acquire the allotted Tokens. Then, each time the AutoBill is due ,
CashBox will deduct the specified number of Tokens from the available Token credit.

• Credits (time): Grant time credit to an AutoBill by including an array of
TimeInterval objects in the Credit object associated with the AutoBill. The
TimeInterval object allows you to define a time extension to an AutoBill in terms
of years, months, weeks, or days. When you grant time credit to an AutoBill,
CashBox delays the next billing for the AutoBill by the specified amount of time,
similar to calling delayBillingByDays() on the AutoBill object.

• Credits (currency): CashBox enables you to grant or revoke currency credits currency
to Accounts and AutoBills. All ISO 42171 currencies are supported. For more
information, see the Credit Subobject in the CashBox API Guide.

• Gift Cards: Add Token credits to an AutoBill or an Account by redeeming a gift
card. Your customers may redeem gift cards, through CashBox, to add credit to their
Account. For more information, see Section 12.2: Working with Gift Cards.

12.1.1 Redeeming Credit

CashBox automatically processes all credit redemption. Neither the CashBox API, nor the
CashBox Portal allow you to manually redeem Credit. CashBox does, however, provide you
with rules which you may use to determine the order in which Credits are redeemed.

Time and Currency credits may be assigned a Sort Value when they are granted. They also
carry a VID and timestamp. Use these values to both track your credit grants and
revocations, and to define the order in which granted Credits should be redeemed when
AutoBill Transactions are processed.

CashBox processes Credit redemption in the following order:

1. Time Interval credits are redeemed before currency credits.

2. Credits automatically granted by CashBox are redeemed before those granted through
the CashBox Portal or API.

3. Credits are redeemed based on Sort Value. Use this value to define the order in which
you would like Credits to be redeemed.

4. After Sort Value has been considered, Credits are redeemed based on Grant time, from
oldest to most recent.

Credits may not be revoked after they've been redeemed, and they may not be redeemed
after they've been revoked.
© 2014 Vindicia, Inc. Table of Contents Credit Grants and Gift Cards 12 - 2

CashBox 5.0: Programming Guide Using Credits with an Account
12.1.2 Using Credits with an Account

The read-only credit attribute of the Account object holds the current credits available to
the Account. Use the grantCredit and revokeCredit calls to manipulate credit. These
methods generate appropriate audit trails of credit changes. Do not set the value of this
attribute directly. (For example, when creating a new Account object by calling update().)

Note: Use token-related methods such as
Account.incrementTokens() or decrementTokens() to
manipulate tokens available to the Account. CashBox can handle
tokens both as payment methods outside the credit framework, and
as part of the credit system.

Although you may use Tokens interchangeably across the two
systems, Vindicia recommends that in your implementation, you
choose one system, rather than mixing the two. If you have not
previously implemented a token-as-payment-method system, choose
credit-based token management, because the Credit object allows
you to abstract the type of credit, and therefore offers more flexibility
for future replacement.
© 2014 Vindicia, Inc. Table of Contents Credit Grants and Gift Cards 12 - 3

CashBox 5.0: Programming Guide Using Credits with an Account
Granting Credit to an Account

If a customer performs a specific activity at your site, you may choose to give that customer
credit. For example, if a customer redeems a phone card, a cell phone company may add a
number of cell phone minutes to the customer’s account. You may also apply currency
credits to the account. Use the Credit’s name-value pairs to define the reason for the Grant,
and to provide another field by which your Credit activity may be analyzed.

Use Account.grantCredit to add credit to an Account:

$acct = new Account();

// account id for an existing customer

$acct->setMerchantAccountId('jdoe101');
$tok = new Token();

// specify the id of an existing token type.
// (the assumption here is that you have already created
// a Token object with this id.)

$tok->setMerchantTokenId('ANYTIME_PHONE_MINUTES_2010');

$tokAmt = new TokenAmount();
$tokAmt->setToken($tok);
$tokAmt->setAmount(100);

$cr = new Credit();
$cr->setTokenAmounts(array($tokAmt));

// make the SOAP API call to grant credit to the acct
$response = $acct->grantCredit($cr);

if ($response[’returnCode’] == 200) {

// Credit successfully granted to the account

$updatedAcct = $response->['account'];
$availableCredits = $updatedAcct->getCredit();
$availableTokens = $availableCredits->getTokenAmounts();

print "Available token credits: \n";
foreach($availableTokens as $tkAmt) {

print "Token type: " . $tkAmt->getMerchantTokenId() . " ";
print "Amount: " . $tkAmt->getAmount() . "\n";

}
}
else {

// Error while granting credit to the account

print $response['returnString'] . "\n";
}

Note: CashBox does not allow you to grant time-based credit to an
Account object.
© 2014 Vindicia, Inc. Table of Contents Credit Grants and Gift Cards 12 - 4

CashBox 5.0: Programming Guide Using Credits with an Account
Revoking Credit from an Account

For some customer activities, you might revoke credit from the customer’s account. For
example, if a customer uses airline frequent flier miles to book a flight, an airline company
would deduct frequent flier miles from the customer’s account. If you accept currency
credits, you may also deduct currency from the account.

Use Account.revokeCredit to deduct credit from an Account:

$acct = new Account();

// account id for an existing customer

$acct->setMerchantAccountId('ff_flier_101');

$tok = new Token();

// specify the id of an existing token type.
// (the assumption here is that you have already created
// a Token object with this id.)

$tok->setMerchantTokenId('UA_FF_MILES');

$tokAmt = new TokenAmount();
$tokAmt->setToken($tok);
$tokAmt->setAmount(25000);

$cr = new Credit();
$cr->setTokenAmounts(array($tokAmt));

// make the SOAP API call to deduct miles
$response = $acct->revokeCredit($cr);

if ($response[’returnCode’] == 200) {

// Credit successfully revoked from the account

$updatedAcct = $response->['account'];
$availableCredits = $updatedAcct->getCredit();
$availableTokens = $availableCredits->getTokenAmounts();

print "Available token credits: \n";
foreach($availableTokens as $tkAmt) {

print "Token type: " . $tkAmt->getMerchantTokenId() . " ";
print "Amount: " . $tkAmt->getAmount() . "\n";

}
}
else {

// Error while revoking credit from the account
print $response['returnString'] . "\n";

}

Note: If the amount of token-based credit to be revoked results in a
negative balance, CashBox sets the balance to 0.
© 2014 Vindicia, Inc. Table of Contents Credit Grants and Gift Cards 12 - 5

CashBox 5.0: Programming Guide Using Credits with an Account
Using Credits for a One-Time Transaction

One-time transactions may use credit available to an Account. To use Credits for one-time
transactions, make certain that the Transaction object includes a PaymentMethod that
matches the currency or token type you wish to use to conduct the transaction. If the
customer Account has enough credit to support the transaction, CashBox authorizes the
transaction, and adds a new transaction item to the Transaction object returned to
you in response to your authCapture() call. This transaction item has its sku attribute
set to VIN_Credit, and its price set to a negative value (equivalent to the amount of the
transaction), signifying that CashBox deducted the credit from the customer’s account.

Create a one-time credit transaction:

$acct = new Account();

// account id for an existing customer

$acct->setMerchantAccountId('jdoe101');

$tok = new Token();

// specify the id of an existing token type.
// (the assumption here is that the customer with
// account id 'jdoe101' has credit available in this
// type of token.)

$tok->setMerchantTokenId('ANYTIME_PHONE_MINUTES_2010');

// source payment method for the transaction should be
// a token-based payment method
$srcPm = new PaymentMethod();
$srcPm->setType('Token');
$srcPm->setToken($tok);
$srcPm->setMerchantPaymentMethodId('5933054820');

$txn = new Transaction();
$txn->setAccount($acct);
$txn->setSourcePaymentMethod($srcPm);

// This transaction will deduct 50 credit units from the account
$txn->setAmount(50);

$txn->merchantTransactionId('TK00234918'); // must be unique

// Add a transaction item describing the transaction detail

$txItem = new TransactionItem();
$txItem->setSku('MONTH50');
$txItem->setName('Monthly Anytime Minutes');
$txItem->setPrice(50);
$txItem->setQuantity(1);

// set the transaction item into the transaction
$txn->setTransactionItems(array($txItem);

$sendEmail = false;
© 2014 Vindicia, Inc. Table of Contents Credit Grants and Gift Cards 12 - 6

CashBox 5.0: Programming Guide Using Credits with an Account
// Make the SOAP call to authorize and capture the transaction
$response = $txn->authCapture($sendEmail);

if ($response[’returnCode’] == 200) {

// the SOAP call succeeded. Now check if the
// transaction was authorized
$retTxn = $response->['transaction'];
if($retTxn->statusLog[0]->status=='Authorized') {

print "Transaction approved";
}
else if($retTxn->statusLog[0]->status=='Cancelled') {

print "Transaction not approved \n";
}
else {

print "Error: Unexpected transaction status\n";
}

}
else {

// Error while conducting transaction
print $response['returnString'] . "\n";

}

© 2014 Vindicia, Inc. Table of Contents Credit Grants and Gift Cards 12 - 7

CashBox 5.0: Programming Guide Using Credits with an Account
Fetching Account Credit History

CashBox maintains a log of credit-related events for each Account. This log keeps track of
various credit-related events such as credit granted, revoked, consumed, or earned from a
gift card redemption. Retrieve the audit log by calling the Account object’s
fetchCreditHistory() method. The method includes paging and a time range, so you
can limit the number of records returned. It returns an array of CreditEventLog objects.
Each CreditEventLog object holds the Credit object, a timestamp, the type of activity
performed with the Credit object, and a note text field.

Call Account.fetchCreditHistory:

$acct = new Account();

// account id for an existing customer whose
// credit history you want to retrieve

$acct->setMerchantAccountId('jdoe101');

$page = 0; // paging begins at 0
$pageSize = 5; // five records
$startTime = '2010-01-01T22:34:32.265Z';
$endTime = '2010-01-30T22:34:32.265Z';

do {
$ret =

$acct->fetchCreditHistory($startTime, $endTime $page, $pageSize);
$count = 0;
if ($ret[’returnCode’]== 200) {

$fetchedLogs = $ret['creditEventLogs'];
$count = sizeof($fetchedLogs);
foreach ($fetchedLogs as $log) {

 $credit = $log->getCredit();
$ts = $log->getTimeStamp();
$eventType = $log->getType();
// process retrieved credit event log
// details here.

}
$page++;

}
} while ($count > 0);
© 2014 Vindicia, Inc. Table of Contents Credit Grants and Gift Cards 12 - 8

CashBox 5.0: Programming Guide Using Credits with an AutoBill
12.1.3 Using Credits with an AutoBill

The read-only credit attribute of the AutoBill object holds the array of Credit amount
objects available to the AutoBill. Do not set this field directly by calling AutoBill.update.
Instead, use AutoBill methods such as grantCredit() and revokeCredit() to alter
credits available to the AutoBill, and provide an audit trail in the credit log. Currency-,
time-, and token-based credits may be used with AutoBill objects. CashBox manages
credits available to an AutoBill object as follows:

• CashBox draws currency- and token-based credits from the AutoBill for each
periodic transaction it generates for the AutoBill.

• If the Account associated with the AutoBill also has currency- or token-based
credits available to it, when the AutoBill is billed, AutoBill credits are redeemed
before Account credits.

• If an AutoBill has an associated time credit, CashBox uses this credit before
redeeming any token-based or currency credits.

• CashBox uses currency and token-based credit to process an AutoBill’s periodic
transaction only if both of the following are true:

• The payment method specified on the AutoBill is a currency or token-based
payment method that specifies a type of applicable token,

and

• The billing plan associated with the AutoBill has a price listed in terms of the
same token type or currency.

• When CashBox applies time-based credit to an AutoBill, it adjusts the next billing
date of the AutoBill accordingly. For example, a 15-day credit will postpone an
AutoBill object’s next billing date by 15 days. Application of such a credit does not
generate a transaction.
© 2014 Vindicia, Inc. Table of Contents Credit Grants and Gift Cards 12 - 9

CashBox 5.0: Programming Guide Using Credits with an AutoBill
Granting Credit to an AutoBill

Some situations may require you to extend a customer’s subscription to your site. For
example, if a technical problem at your site prevented a customer from accessing the site for
two days, a customer service representative might decide to extend the customer’s
subscription by two days, to guarantee customer satisfaction. The grantCredit() method
of the AutoBill object allows you to add time credit to an AutoBill object to implement
such an extension.

Use grantCredit to add time credit to an AutoBill:

$abill = new AutoBill();

// autobill id for an existing subscription

$abill->setMerchantAutoBillId('SBCR312345');

// We want to grant 2 days of credit
$time = new TimeInterval();
$time->setType('Day');
$time->setAmount(2);

$cr = new Credit();
$cr->setTimeIntervals(array($time));

// Now make the SOAP API call to grant credit to the autobill
$response = $abill->grantCredit($cr);

if ($response[’returnCode’] == 200) {

// Credit successfully granted to the autobill

$updatedABill = $response['data']->autobill;

print "Current entitlements are valid till: ";
print $updatedABill->getEndDate() . "\n";

}
else {

// Error while granting credit to the account
print $response['returnString'] . "\n";

}

© 2014 Vindicia, Inc. Table of Contents Credit Grants and Gift Cards 12 - 10

CashBox 5.0: Programming Guide Using Credits with an AutoBill
Revoking Credit from an AutoBill

Some activities a customer performs at your site might revoke credit from an AutoBill
object. For example, an online game company might offer subscriptions that are paid for by
points a customer earns in the game. If the customer loses some points in the game, the
company might deduct the same number of points from the customer’s subscription. (Note:
Time-based credit granted to an AutoBill cannot be revoked.)

Use revokeCredit to revoke currency or Token-based credits from an AutoBill:

$abill = new AutoBill();

// autobill id for customer's existing subscription to a game

$abill->setMerchantAutoBillId('STARWARS-239181');

$tok = new Token();

// specify the id of an existing token type.
// the autobill has a payment method defined in terms of this
// token type. Also the billing plan used by the autobill
// specifies a price in terms of this token type.

$tok->setMerchantTokenId('STARWARS_POINTS');

$tokAmt = new TokenAmount();
$tokAmt->setToken($tok);
$tokAmt->setAmount(100); // customer lost 100 points in the game

$cr = new Credit();
$cr->setTokenAmounts(array($tokAmt));

// Now make the SOAP API call to deduct points from customer's
// subscription

$response = $abill->revokeCredit($cr);

if ($response[’returnCode’] == 200) {

// Credit successfully revoked from the autobill

$updatedAbill = $response->['data']->autobill;
$availableCredits = $updatedAbill->getCredit();
$availableTokens = $availableCredits->getTokenAmounts();

print "Available points to subscription: \n";
foreach($availableTokens as $tkAmt) {

print "Token type: " . $tkAmt->getMerchantTokenId() . " ";
print "Amount: " . $tkAmt->getAmount() . "\n";

}
}
else {

// Error while revoking credit from the autobill
print $response['returnString'] . "\n";

}

© 2014 Vindicia, Inc. Table of Contents Credit Grants and Gift Cards 12 - 11

CashBox 5.0: Programming Guide Using Credits with an AutoBill
If the amount of currency or token-based credit to be revoked results in a negative balance,
CashBox sets the balance to 0. Disentitlement (loss of customer access to the product) will
occur when CashBox attempts to process the next billing transaction for the AutoBill, and
the transaction fails due to insufficient credit.

Fetching AutoBill Credit Transactions

CashBox stores token- and currency-based periodic transactions in the same way that it
stores AutoBills paid for with currency payment methods. Fetch token-based
transactions with API calls such as the Transaction object’s fetchByAutoBill()
method. These transactions contain a transaction item with sku attribute set to
VIN_Credit, and price attribute set to a negative value equivalent to the amount of the
transaction (signifying that CashBox deducted the credit).
© 2014 Vindicia, Inc. Table of Contents Credit Grants and Gift Cards 12 - 12

CashBox 5.0: Programming Guide Using Credits with an AutoBill
Fetching an AutoBill’s Credit History

CashBox maintains a log of credit-related events for each AutoBill object. This log tracks
credit-related events such as credit granted, revoked, consumed, and earned due to a gift
card redemption. Retrieve the audit log with the AutoBill object’s
fetchCreditHistory() method. (Because the method includes paging and a time
range, you may limit the number of records returned.)

fetchCreditHistory() returns an array of CreditEventLog objects. Each
CreditEventLog object holds the Credit object used for that specific event, a timestamp,
the type of activity performed with the Credit object, and a text note field.

Use fetchCreditHistory to return an array of CreditEventLog objects:

$abill = new AutoBill();

// autobill id for an existing customer whose
// credit history you wish to retrieve

$abill->setMerchantAccountId('jdoe101');

$page = 0; // paging begins at 0
$pageSize = 5; // five records
$startTime = '2010-01-01T22:34:32.265Z';
$endTime = '2010-01-30T22:34:32.265Z';

do {
$ret =

$abill->fetchCreditHistory($startTime, $endTime $page, $pageSize);
$count = 0;
if ($ret[’returnCode’] == 200) {

$fetchedLogs = $ret['creditEventLogs'];
$count = sizeof($fetchedLogs);
foreach ($fetchedLogs as $log) {

$credit = $log->getCredit();
$ts = $log->getTimeStamp();
$eventType = $log->getType();
// process retrieved credit event log
// details here.

}
$page++;

}
} while ($count > 0);
© 2014 Vindicia, Inc. Table of Contents Credit Grants and Gift Cards 12 - 13

CashBox 5.0: Programming Guide Working with Gift Cards
12.2 Working with Gift Cards

You may also add credit to an AutoBill or Account by redeeming a gift card through
CashBox. Gift Cards are processed much like currency, in that CashBox contacts a gift card
processor company, which notifies CashBox if a gift card is redeemable, and handles the
transaction. (CashBox currently supports gift cards issued by InComm.)

Gift Cards may be used to add Token Credits to an AutoBill, in that a Gift Card may be used
to purchase a Product which grants Token Credits.

Store Products created for Gift Card redemption in CashBox in order to track the SKU
provided by the gift card processor. Do not create AutoBills which contain these Products.

12.2.1 Understanding the Attributes of the GiftCard Object

The GiftCard object encapsulates gift card details such as the card’s unique identification
number (pin) and the processor that CashBox should contact for redemption of the gift card
(this value defaults to InComm if left unspecified). When you make the API call to redeem a
gift card, CashBox also assigns a unique VID to the corresponding GiftCard object, and
stores the latest status of the gift card (such as whether it was redeemed or is still pending)
in the status attribute of the GiftCard object. See Section 9: The GiftCard Object in the
CashBox API Guide for details.

12.2.2 Determining Redemption Credit Amount

CashBox redeems Gift Cards for Token credit associated with a Product object.

When a customer offers a Gift Card PIN for redemption, CashBox contacts your gift card
processor to redeem the card, and the processor returns a SKU or a UPC number if the card
is valid. This SKU or UPC must match the merchantProductId of a Product object that
you have previously created in CashBox. When you create the Product, use the
creditGranted data member to associate a number of Token credits with it, which will be
granted to the Account or AutoBill upon redemption of the associated Gift Card.

Note: Products associated with Gift Cards are a special case, in that they
may hold only Token Credits.
© 2014 Vindicia, Inc. Table of Contents Credit Grants and Gift Cards 12 - 14

CashBox 5.0: Programming Guide Determining Redemption Credit Amount
To redeem a Gift Card:

1. CashBox sends the Gift Card number (as defined by you and your gift card processor,
and presented by your customer) to your gift card processor.

2. Your card processor validates that the Gift Card associated with the number is still
active.

3. Upon validation, your Gift Card processor returns a SKU or UPC number to CashBox.

4. CashBox matches this SKU to a Product’s merchantProductId (or SKU).

5. If a match is found, the Token credits associated with the Product are granted to the
Account or AutoBill.

Before accepting gift cards, work with your gift card processor to define the SKU or UPC
your processor will return for each type of gift card you accept, and create Product objects
with the corresponding merchantProductId in CashBox.

The following example creates a new Product object that grants token-based credit (5000
tokens of type 'STARWARS_POINTS'). The merchantProductId of this Product
matches the SKU/UPC the processor returns when a $10 gift card is redeemed.

$product = new Product();

// Identify the product by your unique identifier
// This should be the SKU/UPC returned by gift card processor

$product->setMerchantProductId('49238434023383');

$product->setStatus('Active');
$product->setDescription('Redeem product for ten dollar gift');

// define the credit that this product will grant
$tok = new Token();

$tok->setMerchantTokenId('STARWARS_POINTS');

$tokAmt = new TokenAmount();
$tokAmt->setToken($tok);
$tokAmt->setAmount(5000);

$cr = new Credit();
$cr->setTokenAmounts(array($tokAmt));

// Set the credit into the product

$product->setCreditGranted($cr);

// Now make API call to create the product

$response = $product->update(DuplicateBehavior::SucceedIgnore);
if($response['return Code’] == 200 && $response['created']) {

$createdProduct = $response['data']->product;
print "Created product with VID " . $createdProduct->getVID();

}

© 2014 Vindicia, Inc. Table of Contents Credit Grants and Gift Cards 12 - 15

CashBox 5.0: Programming Guide Redeeming a Gift Card
12.2.3 Redeeming a Gift Card

Redeeming a gift card is a two-step process. First, check whether the gift card is
redeemable by calling the GiftCard object’s statusInquiry() method. If the call shows
that the status of the gift card is Active, you may redeem the gift card.

Determine the status of a Gift Card:

$gc = new GiftCard();

// set the PIN provided by the customer
$gc->setPin('683092298403');
$gc->setPaymentProvider('InComm');

// Now make API call to inquire about the status of the gift card

$response = $gc->statusInquiry();
if($response['return Code’] == 200) {

// The API call is successful. Now check the
// status in the updated GiftCard object returned by
// this call

$updatedGc = $response['data']->giftcard;
$status = $updatedGc->getStatus();

// the status thus obtained is an object of type GiftCardStatus
// Now check if it says the gift card is redeemable

if ($status->getStatus() == 'Active') {
// The gift card is redeemable, retrieve its VID
// so we can reference it just by VID when we redeem it

$gcVID = $updatedGc->getVID();
}
else {

// Gift card is not redeemable. Inform the customer here
// You may want to include the response received from the
// gift card processor

$responseCode = $status->getProviderResponseCode();
$responseMsg = $status->getProviderResponseMessage();

}
}

After determining the status of the gift card, you may redeem the card. Both AutoBill and
Account objects support redeemGiftCard calls. When redeemGiftCard is successful,
the credit granted by the Product (with merchantProductId returned by the gift card
processor in response to this call) is added to the Account or AutoBill object against
which the call was made.
© 2014 Vindicia, Inc. Table of Contents Credit Grants and Gift Cards 12 - 16

CashBox 5.0: Programming Guide Redeeming a Gift Card
Redeem a Gift Card, and add credit to an AutoBill:

$abill = new AutoBill();

// autobill id for a customer's existing subscription
// the customer wants to redeem a gift card and add credit
// to this autobill

$abill->setMerchantAutoBillId('SBCR312345');

$gc = new GiftCard();

// set the VID of the gift card, obtained when the status
// status of the gift card was checked, and determined to be active

$gc->setVID($gcVID);

// Now make the SOAP API call to redeem the gift card

$response = $abill->redeemGiftCard($gc);

if ($response[’returnCode’] == 200) {

// Redemption successful. Check if credit was added
// to the autobill

$updatedABill = $response['data']->autobill;

$availableCredits = $updatedABill->getCredit();
$availableTokens = $availableCredits->getTokenAmounts();

print "Available token credits: \n";
foreach($availableTokens as $tkAmt) {

print "Token type: " . $tkAmt->getMerchantTokenId() . " ";
print "Amount: " . $tkAmt->getAmount() . "\n";

}

// Also make sure status of the gift card is 'Redeemed'

$updatedGc = $response['data']->giftcard;

print "Status of the gift card: ";
print $updatedGc->getStatus()->getStatus() . "\n";

}
else {

// Error while granting credit to the account
print $response['returnString'] . "\n";

}

Note: CashBox allows only full redemption of a gift card. You may not partially redeem a gift
card.
© 2014 Vindicia, Inc. Table of Contents Credit Grants and Gift Cards 12 - 17

CashBox 5.0: Programming Guide Reversing a Gift Card Redemption
12.2.4 Reversing a Gift Card Redemption

A gift card must be Active before a successful redeemGiftCard() call can be made. It is
possible that during your redemption attempt, due to a technical problem such as a
connection drop out, the operation does not complete and the underlying Account or
AutoBill does not receive any credit. If this happens, make the redeemGiftCard() call
again.

To reverse a gift card redemption, first ensure that the status of the gift card is Active, in
case a previous operation has (erroneously) changed the status. If the gift card is no longer
Active, you may reverse the last operation upon it using the GiftCard.reverse()
method.

Reverse a Gift Card redemption:

// set the VID of the gift card. We obtained this when we
// inquired status of the gift card

$gc->setVID($gcVID);

// Now make the SOAP API call to reverse the redemption

$response = $gc->reverse();

if ($response[’returnCode’] == 200) {

// Reversal successful.
// fetch the autobill against which we originally
// redeemed the gift card here.

// Also make sure status of the gift card is ‘Active’

$updatedGc = $response['data']->giftcard;

if($updatedGc->getStatus()->getStatus() == ‘Active’) {

// try redemption again here
}

}
else {

// Error while reversing the card
}

Note: The purpose of this call is to correct an unwanted situation, as
described above. Do not use this call to reverse a successful
redemption call. It does not automatically revoke credits granted in
the previous redemption call.
© 2014 Vindicia, Inc. Table of Contents Credit Grants and Gift Cards 12 - 18

13 Hosted Order Automation

CashBox Hosted Order Automation allows you to accept and process customer payment
method information, without exposing your own servers, by submitting it directly from your
order form to Vindicia over Secure Sockets Layer (SSL). This gives you a means by which
you may create a storefront which accepts and stores credit card information, without ever
loading it into your own database. Because HOA bypasses your server at form submission,
thus limiting your system's exposure to client Credit Card information, your need for PCI
compliance is alleviated. Use Vindicia's Hosted Order Automation (HOA) to create CashBox
objects that contain sensitive payment information, such as credit-card account numbers.
Use a specially designed Web order form, accessed from your server, to store customer
credit card information directly on Vindicia's servers from your submission page. With HOA,
Vindicia makes the SOAP calls, and populates the client data in the CashBox database.

HOA works by creating a WebSession object, with a WebSession ID, which is used to track
the interaction between your web pages and the CashBox API, and to temporarily store
sensitive customer information while the session is in progress. Create the WebSession ID
when your customer requests a data-sensitive page from your server, by calling
WebSession.initialize on the Vindicia servers. From the moment the Initialize call is
made, the WebSession ID is used to both track and validate the session.

The WebSession object is used to temporarily store payment method information in the
CashBox database, which is then permanently loaded when the WebSession.finalize
method is called.

For more information on the WebSession object, see Section 19: The WebSession Object in
the CashBox API Guide.

Use HOA as an adjunct to the SOAP-based CashBox API to integrate your applications with
CashBox. HOA allows you to generate certain CashBox objects directly, without making
SOAP calls.
© 2014 Vindicia, Inc. Table of Contents 13 - 1

CashBox 5.0: Programming Guide
Note: HOA's primary function is to mitigate your need for PCI compliance when accepting
payment information from your customers. For that reason, the WebSession object is limited
in scope and properties, and is meant only to create or authorize AutoBills,
PaymentMethods, and Transactions. HOA is not designed to create other CashBox
objects.

Caution Even though you need not permanently store payment data, heed the
related Payment Card Industry (PCI) regulations. While creating
CashBox API objects and transmitting data to Vindicia, your customers'
payment data is stored for a short period of time in RAM on your server,
where it could potentially be swapped to the hard drive. This temporary
storage might mean that you must comply with PCI requirements. If you
desire no involvement with such compliance, take advantage of
CashBox's Hosted Order Automation (HOA) feature, which eliminates
the need for you to store sensitive payment data, even transiently. Using
HOA, payment data is never collected on your server.
© 2014 Vindicia, Inc. Table of Contents Hosted Order Automation 13 - 2

CashBox 5.0: Programming Guide HOA Features
13.1 HOA Features

HOA guarantees security because:

• Vindicia receives data submitted by the order form over Secure Sockets Layer (SSL).

• HOA tracks an order form submission through a WebSession object, created on the
Vindicia server before the order form is presented to your customer. This allows you to
pre-load information, including the IDs of CashBox objects to which the order refers
(such as an existing BillingPlan or Product object), without displaying the
information on the form.

• A WebSession object has a 40-character unique ID, which is included as the session
ID in the form. This ID expires 1) after a form is submitted using that ID, 2) after 1 hour
(3600 seconds, the default expiration time), or 3) after the merchant-configured
expiration time, whichever occurs first. This prevents illegal or repeated use of session
IDs by hackers. HOA stores the results of the API call in the CashBox WebSession
object. Fetch this object and, based on the results, determine the next steps the
customer should take on your site.

• While HOA allows you to create CashBox objects that contain sensitive payment
information, you may also manipulate and retrieve those objects, and take advantage of
other CashBox tools, using the CashBox API, or the CashBox Portal.

Vindicia does not host any HTML pages in the process. Your customers may notice Loading
https://www.vindicia.com … , in the status bar of their browser, but only momentarily, after
they have submitted the Web order form, and before HOA loads your redirection page. Your
order form and success or failure pages, with your branding style, are the only pages visible
to your customers.

HOA does not make the API call to create objects containing sensitive payment information,
such as an AutoBill, or a PaymentMethod object, until you "finalize" the WebSession
object from the success page that you host. Therefore, if the connection is severed as HOA
redirects the customer's browser from Vindicia's server to your server, your success page
will never be reached, the WebSession will not finalize, and HOA will not make the API call.
This approach preserves data integrity in cases of connections dropped during the process.

Note: Vindicia never returns or displays sensitive payment information, such
as credit-card account numbers, in full. When returning information
through an API call, or displaying the data in the Portal, CashBox
always partially masks account numbers.
© 2014 Vindicia, Inc. Table of Contents Hosted Order Automation 13 - 3

CashBox 5.0: Programming Guide HOA Process Flow
13.2 HOA Process Flow

The HOA process differs from standard CashBox process in that, using HOA, you do not
pass sensitive Customer information directly to the CashBox servers. Instead, use HOA to
handle the data transfer.

13.2.1 HOA Work Flow Overview

This section describes the page flow for the HOA process.

1. Customer navigates to your Offer page.

Use this page to request non-sensitive information, such as name, address, and email
address, with which the customer's Account may be created.

When the customer clicks Submit or Save:

a. Use Account.update to create a new Account object, and load the acquired
customer information.

b. Then, call WebSession.initialize to create a WebSession object, with which
this session will be tracked and managed

c. Redirect the customer to your Payment Information page.

2. Customer arrives at your Payment Information page.

Use this page, and HOA, to collect sensitive payment information, such as the credit card
number, its expiration date, and the CVN code on the reverse.

When the customer clicks Submit:

a. Data is temporarily stored within the CashBox database, awaiting the session to
terminate by timeout or by finalizing the HOA calls (below).

b. Redirect the customer to your Confirmation page.

3. Customer arrives at your Confirmation page.

a. The confirmation page is loaded with the WebSession ID (in a hidden form), to
confirm the validity of the transaction

When the customer clicks Submit:

4. Call WebSession.finalize to confirm the submission, finalize the session, and
instruct CashBox HOA to make the SOAP calls necessary to load the temporary data
from the WebSession object into the appropriate CashBox objects.
© 2014 Vindicia, Inc. Table of Contents Hosted Order Automation 13 - 4

CashBox 5.0: Programming Guide HOA Server Work Flow
13.2.2 HOA Server Work Flow

This section describes the data flow between your website’s servers, the CashBox
WebSession servers, and the CashBox database.

Figure 13-1 HOA Server Work Flow

1. Your customer requests a page from your Web application (makes an http call to your
website), such as your Order page, which requires that they submit payment
information.

2. Call WebSession.initialize() in the CashBox API to initialize a WebSession
object on Vindicia's server. In the WebSession object, specify two key attributes:

• The IP address from which the customer requested the order form. For example:

billing_CODE_ONLY.php:$ws->setIpAddress($ip_address);

• The API call HOA should make when the customer submits the form. For example,
calling PaymentMethod.update() allows you to create a new payment method.
For example:

<input type="hidden" name="vin_WebSession_method"
value="PaymentMethod_Update" />
© 2014 Vindicia, Inc. Table of Contents Hosted Order Automation 13 - 5

CashBox 5.0: Programming Guide HOA Server Work Flow
The initialize call creates a WebSession object, which may include a method data
member. This data member may be used to specify the SOAP call for which this
WebSession is acting as proxy. Valid input includes:

• Account_Update

• Account_UpdatePaymentMethod

• AutoBill_Update

• PaymentMethod_Update

• PaymentMethod_Validate

• Transaction_Auth

• Transaction_AuthCapture

(The initialize call takes several parameters to mitigate the risk of an un-
authenticated call.)

3. After the initialize call is made, the WebSession object returns a VID.

This VID is used to track the HOA session, and serves as its means of control and
authentication. Only one VID is generated per session, and it has a time limit for validity.

CashBox returns the WebSession VID to your application in response to the initialize
call. Other form elements, hidden or to be provided by the customer, must be consistent with
the data required to complete a PaymentMethod.update() call (or other API call, listed
above). The form's action URL points to the HOA address on the Vindicia server.

4. Return the VID to the customer's webpage as a hidden form value: WebSessionId.
(Be certain to retain the VID for later use.)

5. Use the VID to post the customer's payment information directly to the Vindicia servers.
The customer fills out your form, and clicks Save or Submit. Because the form's action
URL points to the HOA address on the Vindicia server, HOA receives the content,
including payment information, directly, bypassing your server altogether.

6. Vindicia saves the form data to CashBox.

Note: Capture your customers' IP addresses, to better assess fraud risk, and
to allow Vindicia's ChargeGuard team to pursue chargeback
investigations.

Note: Steps 1 through 4 are parts of a single synchronous call and response
chain initiated by the customer's request for the order form.

Note: The customer must complete the form within one hour (the default
expiration time), or within your specified expiration time, after which
CashBox marks the WebSession object expired.
© 2014 Vindicia, Inc. Table of Contents Hosted Order Automation 13 - 6

CashBox 5.0: Programming Guide HOA Server Work Flow
HOA loads the WebSession object with vin_WebSession_VID, which accompanied the
form, and stores the data submitted by the order form. Note that HOA does not make the
API call to create the PaymentMethod object at this point in the process.

7. CashBox returns the redirectURL (specified in the merchant’s submitted page / form
value), and the merchant redirects the customer to their confirmation page.

8. HOA redirects the customer's browser, which is awaiting a response to the form
submission, to the success page (returnURL) hosted by your server. Form data is
passed to the CashBox servers; but the customer experience is that they never leave
your website. HOA includes the WebSession VID in the redirection URL, so that it is
available to your success page.

a. The redirect carries the VID for the WebSession back to the merchant site, thus
confirming the session, and allowing the merchant to access information contained
in the WebSession object.

b. The VID acts as both transport and handshake, in that it carries through the
WebSession.

9. Merchant makes a WebSession.finalize SOAP call to Vindicia.

a. WebSession.finalize returns both the WebSession results, and the result for
the underlying API calls. (For more information, see Section 19: The WebSession
Object in the CashBox API Guide.)

The success page makes a WebSession.finalize() call, instructing HOA to make the
API call needed to create the CashBox objects described.

10. CashBox finalizes the session, saves the customer data to the database (previous
save was only temporary), and allows the CashBox process to begin (updating
AutoBill, PaymentMethod, Product, and Account data.)

Using data in the WebSession object, and data stored after the form submission, HOA
internally makes the API call (in this case, the PaymentMethod.update() call) to create a
CashBox object (in this case, the PaymentMethod object) and updates the WebSession
object with the results of the API call. HOA returns this updated WebSession object to your
success page.

11. The WebSession object returned by the finalize() call contains the results of the
PaymentMethod.update() call. Using these results, the success page determines its
dynamic content to be sent to the customer's web browser.

12. Your application returns the success page to the customer's browser.

(Note that steps 5 through 11 are parts of a single synchronous call and response chain
initiated by the customer's submission of the order form.)
© 2014 Vindicia, Inc. Table of Contents Hosted Order Automation 13 - 7

CashBox 5.0: Programming Guide Working with HOA
13.3 Working with HOA

13.3.1 CashBox objects affected by HOA

Using the CashBox API, you may access objects generated during an HOA process using
their WebSessionVid, and the fetchByWebSessionVid method. The four CashBox
objects which may be fetched using their WebSessionVid are:

• Account

• AutoBill

• PaymentMethod

• Transaction

13.3.2 HOA Naming Schema

Web forms are a flat name space. To accommodate this, CashBox flattens its standard
SOAP calls by concatenating them using underscores. HOA uses the following naming
rules:

• Every name begins with vin_

• Followed by the object type you with to create: vin_Transaction_

• Followed by the name of the data member you wish to set:
vin_Transaction_amount

• Followed by the value for the data member: vin_Transaction_amount => 100

Follow the same pattern to set the value for an object:

vin_PaymentMethod_billingAddress_addr1 => "1639 Harrison Ave."

In creating forms, use the format:

<input type="text" name="vin_Transaction_transactionItems_0_sku"/>'

For example:

vin_PaymentMethod_billingAddress_addr1 => "1639 Harrison Ave."

In the form, becomes:

<input type="text" name=" vin_PaymentMethod_billingAddress_addr1"/>'

Note: HOA naming rules are case-sensitive.
© 2014 Vindicia, Inc. Table of Contents Hosted Order Automation 13 - 8

CashBox 5.0: Programming Guide HOA Naming Schema
Naming schema for parameter values

Setting parameter values follows the same structure. For example, to set
minChargebackProbability to 100:

vin_Transaction_auth_minChargebackProbability => 100

Naming scheme for an object with an array

Comma delimited values are used for private form values, therefore you cannot use them
elsewhere, and you cannot use them to define an array.

To set an array of values, use the pattern described above, but add the index value for the
item after the name of the attribute, then the item itself.

"Transaction_taxExemptions_0_ taxExemption"
"Transaction_taxExemptions _1_ taxExemption2"

Naming scheme for name-value arrays

To set a name-value array, simply use the flattened object name, method name, and
parameter name, concatenated with an underscore:

Transaction_nameValues_name => value
$mpnv1->setName('AutoBill_Update_minChargebackProbability');
$mpnv1->setValue('95');

Note: Calling WebSession.finalize instructs HOA to take ALL form
information gathered through the HOA http POST, and create and
populate the appropriate CashBox objects.
© 2014 Vindicia, Inc. Table of Contents Hosted Order Automation 13 - 9

CashBox 5.0: Programming Guide HOA Form Post Parameters
13.3.3 HOA Form Post Parameters

To create a Form Post parameter, simply create an HTML form that contains elements,
forms, and widgets whose names follow the examples shown here. The values associated
with these names will be dependent upon your customer’s actions or selections in the HTML
form.

The following lists examples of HOA Form Post parameters:

vin_WebSession_version='3.9'
vin_WebSession_method='Account_updatePaymentMethod'
vin_WebSession_vid
vin_PaymentMethod_type='CreditCard'
vin_PaymentMethod_accountHolderName
vin_PaymentMethod_creditCard_account
// Upon form submission, HOA will validate the value entered in
// this field by running a Luhn check. If the check fails,
// the customer’s browser will be redirected to your error URL.

vin_PaymentMethod_creditCard_expirationDate='YYYYMM'
// Upon form submission, HOA will validate the value entered
// in this field by making certain the year begins with “20,” and
// the month is between 01 and 12. If this check fails,
// your customer’s browser will be redirected to your error URL.
//(full expirationDate takes precedence)

vin_PaymentMethod_creditCard_expirationDate_Month='MM'
// Upon form submission, HOA will validate the value entered
// in this field by making certain that the month is between
// 01 and 12. If this check fails, your customer’s browser will
// be redirected to your error URL.

vin_PaymentMethod_creditCard_expirationDate_Year='YYYY'
// Upon form submission, HOA will validate the value entered
// in this field by making certain that the year begins with “20.”
//If this check fails, your customer’s browser will
// be redirected to your error URL.

vin_PaymentMethod_nameValues_cvn
vin_PaymentMethod_billingAddress_name
vin_PaymentMethod_billingAddress_addr1
vin_PaymentMethod_billingAddress_addr2
vin_PaymentMethod_billingAddress_city
vin_PaymentMethod_billingAddress_district
vin_PaymentMethod_billingAddress_postalCode
vin_PaymentMethod_billingAddress_country
vin_PaymentMethod_billingAddress_phone

If the customer is redirected to your error URL by one of these error checks, be certain to
inform them why form submission failed. Then, initiate a new WebSession, and re-present
the order form to your customer.
© 2014 Vindicia, Inc. Table of Contents Hosted Order Automation 13 - 10

CashBox 5.0: Programming Guide HOA Method Parameters
Private Form Values

To set the merchantTransactionId of a Transaction, pass a FORM name-value pair
to a WebSession NameValuePair object. For example:

{name => 'vin_Transaction_merchantTransactionId', value => 'tx_' . $time}

(Notice that the Transaction object's merchantTransactionId data member is
flattened out and prefixed with vin_.)

The following lists examples of HOA Private Form values:

vin_Account_merchantAccountId
vin_PaymentMethod_merchantPaymentMethodId

13.3.4 HOA Method Parameters

To pass a variable to a CashBox method, use a name-value pair.

For example, to pass the minChargebackProbability attribute to the Transaction.auth
method:

{name => 'Transaction_Auth_minChargebackProbability', value => 1},

The following lists examples of HOA Method parameters:

Account_updatePaymentMethod_replaceOnAllAutoBills=true
Account_updatePaymentMethod_updateBehavior=Validate
Account_updatePaymentMethod_ignoreAvsPolicy=false
Account_updatePaymentMethod_ignoreCvnPolicy=false

13.3.5 HOA Error Checking

It is possible for the WebSession.finalize call to be successful while the underlying
SOAP API call was not.

Therefore, your code should check that both the WebSession.finalize call and the API
return within it returned a 200 for success.

As different API calls will use the same return codes to mean different things, please
reference API name, return code, and return strings to get a complete error view and
reference lists for each method in the CashBox API Guide.
© 2014 Vindicia, Inc. Table of Contents Hosted Order Automation 13 - 11

CashBox 5.0: Programming Guide WebSession Object
13.4 WebSession Object

The WebSession object must be created before serving the order form to the customer for
submission to the Vindicia server.

The WebSession object:

• Tracks the submission of an order form containing sensitive payment data. Use the
WebSession's VID as a session ID, to track the session from your customer's first
order form request, to your final success or failure page for the session.

• Establishes a time limit for the entire sequence.

• Ensures that a single form submission from a customer results in only one API call,
specified when the session is initiated (see the WebSession object's method data
member). That way, if the customer submits the same form repeatedly, HOA does not
make multiple API calls, resulting in the creation of multiple CashBox objects. The
WebSession object supports the following CashBox API calls (methods):

Account_Update
Account_UpdatePaymentMethod
AutoBill_Update
PaymentMethod_Update
PaymentMethod_Validate
Transaction_Auth
Transaction_AuthCapture

• Stores the result of the CashBox API calls made by HOA after finalization of the
WebSession object. Your success / failure page then examines this information to
determine its content, and directs the customer to the appropriate next steps. (See the
WebSession object's apiReturn attribute in Section 19.1: WebSession Data
Members in the CashBox API Guide.)

• Holds some of the data required to complete the CashBox API call that HOA makes
after the customer has submitted the form. (See the WebSession object's
privateFormValues attribute in Section 19.1: WebSession Data Members in the
CashBox API Guide.)

For details on the WebSession object's attributes, see Section 19.1: WebSession Data
Members in the CashBox API Guide.

The following example shows a typical initialization of a WebSession object. This example
creates an AutoBill object for a new subscription, without passing sensitive Payment
Method information through your servers. When a customer requests a page to start a
subscription, initiate a WebSession object.

To populate the data in the WebSession object:

• HOA calls AutoBill.update when you finalize the WebSession object.

• AutoBill.update() may use an existing Account object for the customer.

Note: Do not allow this object's VID to appear in the form sent to the customer's
browser, not even as a hidden element.

• AutoBill.update() uses an existing Product object.
© 2014 Vindicia, Inc. Table of Contents Hosted Order Automation 13 - 12

CashBox 5.0: Programming Guide WebSession Object
Note: Do not allow this object's VID to appear in the form sent to the customer's
browser. Hiding this VID prevents hackers from specifying a random Product ID, that
may correspond to a Product ID that you do not wish to make available for
subscriptions in this context.

• AutoBill.update() uses one of two existing BillingPlan objects. (Specify
existing Billing Plan IDs to prevent other, possibly inactive or invalid, IDs from being
submitted. This helps to regulate and control the AutoBill creation process.)

Because all POSTed data is submitted through an HTTP Post, it must be submitted as
name-value pairs.

(Note: These are HTTP name-value pairs; not CashBox NameValuePair objects.)

$ws = new WebSession();

// HOA must use CashBox API version 3.4 or later to make the
// AutoBill.update call
$ws->setVersion('3.4');

// HOA should make an AutoBill.update call when the form
// is submitted

$ws->setMethod('AutoBill_Update');

// Capture the customer's IP address. When the customer submits the form,
// it should come from the same IP address

$ws->setIpAddress("124.23.210.175");

// Page to which HOA will redirect customer's browser after
// successfully storing the data received when the customer
// submits the form

$ws->setReturnURL("https://merchant.com/subscribe/success.php");

// Page to which HOA will redirect customer's browser if HOA fails to
// store the data received when the customer submits the form

$ws->setErrorURL("https://merchant.com/subscribe/failed.php");

// Private name-value pairs. These are needed to create the AutoBill
// object, but are NOT included in the customer form

$pnv1 = new NameValuePair();

// The name is flattened object name, concatenated
// with attribute names with an underscore.

// The CashBox Account object for which HOA should create the
// AutoBill object

$pnv1->setName('vin_Account_merchantAccountId');
$pnv1->setValue('df943');
© 2014 Vindicia, Inc. Table of Contents Hosted Order Automation 13 - 13

CashBox 5.0: Programming Guide WebSession Object
// The CashBox Product object HOA should use to construct
// the AutoBill object

$pnv2 = new NameValuePair();
$pnv2->setName('vin_Product_merchantProductId');
$pnv2->setValue('BlorgWars II');

$pnv3 = new NameValuePair();
$pnv3->setName('vin_BillingPlan_merchantBillingPlanId');

// When customer submits the form, the Billing Plan
// must be one of these two comma separated values

$pnv3->setValue('GoldAccess2010, PlatinumAccess2010');

$ws->setPrivateFormValues(array($pnv1, $pnv2, $pnv3));

// Create method parameter name-value pairs. These are needed to make the
// AutoBill.update call which takes parameters in addition to the
// AutoBill object itself. Do not allow these to come from the form
// submission, because that makes them susceptible to hacking

$mpnv1 = new NameValuePair();

// The name is flattened object name, method name, and
// parameter name, concatenated with underscores.

$mpnv1->setName('AutoBill_Update_minChargebackProbability');
$mpnv1->setValue('80');

// Leave other parameter values to their default values

$ws->setMethodParamValues (array($mpnv1));

// Now create the WebSession object on Vindicia servers
// by making the SOAP call to initialize the object

$response = $ws->initialize();

if ($response['returnCode'] == 200) {

$ret_ws = $response['data']->session;

// The VID of the WebSession object serves as session id

$sessionId = $ret_ws->getVID();

// Embed the sessionId as a hidden field named
// vin_WebSession_VID in the order web form

// Compose and present the order web form to the customer here
}
else {

// Return error to the customer who requested the web order form
}

© 2014 Vindicia, Inc. Table of Contents Hosted Order Automation 13 - 14

CashBox 5.0: Programming Guide Integrating HOA with CashBox
Note that this example stores the merchant IDs of the Account, BillingPlan, and other
objects as private values in the WebSession object, and assumes that objects with these
IDs already exist in CashBox. Always specify merchant IDs of objects as private values
stored in the WebSession object, even if the objects do not yet exist. These are your
internal object IDs; for security reasons do not pass them in through the form submission, or
store them as hidden fields in the form. If an object ID is present in the WebSession object's
private values, when HOA completes the desired API call, HOA first looks for an object with
that ID in the CashBox database. If no such object is available, HOA creates a new object
with that ID, and populates it with related data, either submitted through the form, or
previously stored in the WebSession object.

For example, if an Account with merchantAccountId: df943 does not yet exist in
CashBox, when the WebSession is finalized, HOA will create a new Account object with
merchantAccountId: df943. In this case, the Account attributes, such as customer's
name, email, and shipping address, must be passed in through the form; which means that
your form must include the fields necessary for your customer to submit this information.

The WebSession object created remains valid for one hour (by default), within which time
the customer must complete and submit the form.

13.4.1 Integrating HOA with CashBox

To integrate with CashBox using HOA:

1. Create and host a Web order form on your website (called an order form or just form in
the rest of this section). The action URL to process the form data is an address on
Vindicia's server.

When your customer enters payment data and clicks Submit on your order form, their
browser passes the data to an HOA component hosted on Vindicia's server.

2. Create and retrieve a WebSession object on the Vindicia server with the CashBox API.
HOA tracks the order form's submission activity through a WebSession object
instance.

When your customer requests the order form from your site, create a WebSession object
on the Vindicia server. Upon receiving the data submitted by the form, HOA stores the data
on Vindicia's secure server, and redirects the customer's browser to a success page hosted
by you on your server.

3. Create and host a success and failure page to which HOA will redirect your customer's
browser after storing the data from the submitted form.

After storing the data, HOA immediately redirects the customer's browser to the dynamically
generated success or failure page on your site. On this page, make a SOAP API call to
finalize the WebSession. In response to the call, HOA makes a CashBox API call internally
on Vindicia's server, using the data in your WebSession object, and the data stored from
the order form submission. For example, depending on the form's content and the
corresponding WebSession object instance, HOA might call update() on a
PaymentMethod object it constructs with the form data and other data in the WebSession
object. WebSession finalization returns the results of the API call HOA made; you can then
process the results on that page and display an appropriate message to your customer.
© 2014 Vindicia, Inc. Table of Contents Hosted Order Automation 13 - 15

CashBox 5.0: Programming Guide Creating Order Forms for HOA
13.5 Creating Order Forms for HOA

To provide payment information and other data required by the WebSession object, your
customer order form must contain the following attributes:

• The VID of the corresponding WebSession object as a hidden element named
vin_WebSession_VID in the form, for example:

<input type="hidden" name="vin_WebSession_VID" value="$sessionId" />

• The action URL of the form pointing to the HOA page on the Vindicia server (https://
secure.vindicia.com). The method for submitting the form is POST.

• The attributes required for the CashBox objects HOA will create with finalization of the
WebSession. These attributes must be present as form elements, unless stored as
private values in the WebSession object. The element name must begin with the prefix
vin_, followed by a flattened attribute name that contains the object name, sub-object
name, and attribute name, concatenated by underscores.

In the following example, the form collects data for a BillingPlan object and a
PaymentMethod object to construct an AutoBill object. The corresponding WebSession
object specifies AutoBill_Update in its method attribute.

Select Billing Plan: <p>
<input type="radio" name="vin_BillingPlan_merchantBillingPlanId"

value="GoldAccess2010" />
<input type="radio" name="vin_BillingPlan_merchantBillingPlanId"

value="PlatinumAccess2010" />

<input type="hidden" name="vin_AutoBill_currency" value="USD" />
<input type="hidden" name="vin_PaymentMethod_Type"
value="CreditCard" />

Enter credit card details: <p>
Account Holder Name: <input type="text"
name="vin_PaymentMethod_accountHolderName" />

Credit card number: <input type="text"
name="vin_PaymentMethod_creditCard_account" />

Expiration Date: <input type="text"

name="vin_PaymentMethod_creditCard_expirationDate" />

CVV Number: <input type="text" name="vin_PaymentMethod_nameValues_cvn"

" size="4" maxlength="4" />

Note: URLs vary by working environment. Please contact Vindicia client
services for your current location.

Prodtest: https://secure.prodtest.sj.vindicia.com/vws
Staging: https://secure.staging.sj.vindicia.com/vws
Production: https://secure.vindicia.com/vws
© 2014 Vindicia, Inc. Table of Contents Hosted Order Automation 13 - 16

CashBox 5.0: Programming Guide Creating Order Forms for HOA
If an attribute is an array, concatenate the element with a number that specifies the array
index.

For example, to specify the line items to construct the Transaction object's items
attribute (for a WebSession object with the Transaction.auth method):

<input type="text" name="vin_Transaction_transactionItems_0_sku"/>'
<input type="text" name="vin_Transaction_transactionItems_0_name"/>
<input type="hidden" name="vin_Transaction_transactionItems_0_price"

value="9.95"/>
<input type="text" name="vin_Transaction_transactionItems_0_quantity"/>

<input type="text" name="vin_Transaction_transactionItems_2_sku"/>
<input type="text" name="vin_Transaction_transactionItems_2_name"/>
<input type="hidden" name="vin_Transaction_transactionItems_2_price"

value="8.88" />
<input type="text" name="vin_Transaction_transactionItems_2_quantity"/>

If you include elements in the form that are relevant to you, but not required by a Vindicia
object (such as form elements whose names do not contain the vin_ prefix), HOA stores
the corresponding HTTP POST data in the postValues attribute of the corresponding
WebSession object. After posting, the data is available to you when you retrieve the
WebSession object on your success or failure page.

When your customer submits the form, HOA stores the form data with the WebSession
object. It does not create any CashBox objects (by making the API call you specified in the
method attribute of the WebSession object) until you call finalize() on the
WebSession object. Finalize the WebSession from the success page to which HOA
redirects the customer's browser after storing the form data.

Note You need not embed all the data in the form; feel free to preload some
data in the corresponding WebSession object. For example, the above
form, which results in the creation of an AutoBill object, does not
include the customer account information, because the customer's
Account object's merchantAccountId attribute is already in the
WebSession object's privateFormValues attribute.
© 2014 Vindicia, Inc. Table of Contents Hosted Order Automation 13 - 17

CashBox 5.0: Programming Guide Creating Success or Failure Pages for HOA
13.6 Creating Success or Failure Pages for HOA

When a customer submits an order form, HOA receives and stores the data on Vindicia
servers, and redirects the customer's browser to your success page, hosted on your server.
Specify the URL of your success page in the returnURL attribute of the WebSession
object. (This is generally a dynamically generated page that intersperses CashBox API calls
with HTML to be sent to the browser.) If a failure occurs when HOA stores the form data,
HOA redirects the customer's browser to the page specified in the WebSession object's
errorURL attribute. (That page is also a dynamically generated "failure page," hosted on
your server to notify your customer about the failure and its causes.) If you do not specify the
errorURL attribute, HOA will use the returnURL for redirection upon failure.

To work with the CashBox API and your success and failure pages:

• When HOA redirects to the success and failure pages, it passes the WebSession
object's VID. Use this WebSessionVid to make a finalize() call on the
WebSession object. Upon finalization, HOA internally makes the call specified in the
method data member of the corresponding WebSession object, creates the desired
object or objects on the Vindicia server, and updates the WebSession object with the
call's results. This updated WebSession object is available to you in the response to
your finalize() call.

• When creating a success page, extract the non-Vindicia form data submitted by the
customer by examining the WebSession object's postValues data member.

• On the success page, fetch the object created by the API call made by HOA. For
example, if your WebSession object's method data member is set to
AutoBill.update, after finalization of the WebSession, HOA creates an AutoBill
object. Fetch that object with the WebSession object's VID by calling
AutoBill.fetchByWebSessionVid(). Similar methods are available for the
Account, Transaction, and PaymentMethod objects. You may then include
information from these objects on your success page.

The following illustrates some of the activities performed on a success page:

$sessionId = …; //passed in by redirected page

$ws = new WebSession($soapLogin, $soapPwd);
$ws->setVID($sessionId);

// finalize the WebSession so HOA can make the API call to
// create CashBox object/s containing sensitive payment
// information

$response = $ws->finalize();

if ($response['returnCode'] == 200) {

$updatedWs = $response['data']->session;

// Check if the API call HOA made to create the
// CashBox object containing payment
// information was successful

if ($updatedWs->apiReturn->getReturnCode == 200) {
© 2014 Vindicia, Inc. Table of Contents Hosted Order Automation 13 - 18

CashBox 5.0: Programming Guide Creating Success or Failure Pages for HOA
// Extract non-Vindicia values submitted by the web
// order form, and process them to prepare the HTML to
// be returned to the customer

$postVals = $updatedWs->getPostValues()

// Assuming HOA created an AutoBill object, let's fetch it
$soapAbill = new AutoBill($soapLogin, $soapPwd);

$resp = $soapAbill->fetchByWebSessionVid($sessionId);

if ($resp['returnCode'] == 200) {
$createdAutoBill = $resp['data']->autobill;

// Get AutoBill contents here to be included in
// HTML returned to the customer.
}

}
else {

// The API call HOA made to create or manipulate object
// containing sensitive payment data did not succeed.
// Return error message to customer

$errorString = $updatedWs->getApiReturn()->getReturnString();

…

}
}
else {

// Finalization failed
// Return error message to the customer

}

© 2014 Vindicia, Inc. Table of Contents Hosted Order Automation 13 - 19

14 Common ChargeGuard Programming
Tasks

Data must be integrated between Vindicia’s ChargeGuard and your information system, as
follows:

• Integration of your data into ChargeGuard. This is the collection and integration of
your transaction data into ChargeGuard, which enables Vindicia to dispute chargebacks
on your behalf.

• Integration of chargeback data into your system. This is the collection and
integration of the relevant chargeback information back into your system, after which
you can update and turn off accounts, as appropriate.

This chapter describes the related processes.
© 2014 Vindicia, Inc. Table of Contents 14 - 1

CashBox 5.0: Programming Guide Integrating Data into ChargeGuard
14.1 Integrating Data into ChargeGuard

To analyze and processes chargeback rebuttals or requests through ChargeGuard, Vindicia
requires three types of data:

• Chargeback data. Vindicia’s technical and operations groups can handle this
integration directly with your payment processor and receive the information from the
processor. To pass the data to Vindicia yourself, see Section 14.3: Data Reporting to
Vindicia.

• Transaction data. Examples include the transaction ID and date, stock-keeping unit
(SKU) ID, price, quantity, shipping and billing addresses, utility, and credit-card
information.

• Activity data. Examples include user ID and user activity, such as logins to your site,
pages visited, phone or email contacts, and fulfillment information.

Transaction and activity data is usually stored in your system. Extract it and map it to the
format accepted by ChargeGuard using the CashBox API, then process the data, and
automatically send to Vindicia at regular intervals.

Note Be certain to send Vindicia your transaction and activity data
regularly, to guarantee that the ChargeGuard team has the most
recent information for chargeback disputes. Most merchants upload
batches daily or weekly.
© 2014 Vindicia, Inc. Table of Contents Common ChargeGuard Programming Tasks 14 - 2

CashBox 5.0: Programming Guide Integration of Chargeback Data Back into Your System
14.2 Integration of Chargeback Data Back into Your System

Chargeback dispute resolution usually takes a minimum of 90 days. When a chargeback
occurs, most merchants:

1. Immediately limit any other potential risks associated with the chargeback. Turn off the
current, future, and associated account information along with the related credit-card
information, email address, or customer ID.

2. Update transaction and activity systems to reflect the latest chargeback status while
Vindicia disputes the chargeback.

You have three options by which to accomplish those tasks.

• Receive updates from your payment processor, and manually alter account status in
your system.

• Use the CashBox Chargeback Spreadsheet to determine a course of action, then
manually update customer Account status.

• Use the CashBox API to automatically manipulate your customer Account objects,
based on the CashBox Chargeback Spreadsheet.

14.2.1 Use Payment Processor Data to Manually Alter Account Status

With this option, you receive updates directly from your payment processors, and turn off
accounts in your transaction systems, if appropriate.

14.2.2 Use CashBox Data to Manually Alter Account Status

With this option, manually turn off accounts in your transaction systems based on the data in
the CashBox Chargeback Spreadsheet, which is a daily extract that shows all changes to
your chargebacks.

To download the spreadsheet:

1. Log into the CashBox Portal at www.vindicia.com.

2. Select Manage > Chargebacks > Spreadsheet Download.

3. Specify the date range and download format.

4. Click Download File.

This file contains the latest status of the chargebacks in the CashBox system. Use this
information to determine the action to take on customer accounts in question, such as
closing them, placing a hold on them, or updating the status of the transactions and activities
to which the chargebacks pertain.
© 2014 Vindicia, Inc. Table of Contents Common ChargeGuard Programming Tasks 14 - 3

CashBox 5.0: Programming Guide Use the CashBox API to Automatically Update Account Status.
14.2.3 Use the CashBox API to Automatically Update Account Status.

Use the CashBox API to automatically extract and map the Chargeback Spreadsheet data
into your CashBox system.

1. Automatically download the CashBox Chargeback Spreadsheet by creating a script that
simulates an HTTP POST operation to pull the spreadsheet from ChargeGuard with the
CashBox API.

Vindicia recommends cURL for this process.

2. Extract and map the data in the spreadsheet using a CashBox API integration.

3. Build logic at your end to add a chargeback to the customer ID for which Vindicia
received new chargebacks.

4. Determine and perform the action you want to take, for example, such as cancelling or
suspending the account in question.
© 2014 Vindicia, Inc. Table of Contents Common ChargeGuard Programming Tasks 14 - 4

CashBox 5.0: Programming Guide Data Reporting to Vindicia
14.3 Data Reporting to Vindicia

You may choose to report transaction and activity data to Vindicia either in real-time, or in
batches. To report in real-time, send data to and receive data back from Vindicia one item at
a time. To send batch reports, gather the information on multiple items and send it all at the
same time. In both cases, you must collect data from your system, and assign it to the
appropriate data structures, as defined later in this chapter.

Note: To leverage ChargeGuard’s risk-screening feature, send the data to Vindicia in real
time.

14.3.1 Initial Load of Historic Data

Before Vindicia can begin processing your chargebacks, you must send an initial set of
transactions to be loaded into ChargeGuard. Because chargebacks are typically issued by
the customer within 30 to 90 days after the transaction, ChargeGuard must have at least 90
days’ worth of data to begin.

The CashBox API allows you to report a vast array of information on your transactions and
customer activity. Although many data items are optional, providing Vindicia with more
information increases the success rate of winning chargeback disputes.

Note: This data requirement applies to first-time ChargeGuard
subscribers only. If you already subscribe to CashBox, Vindicia has
your transaction data and you need not resend it. However, we
strongly recommend that you send us the historical activity data,
which often serves as valuable background information for
chargeback disputes
© 2014 Vindicia, Inc. Table of Contents Common ChargeGuard Programming Tasks 14 - 5

CashBox 5.0: Programming Guide Key ChargeGuard Objects
14.3.2 Key ChargeGuard Objects

The data that Vindicia and you exchange for ChargeGuard is represented by objects in the
CashBox API. The most important objects for ChargeGuard are:

1. Transaction: The Transaction object encapsulates all transaction information,
including the amount, payment method, associated customer account, and transaction
status. (Most of this information is also provided to your payment processor.)

The following Transaction information must be sent to Vindicia to provide evidence for
disputes:

• Transaction data fields

• Item information

• Rebill information

• Payment method, including information on the credit card and the bank, if applicable

• Customer information, including the customer name, billing address, and shipping
address

If post-transaction activity occurs, ChargeGuard can capture it for any subsequent
chargeback disputes. Use the Activity object to notify Vindicia of your decision to
complete, authorize to capture, or cancel the transaction.

2. Activity: The Activity object contains information about your interaction with a
customer outside of the monetary transaction, such as a phone or email contact or a
login to your site.

3. Chargeback: The Chargeback object contains information about a chargeback
against a specific transaction, including the chargeback status provided by Vindicia
during the dispute process.

4. Refund: The Refund object contains information about a refund from you to a
customer for a specific Transaction. ChargeGuard applies partial and full refund data to
transactions and to chargeback processing through the Refund object by associating
the refund with the original transaction ID.
© 2014 Vindicia, Inc. Table of Contents Common ChargeGuard Programming Tasks 14 - 6

CashBox 5.0: Programming Guide Reporting Transaction Data to Vindicia
14.3.3 Reporting Transaction Data to Vindicia

The Transaction and MigrationTransaction objects support methods to migrate Transaction
information into Vindicia, and to receive a chargeback risk percentage. These classes
require that you instantiate your merchant user name and password assigned by Vindicia.

To send transaction information to Vindicia:

1. Collect the information about the transactions.

2. Create either a MigrationTransaction object (for use with
Transaction.migrate), or a Transaction object (for a Transaction.score
request).

To migrate historic data to CashBox, please see Section 5.4: Importing AutoBills from other
Billing Systems to CashBox, or Transaction.migrate in the CashBox API Guide,

To report data in real time (for Transaction.score requests), see Reporting Real-Time
Transaction Information for Fraud Screening below.

To report the data in real time, see Reporting Real-Time Transaction Information for Fraud
Screening in the next section.

After you send data to Vindicia, Vindicia returns a Return object with returnCode and
returnString to inform you if the communication with the Vindicia server completed
successfully. (Codes for the Return object are modeled after the standard HTTP return
codes.) If the call succeeds, you receive a code of 200 and the string OK. returnCode and
returnString may be used to interpret errors. See The Return Object in the CashBox
API Guide, for more information.

Be certain to act upon the Return value.

Reporting Real-Time Transaction Information for Fraud Screening

To report the transaction information in real time and receive a chargeback probability score,
call the score() method on the Transaction object. (Be certain to pass only a single
Transaction object to the score() call.) This call not only reports your transaction details
to Vindicia but also returns to you a chargeback probability score (also called a risk score).

For the score() call to succeed, your transaction must contain at least the following
attributes. If you do not specify any one of them, the call returns a score of -1, which means
“no opinion.”

• IP address

• Payment method: Billing address: City

• Payment method: Billing address: State (“district”)

State is a required attribute: Do not leave it unspecified and do not specify a value of
null. If the state is not known or does not exist, set this attribute to Unknown.

• Payment method: Billing address: Country

• Payment method: Billing address: Zip code

For countries with no zip or postal codes, set this attribute to None.

• Credit card BIN (the first six digits of the credit-card number)
© 2014 Vindicia, Inc. Table of Contents Common ChargeGuard Programming Tasks 14 - 7

CashBox 5.0: Programming Guide Reporting Transaction Data to Vindicia
Report real-time Transaction data to Vindicia:

$tx = new Transaction();
$tx->setAmount('29.90');
$tx->setCurrency('USD');
$tx->setMerchantTransactionId('txid-123456');

// IP is one of required attributes for scoring a transaction
$tx->setSourceIp('35.45.123.158');

$account = new Account();
$account->setMerchantAccountId('9876-5432');
$account->setEmailAddress('jdoe@mail.com');
$account->setName('J Doe');
$tx->setAccount($account);

$shippingAddress = new Address();
$shippingAddress->setName('Jane Doe');
$shippingAddress->setAddr1('44 Elm St.');
$shippingAddress->setCity('San Mateo');
$shippingAddress->setDistrict('CA');
$shippingAddress->setPostalCode('94403');
$shippingAddress->setCountry('US');

$tx->setShippingAddress($shippingAddress);

// The line items of the transaction
$tx_item = new TransactionItem();
$tx_item->setSku('sku-1234');
$tx_item->setName('Widget');
$tx_item->setPrice('3.30');
$tx_item->setQuantity('3');
$tx->setTransactionItems(array($tx_item));

$paymentMethod = new PaymentMethod();
$ccCard = new CreditCard();
$ccCard->setAccount('4111111111111111');
$ccCard->setExpirationDate('201109');
$paymentMethod->setType('CreditCard');
$paymentMethod->setCreditCard($ccCard);

// Billing address city, district, country are required for score
// call to work
$paymentMethod->setBillingAddress($shippingAddress);

$tx->setSourcePaymentMethod($paymentMethod);

$response = $tx->score();
© 2014 Vindicia, Inc. Table of Contents Common ChargeGuard Programming Tasks 14 - 8

CashBox 5.0: Programming Guide Reporting Transaction Data to Vindicia
if ($response[’returnCode’] == 200) {
if($response['score']->score <= 50) {

print "Acceptable score, processing transaction";
// process the transaction further here

}
else {

print "High risk of chargeback. Reasons are: \n";
$scoreCodes = $response['scoreCodes'];
foreach ($scoreCodes as $scoreCode) {

print("Score code ". $scoreCode['id'] . " : " .
$scoreCode['description'] . "\n");

}
}

}
else {

// the score call did not succeed, check return code
// and return string and try to re-submit

}

The score() call returns a Return object that describes the success or failure of the call,
the chargeback probability (score), and an array of reason codes (scoreCodes) that
explain the risk score.

Based on the transaction information provided, the chargeback probability ranges from 0 to
100. A probability of 100 indicates that CashBox is 100 percent certain that this transaction
is fraudulent and will result in a chargeback. The score can also be -1, indicating no opinion
from Vindicia; or -2, indicating an error condition. Based on the score, you can decide to
either proceed with the transaction (by capturing it) or cancel it.

For more information on scoreCodes and the score() call, see Section 18: The
Transaction Object in the CashBox API Guide.

Reporting Activity Information

To combat fraudulent chargebacks, Vindicia uses your records to build an evidentiary record
of your customer’s activities, and challenge a chargeback case on your behalf.

Usage data, which usually resides in the commerce server on your site, is not mandatory,
but can be key in helping win chargeback disputes. Examples of usage data are logins and
logouts, visits to certain Web pages, email or phone communications, and shipping
confirmations. This data can help counter customer claims that they did not make a specific
purchase. Vindicia strongly suggests that you maintain a record of usage data. If you sell
digital goods, most of this information data is required by the issuer in case of chargeback
disputes. Be sure to report all the events that are significant or relevant, including email or
phone communications, and access to or downloads of for-pay content.

The Activity object contains data structures through which you can report the following
types of customer activities:

• Logins to a site

• Logouts from a site

• Views, visits, or downloads of a Web resource (URI views)

• Phone contacts with a customer
© 2014 Vindicia, Inc. Table of Contents Common ChargeGuard Programming Tasks 14 - 9

CashBox 5.0: Programming Guide Reporting Transaction Data to Vindicia
• Email contacts with a customer

• Fulfillment of an order for physical goods

• Use of quantifiable objects that are meaningful to your business

• Cancellation of a service

• An arbitrary note that contains a maximum of 1,024 characters

Report these activities to Vindicia in batch mode, when your transaction processing system
is relatively quiet.

Record a phone contact with a customer as an Activity:

$soap_act = new Activity();

// Create an account object
$account = new Account();

// Specify account by the customer id
$account->setMerchantAccountId('9876-5432');

// Now create Activity to report a customer’s phone call
// and corresponding ActivityTypeArgs objects

$activity = new Activity();
$typeArgs = new ActivityTypeArgs();

// fill in the relevant info for this activity record
$activity->setAccount($account); //associate the activity and account
$activity->setActivityType('Phone');
$activity->setTimestamp(getdate());

$phoneArgs = new ActivityPhoneContact();
$phoneArgs->setCidPhoneNumber('1234567890');
$phoneArgs->setDurationSeconds(367)
$phoneArgs->setType('FromCustomerToMerchant');
$phoneArgs=>setNote('Customer agreed to be rebilled for services');

$typeArgs->setPhoneArgs($phoneArgs);

// associate typeArgs to the Activity object
$activity->setActivityArgs($typeArgs);

// now record the data
$response = $soap_act->record(array($activity));

if($response[’returnCode’] == 200) {
print "ok\n"; # 200 is HTTP status code for success

}

 For more information, see Section 2: The Activity Object in the CashBox API Guide.
© 2014 Vindicia, Inc. Table of Contents Common ChargeGuard Programming Tasks 14 - 10

CashBox 5.0: Programming Guide Reporting Transaction Data to Vindicia
Reporting Refund Information

If you process transactions and refunds through CashBox, you need not report refunds
separately to Vindicia.

Report refunds to Vindicia for transactions processed outside CashBox:

$refundVid = 'MyVindiciaRefundVID';

// Create a refund object
$refund1 = new Refund();
$refund1->setMerchantRefundId('REF101');

$transaction1 = new Transaction();
// merchant ID of a previously reported transaction
$transaction1->setMerchantTransactionId('TX101');

$refund1->setTransaction($transaction1);
$refund1->setAmount(5.99);
$refund1->setNote('Refunded due to service outage');
// Payment Processor's refund id when you processed
// this refund with it directly – if available
$refund1->setReferenceString('2033992');

// Create another refund object
$refund2 = new Refund();
$refund2->setMerchantRefundId('REF102');

$transaction2 = new Transaction();
// merchant ID of a previously reported transaction
$transaction1->setMerchantTransactionId('TX102');

$refund2->setTransaction($transaction2);
$refund2->setAmount(10.99);
$refund2->setNote('Customer did not receive delivery);

$soap_refund = new Refund();
$response = $soap_refund->report(array($refund1, $refund2));
if($response[’returnCode’] == 200) {

print ("All refunds submitted successfully");
}

If you refund customers outside of your CashBox system, you must report the refunds to
Vindicia so that ChargeGuard can use them when disputing chargebacks. To report refunds
in batch mode, first construct a batch of Refund objects, as shown above. For more
information, see Section 15: The Refund Object in the CashBox API Guide.
© 2014 Vindicia, Inc. Table of Contents Common ChargeGuard Programming Tasks 14 - 11

CashBox 5.0: Programming Guide Retrieving Chargeback Updates
14.4 Retrieving Chargeback Updates

The Chargeback object supports a fetchDeltaSince() call with which you can retrieve
chargebacks that have changed in status or that have been newly added since the
timestamp you specify as an argument for the call.

Fetch chargebacks that have changed in a specific time frame:

$cb = new Chargeback();
$page = 0;
$pageSize = 50;

// Here we want to fetch chargebacks that have changed in status or
// have been added since the last time we ran this call.
// Assume we have a function available to us that gives us
// the timestamp for the last time we ran this call

$since = getLastCallTime();
do {

$ret = $cb->fetchDeltaSince($since, null, $page, $pageSize);
$count = 0;
if ($ret[’returnCode’] == 200) {

$fetchedChargebacks = $ret['chargebacks'];
if ($fetchedChargebacks != null) {

$count = sizeof($fetchedChargebacks);
foreach ($fetchedChargebacks as $chargeback) {

// process a fetched chargeback here …
$status = $chargeback->getStatus();
$transactionId =

$chargeback->getMerchantTransactionId();
$amount = $chargeback->getAmount();

}
$page++;

}
}

} while ($count > 0);

To retrieve all the chargebacks that match the search criteria, construct the sample above in
a loop by incrementing the page number for each iteration until the returned number of
chargebacks in a page is less than the specified page size.

The Chargeback object also supports several other fetch calls to retrieve chargebacks
through a variety of search criteria. For details, see Section 7: The Chargeback Object in the
CashBox API Guide.

Make this call to Vindicia at periodic intervals with a UNIX daemon, a Microsoft Windows
scheduler, or a similar technology. Use this process to automate the tasks of downloading
chargebacks, learning their status, and enabling or disabling customer accounts.
© 2014 Vindicia, Inc. Table of Contents Common ChargeGuard Programming Tasks 14 - 12

Appendix A Custom Billing Statement
Identifier Requirements

The Billing Statement Identifier field enables merchants to define the line of text that will
appear on their customers’ credit card statements, in association with the related charge. To
enable this field, payment processors require merchants to provide certain information, in a
specific format.

(If you work with several payment processors, please be certain to consider their individual
requirements when deciding how to populate data on your CashBox objects.)

This appendix describes the data and configuration requirements for creating Payment
Processor specific Billing Statements for Chase Paymentech, GlobalCollect, Litle & Co., and
Merchant e-Solutions (MeS). While the requirements for these three processors are virtually
identical, specific differences are called out, where appropriate.

To comply with Visa transmission rules, the following information must be included with the
Billing Statement Identifier field:

• a Visa-issued Merchant Category Code (MCC),

• an associated Merchant Name (if applicable),

• a Customer Service Phone Number, and

• a Description of the product or purchase.
© 2014 Vindicia, Inc. Table of Contents A - 1

CashBox 5.0: Programming Guide Billing Statement Identifier
A.1 Billing Statement Identifier

Customize a Billing Statement Identifier in CashBox using either:

• the Billing Statement ID on a Billing Plan for an AutoBill in the CashBox UI; or

• the billingStatementIdentifier attribute in the SOAP API.

For credit card-based recurring billing, set the attribute for the BillingPlan, Product, or
AutoBill object. CashBox will then insert the identifier into every Transaction generated
for the AutoBill, and the identifier will appear on your customer’s next billing statement. If
you set the attribute on all three objects, the order of precedence is BillingPlan,
Product, AutoBill.

For real-time Transactions, set the billingStatementIdentifier attribute for the
Transaction object.

Billing Statement Identifier example: website.com|3101231234.

A.2 MCC-Associated Merchant Name

Work with your payment processor to provide Vindicia Client Services with your MCC
(Merchant Category Code) and associated Merchant Name.

• Obtain your MCC and the associated Merchant Name (set by Visa) from your payment
processor account representative. The Merchant Name may be 3, 7, or 12 characters.

• Send the information to Vindicia Client Services.

Vindicia will add your Merchant Name to your CashBox configuration for the Transactions
Vindicia submits on your behalf. Take note of the length of the Merchant Name; it will affect
the allowable length of description text (see Section A.4: Billing Description).

Do not pass the Merchant Name in the Billing Statement Identifier. Pass only the MCC.

Note The asterisk is a reserved character that is not allowed in the Billing
Statement Identifier.

Note: The length of the Merchant Name associated with your MCC will
directly affect the maximum allowable length of your Description.

For more information, see Section A.4: Billing Description.
© 2014 Vindicia, Inc. Table of Contents Custom Billing Statement Identifier Requirements A - 2

CashBox 5.0: Programming Guide Default Customer Service Phone Number
A.3 Default Customer Service Phone Number

Provide Vindicia Client Services with a default customer-service phone number for each
Chase Paymentech Division ID, GlobalCollect Billing Descriptor, Litle & Co. Merchant ID, or
MeS Profile ID, including the default ID.

For Chase or MeS: Provide a 10-digit number separated by dashes (NNN-NNN-NNNN or
NNN-NNNNNNN) or a three-digit number followed by a 7-digit alphanumeric code (for
example, 800-CALLNOW).

For Litle: Provide a 10 digit phone number for US billing addresses, and up to 13 digits for
non-US addresses.

For all listed payment processors, Vindicia will add the information to your CashBox
configuration, and enable the default phone number for your Division ID, Merchant ID, or
Profile ID.

Overriding the Default Customer Service Phone Number

To override the default phone number, use the Billing Statement ID field to append a product
description with the pipe symbol (|), followed by the desired number. (Non-numeric
characters will be stripped from the phone number.)

For example: Product XYZ | 877-555-1212.

In the CashBox UI, enter the Description and override phone number in the Billing
Statement ID field of the Billing Plan.

With the CashBox API, provide the Description and override phone number on the
billingStatementIdentifier data member of the BillingPlan, Product,
AutoBill or Transaction object. Use the symbol "->" to signify "is overridden by, if
present." If the override number is provided for several object, the order of precedence is
BillingPlan > Product > AutoBill > Transaction.

For Chase or MeS: Chase and MeS will reject the Transaction if the override number
exceeds 10 digits. To prevent this, CashBox will automatically use the default number for
your Division or Profile ID for any override numbers exceeding 10 digits.

For Litle: Litle will reject the Transaction if your override number exceeds 13 digits. To
prevent this, CashBox will automatically use the default number for your Merchant ID for
any override numbers exceeding 13 digits.

Note: The Billing Statement ID will not work without this phone number.
© 2014 Vindicia, Inc. Table of Contents Custom Billing Statement Identifier Requirements A - 3

CashBox 5.0: Programming Guide Billing Description
A.4 Billing Description

The Description is a string, up to 22 characters long, which includes the length of the MCC-
associated Merchant Name, and an asterisk (*), leaving 9 to 18 characters for the
descriptive text. (CashBox will automatically truncate any Description string exceeding 22
characters.)

The Description should be recognizable to the account holder. It should consist of the
company name and/or trade name (Merchant Name), combined with a description of the
product or service purchased.

There are three possible formats:

• 3-character Merchant Name, an asterisk (*), and an 18-character description

• 7-character Merchant Name, an asterisk (*), and a 14-character description

• 12-character Merchant Name, an asterisk (*), and a 9-character description

Each description must be validated by your payment processor’s Risk Department before
being put in use.Vindicia cannot verify that this step has occurred; you must secure the
validation yourself.

Valid characters in the Description string include:

• Numbers

• Letters

• Special characters: ampersand (&), comma (,), dash (-), period (.), pound sign (#)

The asterisk is a reserved character for marking the end of the MCC only. Do not include
an asterisk in your descriptor.

Note: Chase Paymentech will reject Transactions which use the following symbols, with
Response Reason Code 225 (invalid field data): caret (^), backslash (\), open square
bracket ([), closed square bracket (]), tilde (~), or accent (`).

For example, if Vindicia’s MCC-associated Merchant Name were VIN, and our Billing
Statement Identifier for CashBox were VIN* CashBox Software, the identifier would
appear on the credit-card holder’s statement as

VIN* CashBox Software 650-264-4700.
© 2014 Vindicia, Inc. Table of Contents Custom Billing Statement Identifier Requirements A - 4

	CashBox® Programming Guide Preface
	About CashBox
	About ChargeGuard

	1 CashBox Client Library Setup
	1.1 CashBox API
	1.2 Support for Development
	1.2.1 Installing and Configuring the CashBox Library
	PHP
	VB, C++, and ASP
	Perl
	Configuring the Perl API Client
	Specifying the First Parameter in Perl
	Java
	.NET With C#

	1.2.2 Setting Up Authentication Parameters
	In Perl
	In PHP
	In Java
	In VB, C++, and ASP
	In C#

	1.2.3 Configuring the SOAP Timeout for Client Libraries
	In PHP
	In Java
	In ASP, VB, and C++
	In C#

	1.2.4 Checking an Object Method’s Return Value
	1.2.5 Setting UNIX Timestamps in VB
	1.2.6 Date and Timestamp Format
	1.2.7 Assigning Unique Identifiers for Objects
	1.2.8 Ensuring the Correct Character Encoding

	1.3 Working with CashBox WSDL Files
	1.3.1 Specifying the SOAP Address
	1.3.2 Performing the Prerequisite Steps

	1.4 Tips for Developing SOAP Clients

	2 Working with Accounts
	2.1 Creating Customer Accounts
	2.2 Setting Up Account Payment Methods
	2.3 Accessing Existing Customer Accounts
	2.4 Creating Account Hierarchies

	3 Working with Products
	3.1 Creating Products
	3.2 Creating Bundled Products
	3.3 Accessing Existing Products

	4 Working with Billing Plans
	4.1 Creating Billing Plans

	5 Working with AutoBills
	5.1 Creating AutoBills
	5.1.1 Creating an AutoBill with Multiple Products
	5.1.2 Updating and Validating AutoBill Objects
	5.1.3 Verifying AVS and CVN for Recurring Billing

	5.2 Modifying AutoBills
	5.2.1 Prorating Modification-Based Price Changes
	5.2.2 Changing Products for an AutoBill
	5.2.3 Changing the Billing Plan for an AutoBill
	5.2.4 Changing both Products and Billing Plan in a Single Call

	5.3 Cancelling AutoBills
	5.3.1 Cancelling AutoBills on Billing Day

	5.4 Importing AutoBills from other Billing Systems to CashBox
	5.4.1 Key Migrate Parameters
	5.4.2 Migrating an AutoBill During a Billing Cycle
	5.4.3 Migrating an AutoBill During a Free Trial Period

	5.5 Using EDD for Recurring Billing
	5.5.1 Understanding Mandates for Recurring Billing with EDD

	5.6 Using PayPal for Recurring Billing

	6 Working with One-Time Transactions
	6.1 Setting Up Real-Time Billing for One-Time Purchases
	6.1.1 Monitoring Transaction Status

	6.2 Using Credit Cards for One-Time Transactions
	6.2.1 Verifying AVS and CVN for One-Time Transactions
	6.2.2 Calling the auth and capture Methods Separately

	6.3 Using Carrier Billing for One-Time Transactions
	6.3.1 BOKU Static Pricing Transactions
	6.3.2 BOKU Dynamic Pricing Transactions
	6.3.3 Using CashBox to query BOKU

	6.4 Using Boleto Bancario for One-Time Transactions
	6.5 Using ECP for One-Time Transactions
	6.5.1 Creating Outbound Payment Transactions with ECP

	6.6 Using EDD for One-Time Transactions
	6.6.1 Understanding Mandates for Real-Time Billing with EDD

	6.7 Using PayPal for One-Time Transactions
	6.8 Recording a Payment Manually
	6.9 Importing Transactions from other Billing Systems to CashBox
	6.10 Refunding Customers

	7 Working with Entitlements
	7.1 Creating Entitlements
	7.2 Entitlement Status
	7.3 Caching Entitlements
	7.4 Monitoring Entitlement Status

	8 Working with Rate Plans
	8.1 Recording Rated Units
	8.2 Deducting Rated Units
	8.3 Reversing (Billed) Rated Unit Events
	8.4 Fetching and Reporting Rated Units
	8.4.1 Fetching a Summary (Total) of Unbilled Rated Unit Events
	8.4.2 Fetching Billed or Unbilled Rated Unit Events

	9 Working with Customer Notifications
	9.1 Setting the Preferred Language
	9.2 Working with Billing Events
	9.2.1 CashBox Billing Events
	9.2.2 Billing Event Settings
	9.2.3 Parent-Child Account Billing Notifications
	9.2.4 Creating Billing Notification Templates
	Billing Event Template Tags

	9.3 Working with Invoices
	Dunning Notices
	9.3.1 CashBox Invoicing Events
	9.3.2 Creating Invoice Templates
	Default Invoice Template
	Invoice Template Tags

	10 Working with Tokens
	10.1 Understanding CashBox Token Objects
	10.2 Understanding Token Activities
	10.3 Defining New Token Types
	10.4 Incrementing Token Balances
	10.4.1 Purchasing Tokens
	10.4.2 Granting Tokens to Accounts

	10.5 Decrementing Token Balances
	10.5.1 Transacting Purchases in Tokens
	10.5.2 Token Transactions in Real Time

	10.6 Handling Recurring Billing with Tokens
	10.7 Refunding Transactions in Tokens
	10.8 The CashBox Token Processor

	11 Working with Campaigns
	11.1 Creating an AutoBill with a Campaign discount
	11.2 Adding a Campaign Code to an AutoBill
	11.2.1 Applying a Campaign Code to an existing AutoBill
	11.2.2 Applying a Campaign Code to a Specific Product on an AutoBill

	12 Credit Grants and Gift Cards
	12.1 Working with Credit
	12.1.1 Redeeming Credit
	12.1.2 Using Credits with an Account
	Granting Credit to an Account
	Revoking Credit from an Account
	Using Credits for a One-Time Transaction
	Fetching Account Credit History

	12.1.3 Using Credits with an AutoBill
	Granting Credit to an AutoBill
	Revoking Credit from an AutoBill
	Fetching AutoBill Credit Transactions
	Fetching an AutoBill’s Credit History

	12.2 Working with Gift Cards
	12.2.1 Understanding the Attributes of the GiftCard Object
	12.2.2 Determining Redemption Credit Amount
	12.2.3 Redeeming a Gift Card
	12.2.4 Reversing a Gift Card Redemption

	13 Hosted Order Automation
	13.1 HOA Features
	13.2 HOA Process Flow
	13.2.1 HOA Work Flow Overview
	13.2.2 HOA Server Work Flow

	13.3 Working with HOA
	13.3.1 CashBox objects affected by HOA
	13.3.2 HOA Naming Schema
	Naming schema for parameter values
	Naming scheme for an object with an array
	Naming scheme for name-value arrays

	13.3.3 HOA Form Post Parameters
	Private Form Values

	13.3.4 HOA Method Parameters
	13.3.5 HOA Error Checking

	13.4 WebSession Object
	13.4.1 Integrating HOA with CashBox

	13.5 Creating Order Forms for HOA
	13.6 Creating Success or Failure Pages for HOA

	14 Common ChargeGuard Programming Tasks
	14.1 Integrating Data into ChargeGuard
	14.2 Integration of Chargeback Data Back into Your System
	14.2.1 Use Payment Processor Data to Manually Alter Account Status
	14.2.2 Use CashBox Data to Manually Alter Account Status
	14.2.3 Use the CashBox API to Automatically Update Account Status.

	14.3 Data Reporting to Vindicia
	14.3.1 Initial Load of Historic Data
	14.3.2 Key ChargeGuard Objects
	14.3.3 Reporting Transaction Data to Vindicia
	Reporting Real-Time Transaction Information for Fraud Screening
	Reporting Activity Information
	Reporting Refund Information

	14.4 Retrieving Chargeback Updates

	Appendix A Custom Billing Statement Identifier Requirements
	A.1 Billing Statement Identifier
	A.2 MCC-Associated Merchant Name
	A.3 Default Customer Service Phone Number
	Overriding the Default Customer Service Phone Number

	A.4 Billing Description

